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Investigating the relationship between the months and traffic crashes is a foremost task for the safety improvement of
mountainous freeways. Taking a mountainous freeway located in China as an example, this paper proposed a combined modeling
framework to identify the relationships between months and different crash types. K-means and Apriori were initially used to
extract the monthly distribution patterns of different types of crashes. A graphical approach and a risk calculation equation were
developed to assess the output of K-means and Apriori.'en, using the assessment results as the input, a logistic regression model
was constructed to quantify the effects of each month on crashes. 'e results indicate that the monthly distribution patterns of
different crash types are inconsistent, i.e., for a specific month, the high risk of a certain crash type may be covered up if experts
only focus on the total number of crashes. Moreover, when identified as high-risk months by K-means and Apriori, the crash-
proneness will significantly increase several times thanmonths identified as high-risk by only one ofK-means and Apriori, thereby
illustrating the superior performance of the mix-method. 'e conclusions can assist local relevant organizations in formulating
strategies for preventing different types of traffic crashes in different months (e.g., the risk of rear-end crashes in August, the risk of
fixed-object hitting crashes in February, and the risk of overturning crashes in October) and provide a methodological reference
for relevant studies in other regions.

1. Introduction

According to the World Health Organization (WHO), road
traffic injury is the eighth leading cause of death in all age
groups and the leading cause of death in children and young
adults, aged 5 to 29 years [1]. To reduce the damage of crashes,
recent studies have focused on exploring the relationship
between traffic crashes and other factors [2–5]. 'ese
microlevel studies aim to investigate the impact of contrib-
uting factors on the probability of crashes. Compared with
microlevel research, macrolevel research can provide more
direct insight into guide practice. For instance, examining the
spatial distribution patterns of crashes and determining the
black spots can assist the road agencies in developing the

targeted countermeasures to reduce the frequency of crashes
in crash-prone locations. Despite these achievements in
revealing the spatial distribution of crashes based on the
black-spot theory, many subtleties have not been explicitly
understood relating to the temporal distribution patterns of
crashes. Furthermore, while the recent technological advances
have made traffic conditions increasingly convenient, the
crash rate of mountainous roads remains significantly higher
than that of ordinary roads because of many detrimental
factors, such as the complicated driving environment and
ineffective safety system [6]. Hence, to help enhance traffic
safety and mitigate crashes in mountainous areas, there is a
great necessity to understand the temporal distribution
characteristics of crashes on mountainous roads.
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Another issue worthy of attention is that there are also
discrepancies in the temporal distribution patterns of
crashes in different countries and regions because of the
inconsistency of travel habits, national policies, traffic
control regulations, road design, etc., [7, 8]. 'us, caution
should be exercised in projecting some of the conclusions in
one study to another, especially when they are conducted
based on different contexts. Because of owning the largest
population and the most motor vehicles in the world, China
is always confronted with formidable challenges regarding
the appropriate planning and operation to ameliorate road
safety. Toward this end, it is necessary to explore the
temporal distribution patterns of crashes in mountainous
areas in China. 'e rest of this paper is structured as follows:
sections 1.1 and 1.2 provide a review of the relevant research.
Section 2 introduces the data sources and data processing
procedures. 'en, the combined modeling framework is
described in Section 3, and the estimation results are pre-
sented in Section 4. Finally, Section 5 summarizes the
findings and limitations of the study.

1.1. Time Distribution of Traffic Crashes. 'ere is a lack of
relevant literature on exploring the temporal distribution
patterns of crashes. Most related studies regard “time” as a
variable in the causality model to investigate its effect on the
crash frequencies/severities. For such types of studies, the
contribution of different periods to crashes can be revealed
based on the estimation results of the model. Some re-
searchers point out that relative to off-peak hours in the
daytime, crashes during peak hours are found to be more
severe (both serious injury and fatality). 'is result might be
attributed to stress, frustration, aggression, and fatigue when
driving on congested roads during peak hours [9–11]. It is
consistent with findings from the study [12], which proposed
that 17:00 to 20:00 is the period with the highest incidence of
traffic crashes. Besides, the crash severity of nighttime is
found to be more serious than that of daytime for multi-
vehicle crashes [13, 14]. Ackaah et al. (2020) speculated that
the poor night visibility coupled with poor visual guidance
on roads is the critical factor leading to more serious crashes
[15]. Because of the divergencies of different periods in
influencing the crashes, the effects should be separately
investigated with disaggregate models to ensure the accuracy
of the analysis [16]. Note that some researchers have in-
vestigated the weekly/monthly/quarterly crash distribution
characteristics. For instance, Li et al. (2013) simply analyzed
the temporal distribution characteristics of roads in
mountainous areas using a broken line diagram and found
that the first and second quarters experience more crashes
than the remaining two quarters. For the monthly distri-
bution patterns, they pointed out that the frequency of
crashes in January and June is significantly higher than that
in other months [17]. Yadollahi (2019) documented a ret-
rospective cohort study using traffic crashes in Shiraz city
[7], with the results suggesting that most crashes tended to
occur on 'ursdays (15.09%) instead of Mondays (13.85%)
or Saturdays (13.95%). In all months, August and September
have witnessed the most crashes, while December and April

have witnessed the least crashes. In other studies, April,
October, and weekends are found to result in serious crashes
[18, 19]. Obviously, there exist differences in the conclusions
of these studies, which may be caused by the different cli-
mate, socioeconomic characteristics, and topography [20].

Several limitations can be summarized from the existing
research. Firstly, the past work pays more attention to the
hourly distribution pattern of crashes. However, the
monthly distribution patterns of crashes can provide more
effective insights into formulating the macrolevel safety
strategies. Secondly, most studies only regard temporal
factors as the explanatory variables in the model rather than
devoted to the analysis of crash time distribution patterns.
Finally, the methods used in the previous studies are usually
very simple (e.g., histogram and broken line diagram), which
may lead to inaccurate and unsystematic conclusions.
Consequently, to systematically explore the inherent rela-
tionship between traffic crashes and months, this study aims
to develop a combined modeling approach. A mountainous
freeway located in China is taken as the research object.
Besides, the monthly distribution of different crash types
(overall crashes, rear-end, fixed-object hitting, and over-
turning) are investigated in this study. 'is study may
contribute to improving analysis accuracy and providing
practical insights for road crash interventions.

1.2. Approach Analysis Review. Regarding models in traffic
crash analysis, the nonparametric models represented by
machine learning and parametric models represented by the
regression model are the most common. Previous studies
prefer to compare different models and then select the one
with a better performance. It is certainly a valid approach.
However, different types of models often have different
advantages. 'is study integrates the results of various types
of modeling approaches and tries to improve the reliability
of the study from the perspective of the combined appli-
cation. Parametric techniques are good at quantitatively
analyzing the influencing factors and model results, while
nonparametric models have good performance at qualitative
fitting and classification but could have a weak interpretation
of results [21, 22]. 'ese two types of models can just
complement each other’s characteristics, e.g., using machine
learning algorithms to identify the relationship between
crashes and months and then employing the parametric
model to quantitatively analyze the patterns extracted by
nonparametric models. It not only improves the accuracy
but also ensures the interpretability of the results.

1.2.1. Nonparametric Models. 'e nonparametric model is
used to investigate the corresponding relationship between
different months and different types of crashes. Since this
paper only involves crash frequency and the occurrence time
of each crash, the basic machine learning model is sufficient
for the current research.

Apriori, originally introduced by Agrawal et al. (1993), is
a representative algorithm that states the association rules
between attributes and objectives [23]. Because of the sat-
isfactory data-processing capability and low requirements
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for the data types, it has become the foundation of many
other data mining techniques [24]. Usually, it is utilized as a
desirable instrument to untangle the repeated patterns from
the dataset [25, 26]. John and Shaiba (2019) applied the
Apriori to mine frequent item sets and identify the major
causes and trends associated with road crashes [27].
Mohammed et al. (2018) implemented the Apriori algorithm
and a clustering method for traffic datasets to discover the
factors associated with crashes [28]. Deng et al. (2018)
presented a causation analysis model for traffic crashes based
on a hybrid Apriori-Genetic algorithm [29].

To enhance the reliability of the output obtained from
the subsequent parametric model, K-means clustering will
also be employed to identify the monthly distribution
patterns of crashes. 'e results of these two machine
learning algorithms will be combined as the input to the
parametric model. K-means is a typical clustering method
that has been extensively used in identifying the road black
spots [30]. For instance, Dadashova et al. (2016) applied K-
means to identify the crash patterns and trends for off-road
truck-related crashes in the U.S. [31]. Almjewail et al.
(2018) employed K-means to understand traffic crash
characteristics and identify black spots [32]. Qu et al. (2013)
attempted to unveil the spatial similarities in traffic crashes,
with the finding indicating that the clustering method
could explore and visually symbolize the crash attributes
[12]. Zhang et al. (2019) improved the K-means algorithm
for filtering traffic crashes in black spots [33]. Similarly, if
the “month” is compared to the “road segment”, K-means
can also be employed to determine the “black spots” in the
temporal dimension.

1.2.2. Parametric Model. Logistic regression (LR) has been
widely applied in modeling the relationship between crash
risks (dependent variable) and various contributors (in-
dependent variables) [34–36]. Since there is little literature
on the temporal distribution patterns of traffic crashes, the
following review mainly focuses on the application of the
LR model in the field of crash analysis. Specifically, Abdel-
Aty and Pemmanaboina (2006) developed a linear LR
model to estimate the impact of real-time traffic flow and
weather on crashes [37]. Li et al. (2019) combined the
mixed LR model and the latent class LR models to in-
vestigate driver injury severities in rural single-vehicle
crashes under rain conditions and provided beneficial
references for severe injury prevention [38]. Dong et al.
(2018) explored the differences between single-vehicle (SV)
and multivehicle (MV) crash probability using a mixed LR
model [39]. 'e results indicated that the length of seg-
ments and wet road surfaces are significant for SV and MV
crashes, while most of the other variables are significant
only for MV crashes. Ahmed et al. (2021) applied random
parameters binary LR models to explain the heterogeneity
of unobservable variables associated with deer-vehicle
collisions and their resulting injury severities [40]. Zhang
et al. (2021) used the random parameters LR model to
identify the relationship between tire forces and road
characteristics [41].

'e outcomes of the LR model can predict the proba-
bility of crashes and estimate the marginal effects of each
explanatory variable. However, it should be noted that this
method is highly dependent on the assumptions for data
distribution. Referring to other research studies, the pre-
defined basic relationships between variables might be re-
stricted by the model itself, which is another important
limitation [42, 43]. To fill this gap, this study will propose a
joint method by combining the K-means, Apriori, and LR
model.

1.3. Research Goals and Contributions. 'e innovations and
contributions of this paper can be summarized in the fol-
lowing four points:

(i) 'is paper explores the temporal distribution
characteristics of the overall crashes, rear-end
crashes, fixed-object hitting crashes, and over-
turning crashes, respectively. Besides, a compre-
hensive comparison among them is also conducted
to understand their differences in temporal
distribution.

(ii) In terms of methodology, a combined method in-
tegrating three basic nonparametric and parametric
models is proposed and applied to extract the
temporal distribution patterns of traffic crashes.'e
proposed framework of integrated application can
provide a reference for other studies, and the results
also verify the necessity and effectiveness of this
approach.

(iii) 'is study calculates how much higher the risk of
crashes in the months that experience more crashes
is than in months that experience fewer crashes.
Such results provide a deeper insight into the degree
of danger in different months to warn drivers to
drive more cautiously in these months by estab-
lishing preventive measures.

(iv) 'e research conclusions can not only guide rele-
vant departments to prevent different types of traffic
crashes in a targeted manner but also lay the
foundation for the in-depth cause analysis in the
future.

2. Data

'is study utilizes an eight-year dataset, from 2006 to 2013.
'e target freeway is located in Zhejiang Province, China,
characterized by mountainous terrain. As the length of
tunnels and bridges accounts for up to 47%, the complex
road environment increases the risks of crashes and near-
crash events, resulting in a high crash frequency every year.

Traffic crash data provided by the Zhejiang Provincial
Department of Transportation include the following three
types of statistics: (1) time of each crash, (2) the location of
each crash, and (3) different types of crashes, such as rear-
ends, fixed-object hitting, and overturning.

'e total number of crashes is 3998, including 975 rear-
end crashes, 2276 fixed-object hitting crashes, 422
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overturning crashes, and 325 other types of crashes. 'e
possible reason for the low proportion of rear-end crashes
may be that the speed limit of the target freeway is low
(80 km/h–100 km/h) and drivers are more cautious when
driving on roads with too many bridge-tunnel groups.
Considering that the main objective of this study is to
identify the monthly distribution patterns of different types
of traffic crashes, each crash is classified into a monthly
dataset according to the crash time. 'e given rear-end,
fixed-object hitting, and overturning crashes are the most
typical types, and this study will focus on an in-depth
analysis of these three crash types. 'e statistics of crashes
are shown in Figure 1.

3. Methodology

'e framework of the proposed combined method is shown
in Figure 2.

3.1. K-Means Clusters. 'e distance between data is taken as
the criterion of similarity measurement (cosine distance,
European distance, Manhattan distance, etc.) of data objects
by theK-means [33]. According to Yan et al. (2020) [44], this
paper took Euclidean distance as a calculating standard
because of its reliability and generality.

'e European distance formula is as follows:

dist Xi, Xj  �

�������������



D

d�1
xi,d − xj,d 

2




. (1)

'e data objects can be clustered into K categories
based on Equation (1). For the dataset, the mean value of
all data in the relative class is initially selected as the class
center, which needs iterating until the class center
changes slowly or stops changing (the squared error
between the empirical mean of a cluster and the points in
the cluster is minimized [45]). 'e class center can be
defined as follows:

centerk �
1

Ck





Xi∈Ck

xi, (2)

where Ck represents class k and |Ck| represents the number
of data objects in class k.

'e iterating process can be calculated through the
following:

J � 
K

k�1


Xi∈Ck

dist Xi, centerk( . (3)

3.2.AprioriRules. Apriori rules can be presented as the form
of X⟶ Y, where X and Y are disjoint item sets, i.e.,
X∩Y � ∅46. 'e key advantage of using Apriori is that it
can be measured by its support and confidence. Support (s)
can be used to determine the frequency of a given dataset,
while confidence (c) determines the frequency of Y in
transactions containing X. 'e forms of support and con-
fidence are defined as follows [44]:
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Figure 1: Temporal distribution of crashes: (a) crash type distribution by month and (b) crash type distribution by quarter.
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s(X⟶ Y) �
σ(X∪Y)

N
, (4)

c(X⟶ Y) �
σ(X∪Y)

σ(X)
. (5)

In this paper, (5) would be used to calculate the prob-
ability of a certain type of traffic crash risk in a given month.

3.3. Parametric Model (LR Model). 'e LR model, as a
representative of the discrete choice model, has been widely
used in crash cause analyses in the field of traffic safety [47].
In type b crash, the risk probability of month i for this crash
type being relatively high and relatively low can be, re-
spectively, defined by the LR model as follows:

P Ybi � 1 | Xi(  �
1

1 + e
−g Xi( )

,

P Ybi � 0 | Xi(  � 1 −
1

1 + e
−g Xi( )

�
1

1 + e
g Xi( )

.

(6)

Xi is the sequence of explanatory variables, Ybi � 1 and Ybi �

0 indicate the months with relatively high crash risk and
relatively low crash risk, respectively. 'e variable odds
denotes the ratio of the observed “relatively high risk” to
“relatively low risk” probability.

After taking a logarithm of odds, the linear function is as
follows:

In(odds) � In
P Ybi � 1 | Xi( 

P Ybi � 0 | Xi( 
  � In e

g xi( ) 

� g Xi(  � β0 + β1x1 + β2x2 . . .

(7)

Additionally, to calculate the intercept β0 and coeffi-
cients in (7), the maximum likelihood estimation method
will be used.

'e LR model is a multivariate analysis method that can
interpret the relationship between binomial observation
results and their determinants. In this study, the months are
selected as the independent variables, while different types of
crashes in different months are converted into discrete
dependent variables according to the results of K-means and
Apriori, which indicates whether the frequency of the
corresponding crash type is “relatively high” and “relatively
low”.

4. Results

As illustrated in Figure 1, the histogram shows that all types
of crashes have an observable trend over the month. In terms
of the total number of crashes, March, November, and
December are associated with lower possibilities of crashes,
whereas January, June, July, August, and October tend to
suffer from more crashes. 'e monthly distribution pattern
of fixed-object hitting crashes is almost consistent with the
total number of crashes, while the rear-end and overturning
crashes display different changes, with the opposite trend in
certain periods. Although some qualitative information can

be interpreted from the distribution trend of the histogram,
the information may not be accurate. For example, a certain
month may result in a surge in the number of crashes be-
cause of road construction or temporary special manage-
ment policies in a certain year. It is conceivable that if the
monthly distribution pattern of crashes is not investigated
on some dangerous roads, these unobservable risks will be
completely covered up by the annual statistics of crashes.

4.1. Risk Ranking under a Single Nonparametric Model.
Two methods are used to determine the proper number of
clusters: the sum of within-group squared error (SSE) and
the Calinsky criterion. For SSE, it aims to search for a point
that splits the SSE function domain into two parts. Until this
point, each added cluster results in a substantial reduction in
the value of variance, and after the given point, any increase
in k leads to a less-and-less reduction in the value of variance
[48]. 'e Calinsky criterion employs a ratio of between-
cluster variance and the overall within-cluster variance.
Well-defined clustering solutions yield high values of Cal-
insky criterion [49, 50].

As shown in Figures 3 and 4, the number of clusters for
total crashes is 5. In the process of determining the number
of clusters, the best cluster numbers of rear-end, fixed-object
hitting, and overturning crashes identified by Calinsky
criterion are 10, 10, and 9, respectively. However, the ex-
cessive number of clusters may lead to biased conclusions as
there are only 12 months in total. Hence, combined with
SSE, using the inflection point of decreasing rate associated
with SSE as the standard, the proper number of clusters is set
as 3, 5, and 5, respectively. As presented in Figure 4, although
they are not the optimal numbers, except for fixed-object
hitting, the number selected is also the inflection point using
the Calinsky criterion.

It should be noted that SSE and Calinsky criterion have
poor performance on fixed-object hitting crashes. In fact,
although not obvious, there is an inflection point in the
decline rate of SSE when the number of clusters is 5. After
the inflection point, the decline of error becomes stable.

Table 1 further explains the differences between clusters
through the average frequency. Since the subject of the paper
is the same road, the number of a certain type of crash of a
certain month may more reliably reflect crash risk levels and
is reasonable enough to be the basis for classification. All
clusters are divided into 3 levels, denoted as “3,” “2,” and “1,”
respectively, indicating the risk level. Specifically, “3” rep-
resents high risk, “2” represents medium risk, and “1”
represents low risk.

From Figure 5, the main findings can be concluded as
follows:

(i) Overall, January, May, June, July, and August may
lead to more crashes, while the crash type distri-
bution varies among these months. For example,
January is associated with the decreased possibilities
of overturning crashes, while May is found to
sustain fewer fixed-object hitting crashes. Besides,
July has a negative impact on the occurrence of rear-
end crashes.
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Figure 3: 'e number of clusters provided by the sum of squared error (SSE): (a) total number of crashes, (b) rear-end, (c) fixed-object
hitting, and (d) overturning.
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Figure 4: 'e number of clusters provided by Calinsky criterion: (a) total number of crashes, (b) rear-end, (c) fixed-object hitting, and
(d) overturning.
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(ii) Although February and September suffer from the
fewest crashes, the frequency of fixed-object hitting
crashes in February is significantly higher than that
in other months, as well as the rear-end crashes in
September.

(iii) It is also observed that March, April, and December
are less susceptible to higher crash frequencies.

'erefore, the status of traffic safety expenditures
and crash prevention interventions in these months
can be maintained.

Before implementing the Apriori algorithm, some def-
initions will be determined by (8), in which No. 1 indicated
the high-risk level, and No. 3 indicated the low-risk level.

Ranky

ib �

No.1, if N
y

ib >
2 N

y

b,max − N
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b,min 

3
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(8)

where Ranky

ib represents the risk level of eachmonth for total
crashes, rear-end crashes, fixed-object hitting crashes, and
overturning crashes, respectively. N

y

b,min and N
y

b,max repre-
sent the minimum and maximum value of a certain type of
crash in a certain year.

After conversion, the Apriori rules between each month
and the risk level are shown in Table 2. 'e rules with lower
confidence are not presented because they lack practical
significance. As presented in Table 2, with respect to the risk
level of total crashes, the confidence level of “No. 1” is 0.625

Table 1: Results of K-means clustering.

Total crash number Rear-end
Cluster Month Avg. crash number Risk level Cluster Month Avg. crash number Risk level
1 1 46.5 3 1 1, 8, 9, 10, 11 12.0 3
2 5, 6, 7, 8 44.8 3 2 3, 4, 5, 6, 12 9.2 2
3 10, 11 40.3 2 3 2, 7 8.1 1
4 3, 4, 9 38.9 1
5 2, 12 38.4 1

Fixed-object hitting Overturning
Cluster Month AVG crash number Risk level Cluster Month AVG crash number Risk level
1 6, 7, 8 28.5 3 1 10 7.3 3
2 1, 2 26.1 3 2 5, 6, 7, 8, 11 4.8 2
3 3, 4, 9 21.6 2 3 2 4.5 2
4 12 21.3 2 4 3, 9, 12 3.7 1
5 5, 10, 11 20.2 1 5 1, 4 3.0 1
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Figure 5: Monthly distribution pattern of various types of crashes based on K-means.
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in January. Confidence can be regarded as the conditional
probability, which represents the possibility of rule imple-
mentation in the event of a precondition. Nevertheless, some
months belong to different rules (for the total crash in April,
the confidence level of “No. 2” is 0.500 and the confidence
level of “No. 3” is 0.375). 'us, it is difficult to rank the risk
level of a month according to these rules.

'ere is little research using Apriori rules to undertake
the risk ranking of traffic crashes, which leads to difficulty in
transforming the rules into the proper form. To overcome
this, a simple linear model is introduced to transform the
results of Apriori.

Rm �  cim · α, (9)

where Rm is the risk level of crash type m, cim represents the
confidence level of month i, α is the weight, and it means 1, 0,
−1 for the rank of No. 1, No. 2, and No. 3, respectively.

As displayed in Figure 6, the monthly distribution
patterns of various types of crashes are calculated for each
month based on Apriori rules, reflecting some interesting
findings as follows:

(i) 'e overall patterns are similar to the results of K-
means, however, the Apriori rules can diversify the
value of different types of crashes, not just equal to 1,
2, and 3, which can reveal more information. For
example, the results of K-means reveal that January,
May, June, July, and August tend to witness the most
crashes. Nevertheless, using the Apriori rules, it can

be seen that although the total number of crashes
occurring to these five months still ranks the top five,
January suffers from more crashes than the other
four months.

(ii) 'e distribution of the same crash type varies sig-
nificantly among different months. Likewise, the risk
values of different types of crashes are also divergent
in the same month. 'us, it is unscientific to simply
rely on the total number of crashes to determine
whether the month is a “black spot.”
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Figure 6: Monthly distribution pattern of various types of crashes
based on Apriori rules.

Table 2: 'e confidence distribution of Apriori rules.

Total Rear-end Fixed-object hitting Overturning
Month Rank Conf Month Rank Conf Month Rank Conf Month Rank Conf
Jan. No. 1 0.625 Jan. No. 2 0.625 Apr. No. 2 0.625 Jan. No. 3 0.750
Dec. No. 3 0.625 Feb. No. 3 0.625 Jun. No. 1 0.625 Mar. No. 3 0.750
Feb. No. 3 0.500 Mar. No. 3 0.625 Mar. No. 3 0.500 Apr. No. 3 0.625
Mar. No. 3 0.500 Apr. No. 2 0.625 Aug. No. 2 0.500 Jun. No. 2 0.625
Apr. No. 2 0.500 Jun. No. 3 0.625 Sep. No. 3 0.500 Oct. No. 1 0.625
Jun. No. 1 0.500 Jul. No. 3 0.625 Oct. No. 3 0.500 May. No. 2 0.500
Jun. No. 2 0.500 Dec. No. 3 0.625 Nov. No. 3 0.500 Jul. No. 2 0.500
Aug. No. 1 0.500 Aug. No. 1 0.500 Dec. No. 3 0.500 Aug. No. 3 0.500
Aug. No. 2 0.500 Sep. No. 2 0.500 Jan. No. 1 0.375 Sep. No. 3 0.500
Sep. No. 2 0.500 Oct. No. 1 0.500 Jan. No. 2 0.375 Nov. No. 2 0.500
Oct. No. 1 0.500 Nov. No. 2 0.500 Feb. No. 1 0.375 Dec. No. 3 0.500
Nov. No. 3 0.500 May. No. 1 0.375 Feb. No. 2 0.375 Feb. No. 2 0.375
Feb. No. 1 0.375 May. No. 2 0.375 Mar. No. 2 0.375 Feb. No. 3 0.375
Mar. No. 2 0.375 Sep. No. 3 0.375 Apr. No. 3 0.375 Apr. No. 2 0.375
Apr. No. 3 0.375 Oct. No. 2 0.375 May. No. 1 0.375 May. No. 3 0.375
May. No. 1 0.375 Nov. No. 3 0.375 May. No. 1 0.375 Jul. No. 3 0.375
May. No. 2 0.375 Jun. No. 2 0.375 Aug. No. 1 0.375
Jul. No. 1 0.375 Jul. No. 1 0.375 Sep. No. 2 0.375
Jul. No. 2 0.375 Jul. No. 2 0.375 Oct. No. 2 0.375
Sep. No. 3 0.375 Aug. No. 1 0.375
Oct. No. 3 0.375 Sep. No. 1 0.375

Oct. No. 2 0.375
Nov. No. 2 0.375
Dec. No. 2 0.375

Conf: indicates the confidence level.
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4.2. Crash Risk Analysis of the Combined Method.
Combining the results of K-means and Apriori rules,
a monthly risk distribution plot is drawn to visually ex-
hibit which crash type is more likely to occur in which
month. Based on the results of K-means, the crash risk
of all months can be divided into three levels: “3” rep-
resents high risk, “2” represents medium risk, and
1 represents low risk. Similarly, when calculating the
risk index Rm based on the results of Apriori, “0” indicates
the medium risk. 'e closer Rm is to 1, the higher the risk,
and the closer Rm is to −1, the lower the risk. Conse-
quently, the drawing is to use “2” and “0” as the risk

thresholds of K-means and Apriori, respectively, as shown
in Figure 7.

Accordingly, the independent variables of the parametric
model are defined as follows:

xib �

x1, if month i is green in Fig 8,

x2, if month i is orange in Fig 8,

x3, if month i is red in Fig 8.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(10)

Next, the above three types of dummy variables will be
used as independent variables to estimate LR models, as
shown in Table 3. 'e estimated coefficient explains the
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Figure 7: Monthly risk distribution: (a) total number of crashes, (b) rear-end, (c) fixed-object hitting, and (d) overturning (if two or more
months overlap, it means they have the same risk value).
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effects of each month on crashes compared to x1. 'e result
suggests that the variable of x3 significantly increases the
probability of total crashes, rear-end crashes, and fixed-
objected hitting crashes. Additionally, the higher risks of
rear-end and fixed-object hitting crashes is observed in the
months belonging to x3 compared to months belonging to x1
(6.6 times and 5.273 times, respectively). 'erefore, for these
months, it is necessary to adopt special traffic management
policies and deploy the corresponding traffic signs along the
road. Another noteworthy finding is that x2 does not sig-
nificantly increase the risk of crashes. 'e possible reason is
that false-positive cases may occur in months that are
identified as high risk only by a single method (K-means or
Apriori), i.e., there is no significant difference between the
high-risk months and low-risk months identified only by a
single method. It also highlights the superiority of the
combined modeling approach over the single method.

'e LRmodel fails to estimate the overturning crashes. It
may be because of the small sample size (only 422) of
overturning crashes in this case. 'erefore, Figure 8 is ap-
plied to visually present the difference in overturning crashes
between low-risk clusters (x1) and high-risk clusters (x3). It
can be seen that among all the 96 samples, the samples of the
x3 cluster are all of the high risk, while only 44% of the
samples belonging to the x1 cluster are high-risk. Similar
findings also prove that the months belonging to x3 are more
likely to suffer overturning crashes.

5. Discussion

'is paper analyses the monthly distribution patterns of
crashes in mountainous areas. 'e results demonstrate that
different types of crashes have inconsistent distribution
patterns, which cannot be directly observed. 'e main
findings and corresponding explanations are as given below.

5.1. Rear-End Crashes. August and October are associated
with higher risks of rear-end crashes. Champahom et al.
(2022) found that traffic volume may have a positive effect
on the frequency of rear-end crashes [51, 52]. A large body of
research has shown that the traffic volume on legal holidays
is larger than that on weekdays. In China, August is the
summer vacation, while October 1–7 is the national day,
which is the peak of Chinese citizens’ travel [53–55]. In-
tuitively, the reduced vehicle headway caused by the in-
creased traffic volume may result in more rear-end crashes.
Furthermore, the windy weather can aggravate the injury

severity in rear-end crashes [35]. By manually observing the
wind speed thermal map on the website of China Meteo-
rological Administration [56], the monthly maximum wind
speed range is obtained in the research area, as shown in
Table 4. It can be seen that the wind speed in August is
significantly higher than that in other months. It also ex-
plains why the risk of rear-end crashes in August is higher
than that in October. In these two months, the safety
management department should pay attention to helping the
driver avoid rear-end crashes by reminding the driver of
keeping a safe distance from the leading vehicle through the
on-board voice system or setting up warning signs to warn
the driver to reduce the speed in a windy environment.

5.2. Fixed-Object Hitting Crashes. January, February, June,
July, and August are the months that have a high risk of
fixed-object hitting crashes. Generally, a fixed-object
hitting crash refers to a single-vehicle crash, where the
vehicle departs from the road and collides with roadside
obstacles or fixed facilities (e.g., tree, utility pole, traffic
sign, embankment, ditch, culvert, or barrier) [57]. 'e
major reason for its occurrence is that the driver loses
control of the vehicle. Compared with the dry road sur-
face, the slippery road surface is more likely to cause the
vehicle go out of control and increase the injury severity of
fixed-object hitting crashes [58, 59]. Since it is unrealistic
to use the rainfall at one site to represent the rainfall of the
whole freeway, the current study selects 7 main sites along
the road (see Figure 9) to represent the overall rainfall of
the Wenli Freeway. 'e monthly average rainfall and
maximum rainfall from 1981 to 2010 are obtained, as
shown in Tables 5 and 6. As presented in Figure 9, the
average rainfall and maximum rainfall in June, July, and
August are higher than those in other months. It suggests
that the road surfaces will become more slippery because
of excessive rainfall and water accumulation. Although
there is less rainfall in January and February, the tem-
perature is the lowest in the whole year, and it is generally
below 0 degrees Celsius at night. Hence, even a small
amount of rain or snow can cause the pavement to freeze,
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Figure 8: 'e difference in overturning between different clusters.

Table 3: Estimated results of the LR model.

Variables
Total Rear-end Fixed-object

hitting
OR p-value OR p-value OR p-value

x 1 Base Base Base
x 2 2.429 0.252 2.200 0.094 3.333 0.128
x 3 5.667 0.000∗ 6.600 0.004∗ 5.273 0.000∗

AIC 123.909 AIC 127.980 AIC 127.744
∗P< 0.05.
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Table 4: Monthly distribution of maximum wind speed of Wenli freeway.

Month Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec.
Maximum wind speed (m/s) 10–15 10–15 15 15–20 15–20 15–25 20–25 30–35 15–25 10–15 15–20 10–15
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Figure 9: 'e monthly average rainfall and maximum rainfall of Wenli freeway.

Table 5: Monthly distribution of maximum rainfall of Wenli freeway.

Jinhua (mm) Wuyi (mm) Yongkang (mm) Jinyun (mm) Lishui (mm) Qingtian (mm) Wenzhou (mm)
Jan. 75.3 76.2 73.5 69.2 62.9 55.1 64.5
Feb. 91.8 90.9 85.3 83.6 77.1 75.6 82.5
Mar. 160.7 160.5 154.4 152.2 143.8 143.7 149.7
Apr. 162.7 163.6 150.1 154.3 154.8 154.6 152.5
May. 169.8 171.5 157.2 164.8 160.6 173.4 188.9
Jun. 254.7 255.5 240.3 241.2 246.7 263.9 258.8
Jul. 139.5 146.4 142.5 153.8 129.5 210.5 194.3
Aug. 119.1 138.7 142.1 153.3 155.3 251.7 246.6
Sep. 99.6 127 123.2 130.7 113.8 190.2 232.1
Oct. 56.6 62.4 61.8 63.6 58.3 77.2 82.3
Nov. 67 74.5 71.1 68.6 60.7 60.4 78.7
Dec. 49 52.2 49.8 46.9 42.2 41.5 49.7

Table 6: Monthly distribution of average rainfall of Wenli freeway.

Jinhua (mm) Wuyi (mm) Yongkang (mm) Jinyun (mm) Lishui (mm) Qingtian (mm) Wenzhou (mm)
Jan. 236.8 256.5 244.8 197.8 182.4 147 124.2
Feb. 217.9 189.3 175.6 175.5 165.7 149.6 142
Mar. 314.3 309.2 276.5 301.1 277.5 276.6 293.1
Apr. 410.9 376.2 340.5 349.4 332.9 268.9 244.1
May. 276.8 312.1 285.3 391.5 395.4 347.2 434.2
Jun. 481.7 474.7 450.1 476.6 550.6 545.2 548.8
Jul. 354.2 326.9 419.1 360.5 276.5 398.2 420.6
Aug. 290.1 285.7 232.3 300.4 331.6 532.1 491.1
Sep. 208.2 342.1 282.2 250.4 274 476.5 511.3
Oct. 149.6 215.6 193.1 219.3 192.4 260.5 273.8
Nov. 255.7 281.1 295.4 249.4 201.2 186.2 173.2
Dec. 186.3 199.9 186.7 168 169.5 165.1 144.9
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making it more likely for vehicles to run out of control and
hit roadside fixtures.

'e overall crash frequency in February is low. It
provides an interesting insight into developing appro-
priate safety interventions. 'e relevant departments may
ignore the higher risk of fixed-objects hitting crashes in
February without reference to the results of this study,
subsequently leading to an increase in casualties and
infrastructure damage. In addition, in January, February,
June, July, and August, because of the relatively high
incidence of fixed-object hitting crashes, more attention
should be paid to road maintenance. A collision with the
median barrier is the main form of fixed-object hitting
[60]. Hence, the type of the median barrier and whether it
has a buffer function will affect the crash injury severity.
Additionally, the collision with the tunnel entrance
should not be overlooked. It is necessary to set a warning
sign in advance to inform the driver of driving in a safer
lane.

5.3. Overturning Crashes. October has a high risk of over-
turning crashes. An overturning crash occurs when the
vehicle’s lateral force or overturning moment generated
by the road surface exceeds the counterbalancing [61–63].
As mentioned above, October is susceptible to heavy
rainfall, making the road slippery. Water accumulation
can further form a layer of water film between the tire and
the road surface, reducing the friction resistance. 'us,
the vehicle is likely to lose control and rollover when
braking or turning suddenly. Considering the high risk of
rear-end crashes and relatively large traffic volume in
October, one possible explanation is that the potential
collision avoidance demand leads to more braking be-
haviors, deceleration, and sharp steering, which some-
what increases the risk of overturning crashes. As such, to
reduce the overturning frequency, drivers should be
trained to pay more attention to the speed limit and
distance maintenance in October.

Furthermore, although the risks of these three types of
crashes in May are not significantly high, the overall crash
frequency in May deserves the attention of relevant de-
partments. In summary, considering the crash risks in
months belonging to x3 are significantly higher than those
in the months belonging to x1, the road safety adminis-
tration should consider adopting some targeted measures
and policies in these months to reduce the occurrence of
crashes. As mentioned in Section 1.1, most of the existing
studies used a simple histogram to qualitatively describe
the monthly distribution patterns of crashes. 'erefore,
the insights that can be referred to from the current study
are still very limited. In addition, traffic-related data is not
disclosed to the public in China. Hence, it is difficult to
obtain the monthly traffic flow data of the Wenli freeway.
'e authors can only interpret and speculate the model’s
results from a macro perspective. In the future, on the
basis of this study, additional efforts should be devoted to
gaining a better understanding of safety factors and to
providing more appropriate interventions.

6. Conclusion

'e prevention of traffic crashes is always a hot topic in the
field of traffic safety.'is study takes a mountainous freeway
in China as a case and develops a combined modeling
framework to identify the monthly distribution patterns of
crashes. 'e results indicate that different types of crashes
have different tendencies in different months. In some
months, the total number of crashes is not large, however,
certain types of crash display a high-risk level, such as those
in February and October. Similarly, although the total crash
frequency in some months is high, a certain crash type may
rarely occur, such as that in January, June, July, and August.
In addition, the study also reveals that for a certain crash
type, when a month is identified as high risk by the com-
bined modeling approach, the probability of such a type of
crash occurring in this month will be significantly increased.

'e limitation of this study is that the data scale is
relatively small, which cannot fully reflect the advantages of
the developed method. In the fifth section of the book
“SPSS. 11-0 statistical analysis tutorial (advanced part),” the
sample size of the LR model is recommended [64]. 'e
number of independent variables in the model should be
approximately equal to one-tenth of the number of cate-
gories with the least number of cases. For instance, as-
suming that category I has sixty-seven samples and
category II has fifteen samples, the number of independent
variables in the model is recommended to be 1.5, which is
approximately equal to 1 or 2. If there are too many in-
dependent variables, the interpretation may be biased or
even ineffective. In this study, the number of independent
variables is three and the number of x2 cases in overturning
crashes is zero, which is most likely the main cause of
model failure. 'erefore, because of the inherent ran-
domness of crashes, a larger sample size can make the
classification results more discrete and reduce the proba-
bility of model failure. In addition, because of the lack of
monthly traffic volume data, the results of the combined
model cannot be explained more reasonably. However, this
kind of study is vital. 'e failure of the LR model of
overturning crashes cannot mask the superiority of the
proposed method framework. 'is study finally shows that
using only one machine learning algorithm will lead to
false-positive cases. 'e false-positive cases can result in an
inefficient use of the resources applied to safety im-
provements and reduce the effectiveness of the safety
management process. Results clearly illustrate the rela-
tionship between months and different types of crash risks,
which helps the best use of the limited funds available.
Next, more in-depth research will be further conducted to
analyze the root causes that result in the emergence of these
monthly patterns of crash risks and put forward some
specific improvement suggestions for crash prevention.
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