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Te intelligent transportation system (ITS) has been proven capable of efectively addressing trafc congestion issues. For vehicles
to perform efectively and improve mobility under the intelligent driving environment, real-time prediction of trafc speed is
undoubtedly essential. Considering the complex spatiotemporal dependency inherent in trafc data, conventional prediction
models encounter many limitations. To improve the prediction performance and investigate the temporal features, this study
focuses on emerging deep neural networks (DNNs) using the Caltrans Performance Measurement System (PeMS) data. Tis
research also establishes an intelligent driving environment in the simulation and compares the traditional car-following model
with deep learning methods in terms of multiple performance metrics. Te results indicate that both supervised learning and
unsupervised learning are superior to the simulation-based model on the freeway, and the two deep learning networks are almost
identical to one another. Besides, the result reveals that all models have their latent features for diferent time dimensions under
the low trafc loads, transition states, and heavy trafc loads. Tis is critical in the application of prediction technologies in ITS.
Te fndings can assist transportation researchers and trafc engineers in both trafc operation and management, such as
bottleneck identifcation, platooning control, and route planning.

1. Introduction

Te continuous growth in the number of vehicles brings
many mobility challenges to the current transportation
system, such as trafc congestion and extended commuting
time. Benefting from the development of intelligent
transportation systems (ITS) and deployment of artifcial
intelligence (AI) technology, intelligent vehicles (e.g., con-
nected and autonomous vehicles) are expected to greatly
help alleviate trafc congestion. Accompanying this is the
real-time prediction of trafc speed issues, which is essential
for intelligent vehicles to be fully leveraged. Accurate speed
prediction can help efciently control trafc in advance and
short-term forecasting has gained popularity due to its
adaptability [1].

An overview of existing literature indicates that trafc
prediction tasks have shifted from statistical models to
adaptive machine learning (ML) methods [2]. Teoretically,
nonparametric ML methods can handle stochastic and
nonlinear problems better than parametric methods. In
practice, more historical data can be converted into useful
information by developing data-driven models with en-
hanced data storage capacities. However, considering the
high-dimensional and spatiotemporal trafc data collected
from the sensors, shallow ML techniques may be unsatis-
factory in the intelligent driving environment, especially as
the forecasting horizon size increases [3]. Deep learning
(DL) methods, given their ability to mine deep relationships
between data [4], greatly inspire researchers to address time
series trafc prediction to achieve improved results [5, 6].
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In contrast to human-driven cars, where driving be-
havior is usually uncertain and can only be estimated via
massive data from roadside units (RSUs), the control al-
gorithms under the intelligent driving environment may be
predictable [7]. However, the requirement for specialized
infrastructure and robust algorithms during execution
makes trafc prediction costly in a real intelligent driving
environment. Furthermore, the vehicle-road synergy is still
in its initial phase, with fewer scenario-based, large-scale
tests, and comprehensive frameworks in place [8]. Fortu-
nately, simulation-based methods can solve the aforemen-
tioned problems. Te Intelligent Driver Model (IDM) is a
widely used car-following model, which can be developed
and implemented in the simulated environment. It can also
forecast the vehicle status in an intelligent collision-free
manner and modify its behavior as desired [9].

Given the complex and dynamic spatiotemporal de-
pendency inherent in trafc speed data, which is difcult to
solve with traditional prediction methods, this study focuses
on undertaking the trafc speed prediction task based on
emerging deep neural networks (DNNs) using ground truth
data. To model intelligent driving behaviors, this research
also establishes a simulation environment. Besides, this
study compares diferent methods in terms of multiple
evaluation metrics and reveals temporal features under
various trafc loads. Te fndings can help researchers and
trafc engineers improve dynamic trafc management.
Platooning control, route planning, and signal optimization
are some of the potential applications with improved trafc
speed prediction.

Te remainder of this study is organized as follows:
Section 2 reviews previous literature on trafc prediction.
Section 3 introduces two DNNs with supervised and un-
supervised learning separately and builds an intelligent
driving environment in simulation. Section 4 describes the
experimental settings. Section 5 compares the performances
of diferent models. Summary and future research directions
are given in Section 6.

2. Literature Review

Te trafc prediction is afected by various factors such as
horizon size, aggregation rate, algorithms, selected area,
and database. Horizon size is referred to as the time span
when tasks are conducted. Too large or small values will
afect the accuracy and complexity of models [10]. Short-
term forecasts of fve to ten minutes have been widely used
in trafc prediction due to the nearly real-time feature [11].
For aggregation rate, the higher the sampling frequency of
recent observations, the lower the error compared to
historical data [12]. Concerning algorithms, Kamarianakis
and Prastacos [13] illustrated that multivariate algorithms
can extract more spatiotemporal information, which
outperforms univariate algorithms. Another vital element
is the selected area which denotes the region of data
collected for prediction, such as freeways or urban arte-
rials. Apart from the periodic nature, the freeway area is
simple to implement without signal restrictions [14]. Te
database represents the dataset being whether real-world

or simulated, and the data source such as loop detectors,
probe vehicles, and GPS.

Trafc prediction methods can be classifed as para-
metric, nonparametric, and simulation. Parametric (model-
based) methods have defnite parameters and are based on
hypotheses, which are efective when the trafc pattern is a
linear process with stable fuctuation. Time series analyses
such as historical averaging (HA), and autoregressive in-
tegrated moving average (ARIMA) are the earliest methods
that were applied in trafc prediction. As an extension of
ARMA, ARIMA was frst used to predict short-term trafc
fow on freeways [15]. Several variants such as Kohenen
ARIMA [16], ARIMA with explanatory variable [17], and
seasonal ARIMA [18] were utilized to improve accuracy.
Another method is Kalman fltering (KF) which is based on
the Gaussian assumption through kernel function and can
be used in nonstationary stochastic processes with updated
variables [19].

However, parametric methods may produce biased
outcomes under noise and unstable environments. Non-
parametric methods with fexible parameters and no as-
sumptions, on the other hand, outperform in nonlinear and
uncertain situations. Among nonparametric methods, k-
nearest neighbors (k-NN) is a shallowML technique used by
Davis and Nihan [20] for predicting short-term trafc fow
on freeways. But one disadvantage of k-NN is that it cannot
reveal spatiotemporal correlations simultaneously. Support
vector regression (SVR) is another typical algorithm that is
referred to as supervised ML. It can manage unstructured
data, scales well to high-dimensional data, and ensures
global minima localization. Castro-Neto et al. [21] used an
online SVR to test the trafc prediction accuracy under
diferent situations. Similarly, random forest (RF) is an
ensemble technique that is capable of capturing nonlinearity,
particularly when combined with other algorithms [22].
Bayesian networks were also applied by Sun et al. [23] as they
provided density function with adaptive variabilities but
failed to ft high-dimensional data.

Compared to shallow ML methods, deep learning (DL)
methods use multiple layers to extract features and can
explore deep correlations embedded in trafc data. Also, DL
techniques can deal with the curse of dimensionality and the
network is trained end-to-end. Hua and Faghri [24] in-
troduced the concept of trafc forecasting using ANNs to
predict travel time. Since then various NNs for trafc pre-
diction came into being. To investigate the situation of data
loss, Parmula [25] found that multilayer perceptron (MLP)
outperforms auto-encoder (AE). Convolutional NNs have
been used in vision-based trafc prediction tasks. Chung and
Sohn [26] used CNNs which regard historical data as an
image and refect topological locality. Furthermore, trafc
grid data can be transformed into graph form. Graph
convolution network (GCN) was developed in this back-
ground [27]. To address the vanishing and exploding gra-
dients problem in Recurrent NN (RNN), variants such as
Long Short-Term Memory (LSTM), gated recurrent unit
(GRU), and time delay NN have been commonly employed
[6, 28, 29]. Due to the slow convergence issue, Feng et al. [30]
proposed a trafc prediction algorithm using wavelet
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analysis and extreme ML. Other unsupervised DL methods
such as stacked AEs have also been used. Huang et al. [31]
utilized Deep Boltzmann Machine (DBM) to support
multitask learning, and the model was created collabora-
tively. Hybrid modeling has been proposed in recent years to
increase forecast accuracy. Wu and Tan [32] used LSTM and
CNN to integrate spatial and temporal dependency. Li et al.
[33] introduced a state space model to compensate for DL
techniques’ poor interpretability. Recently, deep learning
methods have also been used in large-scale network pre-
dictions [34], enabling spatiotemporal information to be
efectively ensembled in dense urban areas [35].

Trafc parameters can also be predicted by using sim-
ulation methods. Given that intelligent vehicles may be
technically challenging to implement in ITS, particularly in
complicated interactive circumstances, there has been a
necessity to simulate approximate actual trafc situations.
Te intelligent driver model (IDM) is a former state-of-the-
practice that has been broadly employed in the micro-
simulation of vehicle motions. It generates more realism
than most deterministic car-following models [36]. Al-
though a growing number of methods have been developed,
the best-performingmodel for trafc prediction still remains
unknown. Te accuracy of diferent models depends on the
distinct dataset selected and features inherent in trafc data
[4]. Hence, this study develops three models, supervised and
unsupervised deep neural networks, and a traditional car-
following model using real-world data on freeways and
compares the performance.

3. Method

3.1. Defnition of Trafc Speed Prediction. Trafc speed
prediction is a regression issue related to time series data that
can be stated as follows: let Xt

i represent the observed trafc
speed at the i th point during the t th time interval on a
freeway. Providing a sequence {Xt

i} of observed speed, i� 1,
2,. . ., N, t� 1, 2,. . ., T, the task is to predict the trafc speed at
time (t+Δ) for horizon size Δ. Without any assumptions,
deep neural networks (DNNs) are a type of ANNs inspired by
human neurons. It can mine trafc data by extracting features
generated by hierarchical and distributed architecture.

3.2. Supervised Deep Learning Method. Given the sequential
features of trafc speed data, recurrent neural networks
(RNNs) are particularly suitable for remembering long-term
dependencies in this data type. However, it encounters the
problem of vanishing gradient when timesteps increases. To
solve it, the variant Long Short-Term Memory (LSTM) was
put forward. LSTM was frst introduced by Hochreiter and
Schmidhuber [37] for language processing and used in trafc
fow prediction by Ma et al. [28]. Diferent from RNNs,
LSTM regards the hidden layer as a memory cell, which
makes it outperforms RNNs due to its ability to fexibly
memorize patterns for longer durations. To make the
training process more efective and concise, gated recurrent
unit (GRU) was introduced by Chung et al. [38]. It removed
the separate memory unit without reducing the performance

compared to LSTM. Meanwhile, GRU has a smaller number
of parameters, which also reduces the risk of overftting.
Figure 1 shows the structure of GRU.

In GRU, the memory unit comprises of two gates,
namely, the reset gate and the update gate, which decide
what information should be sent to the output layer. It
merges the input gate and the update gate into the reset gate,
which performs similarly to the LSTM forget gate, and it
selects whether to integrate previous and present informa-
tion, while the update gate determines how much previous
information to retain. Equations are given as follows:

r � σ XtUr + St− 1Wr( ,

z � σ XtUz + St− 1Wz( ,

h � tanh XtUh + St− 1 ∗ r( Wh( ,

St � (1 − z)∗ St− 1 + z∗ h( ,

(1)

where Xt is input, r is reset gate, z is update gate, h is hidden
state output, St is output, and all of them are vectors. U and
W are corresponding weight parameter matrices for them.
GRU uses the sigmoid function σ to activate reset and update
gate. It outputs a value from 0 to 1, where 0 denotes no
information going through while 1 denotes all information
going through the cell state. Te tanh function is used to
activate the hidden state and outputs a number from − 1 to 1.

After the hyperparameter tuning by a manual search,
this study designs a 2 hidden layers architecture GRU with
32 neuron units. To avoid the overftting problem, dropout
regularization [39] is set as 0.2. RMSprop [40] is selected as
the optimizer, which is a modifcation of stochastic gradient
descend with adaptive learning rates and is used in RNNs to
prevent local minimum. Mean square error is utilized as the
loss function and the goal is to minimize it. Datasets are
classifed with 128 batch sizes and trained with 100 epochs.

3.3. Unsupervised Deep Learning Method. Auto-Encoders
(AEs) are the typical unsupervised learning method that use
unlabeled training [41]. AEs are made up of two basic parts:
encoder and decoder, where the encoder compresses the
input x whereas the decoder reconstructs the input x′. Similar
to the neural network, it also owns one or more hidden layers,
and the numbers of units in the input layer and output layer
are the same. Tey can be used for data compression and
fusion since they generate comparable input at the output
layer. Backpropagation (BP) algorithms are also used to
minimize the error function by adjusting the weight pa-
rameters and return a target value that is equal to the input.

Stacked AEs (SAEs) are the most prevalent AEs variants.
Te SAEs can efectively extract data features by stacking
numerous AEs into hidden layers using greedy layer-wise
training [42]. However, the SAEs have poor generalization
and are not suitable for data with network fuctuations. Each
AE receives bottleneck activation vector output from lower
layers as input. Te mechanism of it is to encode the feature
vector extracted from the input via an encoder layer, and
then, the feature from the previous layer is sent to the
following layer until the training process fnishes. Last, the
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input is reconstructed in the decoder layer. Equations are
given as follows:

y � f(Wx + b),

x′ � g W′y + b′( ,

θ � argmin
1
2



N

i− �1
‖x − x‖

2
,

(2)

where f and g are sigmoid functions used to activate the
encoder and decoder layer, b and b′ are the encoder and
decoder bias vector, respectively, and W and W′ are weight
matrices for encoding and decoding, respectively. Te pa-
rameters are trained by minimizing the error between
reconstructed and actual input, which are defned as θ.

Tis research frst designs 3 independent AEs and SAEs
that utilize the same hidden layer with 128 neuron units.
Dropout regularization is set as 0.2. Adam [43] is selected as
the optimizer, which is a combination of RMSprop with
Momentum and is used for backpropagation through time.
Mean square error is utilized as the loss function. To ensure
the same iterations, datasets are also classifed with 128 batch
sizes and trained with 100 epochs.

3.4. Simulated Car-Following Model. Te Intelligent Driver
Model (IDM) is a conventional car-following model based
on the present state of the object vehicle. Compared to most
deterministic car-following models, it produces better re-
alism and can be implemented to model the intelligent
driving environment in the simulation. Although the IDM
model has few parameters, it can use a unifed model to
describe diferent states from free fow to fully congested
fow, and it lacks random terms, which is diferent from the
actual vehicle behavior. Te core principle of it involves
comparing the object vehicle’s desired velocity to its real
velocity collected from the sensors, as well as comparing its
desired headway to its true headway to determine the ve-
hicle’s acceleration rate. Equations are given as follows:

a � am 1 −
v

v0
 

δ

−
s∗(v,Δv)

s
 

2
⎡⎣ ⎤⎦,

s
∗
(v,Δv) � s0 + s1

��
v

v0



+ vT +
v.Δv

2
����
amb

 ,

(3)

where the values of all the parameters in this study are
adapted from [36, 44]. a is the acceleration rate of the
object vehicle, am is the maximum acceleration rate and
equals 0.73m/s2, v is the current speed of the object ve-
hicle, v is the desired velocity and equals the speed limit m/
s, δ is the acceleration exponent and equals 4, s∗ (v,Δv) is
the desired minimum headway, Δv is the velocity difer-
ence between the object and the leading vehicle, s is the
current headway between the object and the leading ve-
hicle, s0 is the linear jam gap and equals 2m, s1 is the
nonlinear jam gap and equals 3m, T is the desired
headway and equals 1.0 s, and b is the comfortable de-
celeration rate and equals 1.67m/s2. It is worth men-
tioning that there are fve parameters, including v0 desired
velocity, am maximum acceleration rate, b comfortable
deceleration rate, Tdesired headway, and s0 linear jam gap
that can be calibrated in the simulation according to
various scenarios.

Te IDM car-following model is applied in the mi-
croscopic “Simulation of Urban Mobility” (SUMO) to
predict the trafc speed, which is an open access platform
developed by the German Institute of Transportation
Systems. It provides a Trafc Control Interface (TraCI) to
acquire the attributes of trafc parameters. Since this study
is mainly devoted to longitudinal trafc speed prediction,
the lane-changing model uses the default LC2013. Tis
study frst establishes a simulated freeway segment in
SUMO, using the trafc fow data provided by the PeMS
database as input. Ten, let the simulation run by adopting
the IDM parameters as discussed above according to a
specifc time interval, and output the speeds during the
corresponding next time period to calculate the average
value.

4. Experimental Settings

4.1.DataCollectionandProcessing. Te data is derived from
the Caltrans Performance Measurement System (PeMS),
which contains data from about 40,000 inductive loop
detectors across the highway network in California. Each
vehicle detector station collects data every 30 seconds and
is aggregated into 5-minute time intervals. Due to the
unique patterns of various sequential trafc speed data
and that no single pattern can match all-time series data,
this study uses the information gathered by a unitary
detector.

Te experimental scenario is a mainline segment of the
I-80 freeway eastbound, Berkeley. Te global view of the
study area is shown in Figure 2. It is a two-way road with fve
lanes in each direction, and the average trafc speed from
south to north is selected. Since the trafc speed data is
periodic and its pattern can difer between weekdays and
weekends. Tis study collects data from March 1st to April
29th on the weekdays of 2022. According to Chen et al. [45],
5-minute trafc is more suitable and predictable. In this
experiment, the past 1 hour which is a time sequence of 12
data points is used to predict the coming average trafc
speed in the next 5 minutes. Incorporating the periodicity of
trafc data over weeks, the whole dataset is divided into

1-z

σ σ tanh

r

St-1 St

Xt

Figure 1: Structure of GRU.
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training and testing sets. Te frst 33 days (75%) are used as
the training set, and the last 11 days (25%) are used as the
testing set.

Before training the dataset, normalization is a necessary
step to accelerate the gradient descent speed [46]. Tis study
frst implements a feature scaler by the training set, then uses
the MinMaxScaler to normalize the training set and test set
separately. After scaling, data are normalized from 0 to α,
where α is a standardized factor that is set as 1 for sim-
pleness. Te equation is given as follows:

s � α ×
x − min(x)

[max(x) − min(x)]
. (4)

Considering the size of the dataset and the number of
hyperparameters, 90% of data is used as training and 10%
as validation. Since the sequential trafc prediction needs
to use the historical speed to predict the incoming speed,
the time lag is utilized to divide the dataset. Since the
divided dataset still has a time series feature, this study
samples the dataset in order and then shufes it. Given the
modularity and user-friendly interface, the Keras frame-
work which is released in 2015 is used to train the deep
learning models and it can run over the popular Ten-
sorFlow and Teano.

4.2. Performance Evaluation. To test the prediction accu-
racy of diferent models from a comprehensive perspec-
tive, there are fve metrics mean absolute error (MAE),
mean absolute percentage error (MAPE), mean square
error (MSE), root mean square error (RMSE), and R2 are
applied to evaluate the performance. Equations are given
as follows:

MAE �
1
N



N

i�1
xi − xi


,

MAPE �
1
N



N

i�1

xi − xi




xi

,

MSE �
1
N



N

i�1
xi − xi( 

2
,

RMSE �
1
N

�����������



N

i�1
xi − xi( 

2




,

(5)

where xi is the actual average trafc speed and xi is the
predicted average trafc speed. Te lower these metrics, the
better the performance.

5. Results and Discussion

Figure 3 shows the changes in loss function of GRU and
SAEs. Te loss function is used to measure the degree of
consistency between the estimated value of the model and
the real value. It is a non-negative real-valued function. Te
smaller the loss function, the better the robustness of the
model. Te loss rates of the training set with black line drop
rapidly at the beginning before 20 epochs for both GRU and
SAEs. With the increase of time, the loss rate of the GRU
training set tends to remain fat at the relative minimum
value and is infnitely close to 0. For the GRU validation set,
there is a small oscillation at the beginning. As the epoch
increases, the loss rate continues to decrease, which indicates
that the network is still learning. It eventually stabilizes and
the validation set converges well, avoiding underftting and
overftting problems. For the validation set of SAEs, the
volatility is signifcantly larger than that of the supervised
learning algorithm. However, it fnally stabilizes and fts the
training set as the epoch increases. From the performance of
the loss function, both deep learning networks are well
trained.

Table 1 illustrates the performance of each model based
on diferent statistical metrics. It can be seen that for the
MAE, MSE, and RMSE that describe the absolute error, the
unsupervised deep learning represented by SAEs is modestly
higher than the supervised deep learning represented by
GRU, and the performances of both are better than the
traditional IDM model. For MAPE describing a relative
error, GRU also performs modestly better (3.410%) than
SAEs (3.478%), and both outperform the IDM model
(5.240%). For the degree of ftness, the R2 of them are similar
(foating around 0.986), demonstrating a relatively good
ftting result. Overall, both supervised learning and unsu-
pervised learning methods are superior to the traditional
simulation-based car-following model in the prediction of
trafc speed. While the diference between the two diferent
deep learning is small, GRU is slightly better than SAEs in

Starting point

End point

Figure 2: Te global view of the study area (Source. PeMS).
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time series prediction. Tis plays an important role in the
application of prediction technology in ITS.

Figure 4 demonstrates the prediction of average speed
for diferent models by the time of the day. Te actual value
is selected as a baseline with a solid red line. To account for
the diferent trafc states, it is divided into three intervals
according to the size of the trafc fow (with dash blue line),
low trafc loads, transition state, and heavy trafc loads.

For low trafc loads, it can be classifed into two time
periods, before congestion (0:00–7:00) and after congestion
(19:00–0:00). It can be seen that before congestion, both GRU
and SAEs match well with real value. Although IDM model
changes more softly, the response at high speed is not timely
enough. After congestion, the IDMmodel cannot revert to the
previous accuracy, there is a small gap compared to the
original value, but both GRU and SAEs can maintain high
accuracy. Tis shows that the deep learning network can
reduce cumulative error propagation over time. Given that the
IDM model is collision-free when the distance between the
front and rear vehicles decreases sharply, the IDM model will
produce strong braking on the target vehicle, which is un-
realistic in reality.Tis is also the problemwith the simulation-
based car-following model. Transition state is classifed into
buildup of congestion (7:00–10:00 and 12:00–15:00) and
dissipation of congestion (11:00–12:00 and 18:00–19:00). For
the buildup of congestion, IDM’s performance is inferior to
deep learning networks. In addition, IDM still cannot rebound
to the previous accuracy in dissipation of congestion.
According to the length of the congestion time, heavy trafc
loads are classifed into short-term full congestion (10:00–11:
00) and long-term full congestion (15:00–18:00). In short-term
full congestion, all models have diferent degrees of bias, and
the most obvious one goes to the IDM. For long-term full

congestion (15:00–18:00), the situation is similar to the before
congestion state under the low trafc loads. Te three models
perform almost the same, but IDM is smoother and with less
fuctuation.

Tis study also investigates the speed distribution for
diferent models by time of day with a heatmap, which is
displayed in Figure 5. Tere are two points worth noting.
Firstly, for a short period from 10:00 to 10:05, there is a
certain prediction delay for both GRU and SAEs, and this
phenomenon can continue until the congestion dissipates at
18:00. However, this situation does not exist in the IDM
model, which suggests that for short-term slowdowns, IDM
can detect the buildup of congestion earlier than deep
learning networks. Another fnding is that after congestion
at 18:30, all models have a prediction lag of about fve
minutes. However, from the dark blue area afterward, the
accuracy of deep learning networks recovers faster than
IDM.Te above analysis reveals that deep learning networks
and simulation-based car-following models have their latent
performance features for diferent time dimensions.
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Table 1: Performance comparison of diferent models.

Model MAE MAPE (%) MSE RMSE R2

GRU 1.352 3.410 4.496 2.120 0.987
SAEs 1.398 3.478 4.950 2.225 0.985
IDM 2.486 5.240 8.896 2.983 0.986
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Figure 4: Prediction of the average speed of diferent models by the
time of day.
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6. Conclusion

Te development of intelligent transportation systems has
given impetus to intelligent vehicles, which have the potential
to address the trafc congestion problem. Meanwhile, it also
brings real-time trafc prediction issues. Given the complex
and dynamic spatiotemporal dependency embedded in trafc
data, traditional prediction models have many drawbacks.

In order to improve the accuracy of trafc speed pre-
diction, this study focuses on emerging deep neural net-
works using real-world trafc data. Additionally, a
simulation-based model is built for intelligent vehicles in
SUMO. A series of statistical evaluation metrics, MAE,
MAPE, MSE, RMSE, and R2 are employed to assess the
prediction accuracy of the supervised learning method,
unsupervised learning method, and simulation-based
model. Te PeMS dataset is used to train and evaluate the
constructed DNNs, and the results suggest that both GRU
and SAEs outperform the traditional IDM model in the
prediction of trafc speed on the freeway. In addition, there
is no diference between the deep learning networks, and
GRU outperforms SAEs slightly in time series prediction. It
also demonstrates that car-following simulation-based
models and deep learning networks both contain latent
performance attributes for various time dimensions under
low, transition state, and heavy trafc loads. Tis has a
signifcant impact on how prediction technology is applied
in ITS. Te outcomes can assist researchers and trafc en-
gineers to improve dynamic trafc control, such as highway
operation, bottleneck detection, and level of service as-
sessment. Te predicted trafc speed can also be used for
further research on variable speed limit control, platooning
management, and route guidance, etc.

Tis study mainly uses trafc speed as the input for
prediction. Future research work can introduce hand-en-
gineering factors, such as weather, events, and other trafc
parameters. Moreover, more spatiotemporal dependency
can be captured by more advanced deep learning networks.
In addition, attention mechanism can be combined to model
the long sequence data [47]. For the simulation environ-
ment, it can focus on improving the car-following model
[48]. Te lane-changing model can also be considered to
better simulate intelligent driving behaviors. Lastly, the
transferability issue that all adaptive frameworks face could
be addressed, especially in metropolitan areas.
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