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-e driver is one of the most important factors in road traffic. Monitoring the driver’s driving status can greatly improve the safety
and road operation efficiency of urban road traffic in the case of multiple traffic modes. Fatigue has a significant impact on drivers’
safety on the road, particularly while driving in a monotonous environment for a long time. In this study, the eye movement
parameters of 36 drivers were collected through the simulation experiment of a driving simulator. -e pupil area and percentage
of eye closure (PERCLOS) in driving scenes of the expressway and low-grade rural road were combined with the Stanford
Sleepiness Scale (SSS) to determine the threshold of fatigue degree in different monotonous driving scenarios. A recognition
model of different fatigue degrees of drivers is built based on the deep learning method of a long short-term memory network
(LSTM) to detect the varied fatigue degrees of drivers. -e result shows that the fatigue degree of drivers increases as driving time
increases on both expressways and low-grade rural roads. In the same driving time, the driver felt tired faster on the expressway,
and the fatigue degree was significantly higher than that on the country road.-e recognition rate of the established fatigue degree
recognition model for driver’s awake state, mild fatigue, moderate fatigue, and severe fatigue is 100%, 93.1%, 98.4%, and 100%
respectively, and the total recognition rate can reach 97.8%, which is higher than the recognition accuracy of the traditional
machine learning approach.

1. Introduction

-e trend of traffic intelligence is becoming more and more
visible, thanks to the rapid development of the vehicle in-
dustry and the ongoing construction and optimization of
roads and road administration facilities. Despite the
emergence in an endless stream of emerging technologies
nowadays, their application to traditional traffic problems
still needs to be addressed. -e driver’s behavioral state is a
key aspect of the driving process. Monitoring the driver’s
status during the driving process will serve to improve the
safety and efficiency of urban road traffic, as well as con-
tribute to more coordinated regional traffic development in
the case of numerous modes of transportation. Individuals,
families, and the country lose a lot of money due to traffic

accidents, and drowsy driving is one of the leading causes of
traffic accidents and fatalities. According to statistics,
roughly 600,000 people died in traffic accidents each year
around the world, resulting in a direct economic loss of $12.5
billion. 57% of these accidents were related to driving fa-
tigue. -e probability of traffic accidents caused by driving
fatigue accounts for more than half of the total number of
accidents, which is 4 to 6 times that of ordinary driving [1].
According to a report by the National Highway Traffic Safety
Administration (NHTSA), driver’s drowsiness accounted
for approximately 83,000 crashes, 37,000 injuries, and 900
deaths in the United States alone [2]. At the same time,
according to the American Automobile Association survey,
it was found that 21% of traffic fatalities were caused by
driver fatigue [3].
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Drivers often show themselves in a variety of ways when
they are tired, including drooping eyes, increased blinking
frequency, lower focus, and so on. It is frequently accom-
panied by sleepiness, exhaustion, and other symptoms. As a
result, when drivers are fatigued, their driving conduct poses
a significant risk to traffic safety. -e monotonous driving
environment, long-time driving, and the driver’s physical
condition are the main causes of fatigue driving.

-e driver’s fatigue state is a process that gradually
accumulates with the increase of driving time. Most studies
now focus on the driver’s awake and fatigue states, with only
a few studies categorizing the driver’s exhaustion state. At
the same time, the fatigue condition of the driver varies
depending on the driving environment. -e goal of driving
fatigue research is to identify drivers’ fatigue levels in dif-
ferent driving situations, define the typical index of a driver’s
fatigue level, and provide a reference for developing solu-
tions for different fatigue states.

-e recognition model of the driver’s fatigue condition is
constructed using the deep learning method of a long short-
term memory network. -e data set for training and veri-
fying the model is the eye movement data of drivers obtained
in driving simulation tests. -e aim of this study is to verify
the effectiveness and superiority of the deep learning method
in recognizing the driver’s fatigue state.

In this study, we use a combination of subjective fatigue
detection and objective fatigue detection methods through
driving simulation experiments conducted on a driving
simulator, which will explore the differences in driver fatigue
indicators in different monotonous driving environments.
-e effective classification of fatigue levels is important for
fatigue warning in monotonous driving environments.
Moreover, the deep learning algorithm LSTM is used to
establish a driver’s fatigue recognition model, which can
identify the driver’s fatigue state, warn the driver of dan-
gerous driving behavior, and improve the driver’s driving
safety while driving.

2. Literature Review

-e effect of the driving environment on driving fatigue has
been explored in some researches. Pilcher and Huffcutt
pointed out that a complex road environment and traffic
conditions will make drivers feel tired more easily [4]. Mao
believed that the more monotonous the road environment,
the more likely it was to cause driver fatigue [5]. -iffault
and Bergeron’s research showed that the driver moved the
steering wheel at a greater angle many times in the mo-
notonous driving environment, which indicated that the
driver was more cautious in the monotonous driving en-
vironment [6]. Dinges found that drivers in monotonous
driving environments were less alert, especially their visual
response to driving was slower [7]. However, these studies
have only considered the effects of monotonous and com-
plex driving environments on driver fatigue in isolation. In
real-world driving, different monotonous driving environ-
ments have different effects on driver fatigue.

A recommended maximum continuous driving time has
been proposed as a way to require drivers to take breaks

during the journey. Fatigued driving is a gradual behavior,
which occurs when drivers are unconscious. -e individual
differences of fatigue characteristics among different drivers
are large, the fatigue characteristic values of drivers with the
same fatigue degree are also different, and the changing
trend of drivers with the same fatigue characteristic is also
different [8]. -us, it is necessary to reduce the influences
caused by individual characteristics as much as possible. -e
previous research on fatigue driving mainly focused on how
to find and identify fatigue. According to previous studies,
the main methods to identify driving fatigue are as follows:
(1) defining a predetermined driving duration threshold to
identify fatigue driving. (2) fatigue driving is detected and
recognized through many aspects of the driver or vehicle,
such as physiological response, cognitive distraction, facial
expression, vehicle condition, and so on. However, driver
fatigue is a process that gradually accumulates over time and
the fatigue characteristics of different fatigue states have
different changing trends [9]. Driving fatigue should be
classified to study because fatigue has a characteristic of
gradual behavior. Ahlstrom et al. divided the fatigue state of
drivers into three levels: awake, fatigue, and severe fatigue
based on the Karolinska Sleepiness Scale (KSS) [10]. Larue
et al. used the 5 minutes before driving as a reference
standard and used the driver’s alertness and the number of
microsleeps as evaluation indicators to divide fatigue into 4
levels [11]. Li et al. analyzed the steering wheel angle changes
in three states: awake, fatigue, and extreme fatigue. -ey
found that drivers frequently corrected the steering wheel in
small increments when they were awake. When they were
fatigued, they corrected the steering wheel less frequently
and with larger and faster movements. -ey even showed no
movement for a short time and then suddenly corrected the
steering wheel significantly when they were extremely fa-
tigued [12]. Zhang [13] selected the EEG Shannon entropy
and sample entropy, EMG approximate entropy, and ocular
wavelet time-frequency analysis indicators based on neu-
robiology. -en, he defined fatigue into normal, mild fa-
tigue, mood swings, and extreme fatigue, respectively. -e
driver’s driving state is divided into awake and fatigue states.
-is two-level division of the fatigue state may be slight
fatigue, but also may be serious fatigue. -e subsequent
fatigue warning will either be too early or too late. Both have
a great impact on driving safety.-erefore, the key to driving
fatigue research is to find a way to effectively segment the
driver’s fatigue level and achieve effective fatigue warning for
the follow up.

At present, the detection methods of driving fatigue
mainly include driver’s physiological signals (such as driver’s
EEG and ECG), driver’s physiological response character-
istics (such as human eye movement and blink information),
driver’s operation behavior (such as steering wheel rotation
angle), and vehicle state information (such as using the
change of vehicle trajectory and lane departure) [14]. -e
results obtained based on physiological signal detection are
the most accurate and they can best reflect the driver’s
driving fatigue characteristics. A detection method based on
the EEG signal was proposed byWang et al. to judge driving
fatigue in real-time by analyzing the driver’s nervous system
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[15]. Due to the high detection cost and invasive detection, it
has a great impact on the driver’s normal driving behavior,
which is not commonly used and requires improvement. At
present, the detection method based on the driver’s eye state
is the most effective and convenient method to detect the
fatigue of drivers. Because it is a noninvasive detection, it is
more suitable for practical applications. -e PERCLOS
method is themost commonly used driving fatigue detection
method based on the driver’s eye state. -e PERCLOS value
adopts the ratio of eyelid closure time to a period is used as
the fatigue detection index. -e greater its value, the deeper
the degree of driving fatigue. -e pupil diameter of people
tends to decrease regularly with the deepening of fatigue
[16], so the pupil area can also be used as an index parameter
for fatigue judgment.

-ere are a lot of researches on the detection methods of
driving fatigue. To improve the accuracy of fatigue detection,
Xu et al. collected multisource data such as vehicle lateral
position and steering wheel manipulation through driving
simulation tests to calculate fatigue characteristic indexes. A
decision tree model for fatigue level prediction was estab-
lished by combining the driver’s subjective fatigue level and
conducting a comprehensive evaluation of the fatigue level
through video playback. -e model had a correct prediction
rate of 64.3%, a relatively low accuracy rate, and low pre-
cision [17]. Qu et al. used the evaluation method of a facial
video expert and established a database of driver’s awake,
fatigue, and very fatigue states, respectively, through driving
simulator driving simulation experiments. -en, he selected
the optimal combination of characteristic indicators by a
specific algorithm after extracting the characteristic indi-
cators of driver’s fatigue operation characteristics to es-
tablish a 3-level fatigue monitoring model for drivers based
on SVM [18].-e accuracy obtained by this model can reach
87.7% when tested under simulator working conditions.
Recently, driver fatigue evaluation using advanced deep
learning techniques based on physiological responses has
been reported by Gao et al. [19, 20]. Deep learning can
greatly improve the accuracy of driver fatigue detection
through its powerful information processing ability and
strong robustness, which can greatly improve the ability of
fatigue detection.

3. Experimental Method

-e study used a driving simulator in investigating the
thresholds of the fatigue level in different monotonous
driving environments. -en, the fatigue level recognition
model was built to identify different fatigue levels. -e
theoretical framework is presented in Figure 1.

3.1. Driving Simulator and Driving Scenes. -e test used the
high simulation driving simulator as shown in Figure 2. -e
motion system of the driving simulator is 3 degrees of
freedom. A Volkswagen Polo car with no engine is used in
the driving simulator, which includes a steering wheel,
braking force feedback, electrical sensor, and sound system.
-e driving simulator’s functions are identical to those of a

real car to ensure it is the same as a real driving situation.-e
driving visual scene is mainly provided by a projection
system composed of four projectors, with a visual range of
250°. -e effectiveness of the driving simulator passed the
system test, demonstrating that the simulator’s simulation
degree can fulfill research demands.

To explore the impact of different monotonous envi-
ronments on drivers’ long-term fatigue driving, two types of
roads are mainly set in the driving scenes. Table 1 and
Figure 3 describe these two driving scenarios in detail. To
restore the real driving scene as much as possible, green
grass, trees, and a small number of village buildings are set
on both sides of the road, and a small number of vehicles that
do not affect normal driving are set on the road.

3.2. Subjects. According to previous studies, the number of
subjects in the experiments was in the range of 10–38
[21–25]. -e number of subjects in this study is 36, which
could meet the minimum sample size requirement. Before
the experiment, the gender, age, nap habits, and driving age
of the 36 subjects were recorded through a questionnaire
survey. -e driving factor variables are summarized in
Table 2. -e survey results show that the subjects are mainly
22–28 years old and have been driving for 1–6 years. -e
subjects are mainly young and middle-aged experienced
drivers, which can minimize the impact of driving experi-
ence on driving behavior. All subjects are required to hold a
valid driver’s license; be in good physical condition; have no
drug-taking history within 1month before the test; not drink
alcohol within 24 hours before the test; and not drink coffee,
strong tea, and functional drinks within 12 hours before the
test [21].

3.3. Test Process. -ese 36 subjects were randomly assigned
to two scenarios to simulate driving situations. Scenario#1
and scenario#2 were assigned 18 personnel equally, and the
process of assigning personnel ensured that the driving
experience and other factors of the subjects in both scenarios
were kept as equal as possible. -e drivers of both driving
scenarios went through the same test process, filling out the
basic driver information questionnaire before entering the
driving simulator. -e experiment process is shown in
Figure 4.

Because the drivers often feel tired in the afternoon and
early morning. For experimental ease of implementation, we
choose a time between 12:30 and 2:30 in the afternoon to do
the test. -e drivers have just finished lunch and need a
midday break, which is more likely to cause sleepiness at this
time. During the test, the driver is not allowed to undertake
any secondary tasks, and there is no need to change lanes or
switch the lights while driving.-e test car uses an automatic
transmission, so the driver does not need to change gears.
-e driver does not use mobile phones, radios, music
players, or other equipment during the test.-ere are a small
number of other traffic vehicles on the road, but they do not
block the lane where the driving vehicle is located. More-
over, the driver needs to wear an eye tracker to record the eye
movement data during driving.
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-e driving simulation experiment steps are as follows:

(1) -e driver familiarizes with the driving simulation
system, understands relevant precautions and the
purpose of the experiment, and fills in relevant in-
formation (age, driving age, nap habits, etc.).

(2) -e driver conducts a simulated driving test drive for
10 minutes, to enable the subject to reach a high level
of fatigue within a limited time, and then conduct the
formal experiment.

(3) -e driver wears the eye tracking device to confirm
the normal transmission and storage of eye-tracking
data during driving.

(4) -e driver’s speed is kept at about 110 km/h in sce-
nario#1 and 60km/h in scenario#2, and the continuous
1h simulated driving experiment was conducted.

(5) After the start of the experiment, a subjective fatigue
evaluation of the driver was conducted at 0min,
30min, and 60min.

(a) (b) (c)

Figure 2: Driving simulator. (a) Outside the simulator. (b) Scenario projection. (c) Driver view inside the simulator.

Table 1: Description of the driving scenarios.

Scenario Road type Median separator Number of lanes Speed limit (km/h)
1 Expressway Yes 6 120
2 Low-grade rural highway No 2 80

Simulator Description

Scenario Description

Subject Requirements and
Test 

Data Extraction

Subjective Evaluation
(SSS questionnaire)

Objective Evaluation
(Eye movement parameters)

Fatigue Analysis

Fatigue Level Threshold

Model Description

Model Training and Results

Simulation Scenarios Simulation Test Fatigue Evaluation Method

Fatigue Degree Recognition
Model

Figure 1: -eoretical framework.
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Table 2: Driving factor variable.

Scenario#1 (expressway) Values and explanations
Percentage (%)

Average value Standard deviation
1 2 3

Gender 1- Male, 77.78 22.22 — — —2- Female

Age
1- (22-23) years,

44.44 50.00 5.56 23.78 1.442- (24–26) years,
3- (27-28) years

Nap habit 1- YES, 50.00 50.00 — — —2- No

Driving experience
1- (1-2) years,

44.44 38.89 16.67 2.67 1.372- (3-4) years,
3- (5-6) years

Scenario#2 (low-grade rural highway) Values and explanations Percentage (%) Average value Standard deviation1 2 3

Gender 1- Male 55.56 44.44 — — —2- Female

Age
1- (22-23) years,

66.67 27.77 5.56 23.50 1.502- (24–26) years,
3- (27-28) years

Nap habit 1- YES, 38.89 61.11 — — —2- No

Driving experience
1- (1-2) years,

50.00 27.78 22.22 2.72 1.482- (3-4) years,
3- (5-6) years

Note. — indicates that the value was not assigned with any meaning for the related indicator.

Fill in the Driver
Information 

10 minutes
Simulated Test

Driving 

Simulation
Experiment 

Experimental Eye
Movement Data

Acquisition 

Subjective
Evaluation at

60min 

End of the
Experiment 

Subjective
Evaluation at

the Beginning 

Subjective
Evaluation at

30min 

Figure 4: Simulation driving experiment process.

(a) (b)

Figure 3: Driving scenes. (a) Scenario#1 (Expressway). (b) Scenario#2 (Low-grade rural highway).
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(6) -e experiment is carried out in sequence, and the
data are saved after completion of all drivers.

4. Experimental Result

4.1. Subjective Fatigue Survey. A subjective fatigue survey is
one of the important means to study driving fatigue. -e
most widely used fatigue measurement scale is the Stanford
Sleepiness Scale [26]. -e SSS scale contains 1 ∼ 7 different
fatigue grades (the fatigue grade is expressed by S), and the
fatigue degree is deepened in turn. As shown in Table 3, S� 1
denotes complete vitality and vigor, while S� 7 indicates
very tired and at the beginning of sleep. Subjects need to
choose one of the seven fatigue levels to represent their
current fatigue state. -e advantage of the subjective eval-
uation table is that it is easy to operate and can be repeated.
To facilitate the subsequent processing, the driver’s fatigue
state was divided into four levels: awake (S� 1, 2), mild
fatigue (S� 3, 4), moderate fatigue (S� 5), and severe fatigue
(S� 6, 7).

According to the drivers’ subjective fatigue state, values
were obtained before the experiment, 30 minutes in the
experiment, and at the end of the experiment. -e ex-
pressway and low-grade rural highway can be counted
separately, the results are shown in Figure 5.

As shown in figure (a), all subjects remained awake at the
beginning of the experiment in scenario#1. As the experi-
ment progressed, the driver’s fatigue and sleepiness in-
creased. When the experiment lasted for 30min, 89% of the
subjects subjectively felt mild fatigue and 11% felt moderate
fatigue. When the experiment lasted for 60min, 83% of
drivers feel that they are in a state of severe fatigue, while
only 17% of drivers feel moderate fatigue.

As shown in figure (b), all subjects also remained awake
at the beginning of the experiment in scenario#2. When the
experiment lasted for 30min, 17 drivers felt only mild
fatigue, one driver felt moderate fatigue. When the ex-
periment lasted for 60min, half of the subjects felt mod-
erate fatigue and the other half of the subjects felt severe
fatigue.

When the fatigue states of drivers in the two scenarios
are analyzed together, as shown in Figure 6,it can be seen
from the figure that in the driving process of the ex-
pressway and the rural highway, the subjective fatigue
state of drivers gradually deepens with the increase of
driving time. At 30 minutes of the expressway scene ex-
periment, the drivers’ fatigue degree is slightly higher than
that of the rural highway. At 60 minutes, the drivers’
fatigue degree is much higher than that of the rural
highway. As can be seen from the trend line of subjective
fatigue degree in the figure, from the trend line of sub-
jective fatigue in the graph, it can be seen that the trend
line rises faster and has a greater linear slope for the
highway than for the rural road. -is indicates that drivers
who drive on the highway for a long time are more likely
to feel fatigued subjectively and the rate of fatigue
deepening is faster. Subjective fatigue is higher for
highway drivers for the same driving time.

4.2. Eye Movement Parameter

4.2.1. Pupil Area. As a noninvasive detection method, the
detection of eye movement parameters can effectively and
conveniently detect the driver’s fatigue state. Generally, the
pupil diameter of normal and fully rested people is about
2.5–4mm. -e pupil diameter can be an effective index to
measure the driver’s fatigue.With the increase of driving time,
the driver’s pupil diameter shows a regular shrinking trend
[16]. -en, the driver’s pupil data collected by the eye tracker
can be collected at a frequency of 60Hz, and the average pupil
area of the driver can be calculated byD-Lab software. Take all
drivers every 10 minutes as a driving time section in both
scenarios, calculate the average value of the stable pupil area
value, and get a total of 217 sample values in 60 minutes.
According to the time series, all sample points form a pupil
area data scatter diagram, which is represented in Figure 7.

It can be seen from the figure that the pupil area of the
driver in both scenes shows a regular decreasing trend with
the increase of driving time. -e sample points are sorted
according to the time series and 35 sample points are taken
every 10 minutes, it can be seen that the reduction trend of
the driver’s pupil area in the two scenes is different. When
the experiment is conducted for 25 minutes in scenario#1,
there is a point with an apparent decreasing trend, indicating
that there is an obvious change in the driver’s fatigue at the
moment. When the experiment lasted for 40 minutes, there
is a very significant downward trend, and the driver’s fatigue
is much deeper at this moment than it had been previously.
In scenario#2, the curve as a whole shows a regular de-
creasing trend. At the 98th sample point and the 136th
sample point, the decreasing trend is faster than the previous
ones. -is serves as a reference for determining the pupil
area threshold for different levels of fatigue later.

4.2.2. PERCLOS. PERCLOS refers to the time proportion of
eye closure time, which has a high correlation with fatigue.
According to the definition of PERCLOS, the calculation
method of the PERCLOS value is shown in formula (1).

PERCLOS � 
n

i�1

ti

T
, (1)

where ti is the time when the pupil is covered longitudinally
by the eyelid and T is the total detection time.

In the actual application process, PERCLOS can be
calculated by calculating the proportion of closed frames to
the total frames [27], as shown in the following formula:

PERCLOS �
n

N
, (2)

where n is the number of frames with eyes closed and N is
the number of video frames in a certain time.

-e eye movement equipment is used to collect data in
this experiment, and the data acquisition frequency is 60Hz.
Because the difference between the EM, P70 and P80
standards of the PERCLOS fatigue driving detection method
is not significant [28], the critical judgment threshold for eye
closure is set to 70%. In the detection of the closed state of
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human eyes, both human eyes are generally open and closed
at the same time. To reduce the error, it is considered closed
when one of the human eyes is closed. In both scenarios, the
data were processed in a time interval of 15min to obtain the
average stable PERCLOS value for each driver during this
period. All the obtained PERCLOS values were plotted

according to the time series to obtain a box plot, and the
results are shown in Figure 8.

As can be seen from the four-time period graphs in
Figure 8, the PERCLOS values of the drivers in both sce-
narios increase with time. -e abnormal values that appear
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Table 3: Stanford sleepiness scale.

Grade Degree of drowsiness
1 Very excited, full of vigor and vitality
2 Physical function is at a high level, but not at the peak, and can concentrate
3 Very sober, but the body and mind are relatively relaxed, and reflect in time but not sensitive enough
4 A little tired and relaxed
5 Full of fatigue, no longer wants to stay awake, very lax
6 Began to doze off, dizzy, no longer struggle with sleepiness, just wants to lie down and rest
7 At the beginning of sleep, dreams begin to appear
X Dead sleep
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at 15min, 30min, and 45min are caused by instrumentation
errors and measurement errors, so they are not argued af-
terward. Instead, the data obtained from the statistics of the
four-time periods show that the fatigue levels of drivers in
different scenarios during the same time are different. -e
PERCLOS values for drivers in the rural road scenario are all
greater than the values for drivers in the expressway sce-
nario. -is indicates that the fatigue threshold ranges of
drivers in different driving environments are different and
need to be analyzed separately.

-e stable PERCLOS mean value sample points of
drivers were arranged according to time series, and after
comparing the data, characteristics of each time in Figure 8,
the PERCLOS mean value graph of drivers was obtained
according to 15-minute periods, as shown in Figure 9. It is
clear from the graph that the PERCLOS values of drivers
show a gradual increase with increasing driving time.
Whether in the expressway or rural road, the driver’s driving
fatigue gradually deepens with the increase of driving time.
-e PERCLOS value of the driver on the expressway rises

more slowly and is smaller than on the country road, in-
dicating that the driver on the expressway feels fatigued
more rapidly and at a higher level than the driver on the
country road during the same driving duration.

5. Fatigue Grade Judgment Index

Although there will be individual differences in the fatigue
index parameters of each individual, there is a distribution
pattern within a certain range. It can be assumed that the
individual fatigue index values show a normal distribution
within the respective grade. Referring to the subjective fa-
tigue state values of drivers, the pupil area and PERCLOS
values after experimental analysis and processing are also
used as the basis, and then the parameter changes in Fig-
ures 7, 8, and 9 are taken into account. According to the
analysis results, the threshold of fatigue degree can be di-
vided by two fatigue index parameters: pupil area and the
PERCLOS value. -e standard division of the fatigue grade
index is shown in Table 4.
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Figure 8: PERCLOS values for drivers at different times. (a) 15min. (b) 30min. (c) 45min. (d) 60min.
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6. Driver Fatigue Identification Based on the
LSTM Model

6.1. Introduction to the Long Short-Term Memory Network
(LSTM). -e long and short-term memory network (LSTM)
is a special type of RNN. It can learn long dependencies and
avoid the gradient explosion and gradient disappearance of
RNN. It was first proposed by Hochreiter and Schmidhuber
[29] and has been improved and popularized bymany people.
Because it works very well on a variety of problems, it is now
widely used. -e main feature of LSTM is that its storage unit
is essentially an accumulator [30] and ct represents the
current state of memory cells, and gates can be used to protect
and control the state of cells.-e state of cells can generally be
realized by multiple gates. At each input, when the input gate
opens, the state of the cell will be remembered. When the
forget gate ft opens, the last cell state ct−1 will be forgotten.
When the output gate ot is opened, the cell state will be
transmitted to the final state ht. -e advantage of using
storage cells and gates to control information transmission is
that it can prevent the gradient from disappearing rapidly.
-e unit structure of LSTM is shown in Figure 10.

Graves proposed the propagation implementation method
of the LSTM network [31], and its equation is as follows.

Forward Pass:
Input Gates

a
t
l � 

I

i�1
wilx

t
i + 

H

h�1
whlb

t−1
h + 

C

c�1
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t−1
c , (3)

b
t
l � f a
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Cell Outputs
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where w represents the weight of the connection of different
units, at

i represents the network input to unit i at time t, and
bt

i represents activation of unit i at time t.-e subscripts l,∅,
and ω represent the input gate, forget gate, and output gate
of the block, respectively.-e peephole weights from cell c to
the input gate, forget gate, and output gates are denoted as
wcl, wc∅, and wcω. st

c is the state of cell c at time. Iand K

represent the number of inputs and outputs, respectively,
and H denotes the number of cells in the hidden layer. f, g,
and h are all the activation functions.

Backward Pass:
-e purpose of the backward pass is to calculate the

gradient and thus update the parameters.

Table 4: Fatigue index grade.

Fatigue
degree

Expressway Rural road
PERCLOS Pupil area PERCLOS Pupil area

Awake
state <4.3 >1962.6 <8.61 >1653.6

Mild
fatigue 6.1∼9.3 1622.7∼1798.6 11.7∼17.4 1298.9∼1442.6

Moderate
fatigue 10.5∼14.1 1464.8∼1568.9 22.5∼30.1 1028.6∼1164.1

Severe
fatigue >17.7 <1369.6 >35.3 <917.3
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Figure 10: LSTM cell structure.
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where G is the total number of inputs to the hidden layer. L

represents the loss function used for training.
In the structure of LSTM, its input, output units, and cell

state are one-dimensional, and multiple LSTM network
structures can be connected to form a more complex
structure. -e formulas of LSTM in this paper are the same
as that proposed by Graves[32], and its key equations are as
follows:

it � σ Wxixt + Whiht−1 + Wcict−1 + bi( , (19)

ft � σ Wxfxt + Whfht−1 + Wcfct−1 + bf , (20)

ct � ft ∘ ct−1 + it ∘ tan h Wcfxt + Whcht−1 + bc( , (21)

ot � σ Wxoxt + Whoht−1 + Wco ∘ ct−1 + bo( , (22)

ht � ot ∘ tan h ct( , (23)

where σ represents sigmoid function, i, f, o, and c represent
input gate, forget gate, output gate, and memory cell, re-
spectively, ∘ represents the Hadamard product.

6.2. Model Building. -e occurrence of driver fatigue is
closely related to the time axis, and it is gradually deepened
with the increase of time. Driver fatigue presents regular
characteristics on time series, and its data characteristics
belong to time series data. -e LSTM model is time-

dependent and has excellent performance on time series,
which is very suitable for processing and predicting events in
time series. Because driving fatigue has the feature of long-
time driving, and the LSTM model is very good at handling
long series data. -erefore, the identification of the driver’s
fatigue state in this paper can be converted into a multi-
classification problem for the awake, mildly fatigued,
moderately fatigued, and severely fatigued driving states.
-e data set is based on the pupil area and PERCLOS values
obtained from the experiments with drivers in the ex-
pressway scenario. Moreover, the labeled data are made
according to the thresholds of different fatigue levels defined
in the above. -e labels for sober, mild fatigue, moderate
fatigue, and severe fatigue correspond to data labels of 0, 1, 2,
and 3, respectively. -ere are 8140 pieces of data in the data
set and 2035 pieces of data are contained under each label, of
which 70% are used for training and the remaining 30% are
used for testing. -e training set is used to establish the
driver’s fatigue grade identification model and parameter
optimization in the model, and the test set is used to test the
generalization ability of the model.

Before the sample data enters the network model, it is
necessary to reshape each sample data into a three-dimensional
vector. Each sample vector contains 2 features: the fatigue
feature indicators X1 (pupil area value) and X2 (PERCLOS
value). -en, Min-Max normalization is used for the data to
make the model fit faster and achieve the training effect better.
In this paper, a one-way LSTM structure is used to construct
the network model. -ere are two LSTM layers. After the
second LSTM output layer, two fully connected layers are
connected to output the classification and recognition prob-
ability. -e network model structure is shown in Figure 11.

6.3. Model Training and Results. -e LSTM fatigue grade
recognition model is implemented in the Python language
on the pytorch1.7.1 platform. -e min-batch training
method is used and the sample batch is 64. -e cross-en-
tropy loss function is selected as the cost function and the
Adam optimizer is selected to train the network, and the
learning rate lr is 0.0001. Dropout is used for LSTM layer
units to prevent overfitting in training, with a value of 0.8.
-e dimensions of the input and output of each layer of the
network are shown in Table 5.

-e model operates on a hardware environment with an
RTX 2060 graphics card and AMD 4800h CPU and a win-
dow10 64bit system with 16GB of memory and uses a GPU to
accelerate the training.When the number of network iterations
is 55, the network training results perform well in the training
set. When the number of iterations is increased, the network
model is overfitted. -e loss change rate and accuracy of the
finally trained model are shown in Figures 12 and 13.

It can be seen from Figure 12 that the loss rate of the
network gradually decreases and tends to be stable during the
training process. Similarly, it can be seen from Figure 13 that
the accuracy rate of the network model gradually increases and
tends to be stable during the iterative training process.

-e data set has been divided into a training set and
test set before, and 30% of the data set is used for testing.
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-erefore, the sample of the test set is 2444. -e test set is
tested on the trained LSTM network to evaluate the
performance of the model’s ability to identify fatigue
levels according to its performance on the test set. Fi-
nally, the trained long short-term memory network
model is tested on the test set of 2444 data, and the
confusion matrix of recognition results is shown in Ta-
ble 6 below.

It can be seen from the confusion matrix in the above
table that the accuracy of awake state recognition is 100%,
that of mild fatigue state is 93.1%, that of moderate fatigue
state is 98.4%, that of severe fatigue state is 100%, and the
total accuracy is 97.8%.

Lei classified drivers’ fatigue into four states: awake, mild
fatigue, moderate fatigue, and severe fatigue [33]. He used
the driving simulator and a BIOPAC multichannel physi-
ological recorder to obtain the driver’s EEG signals. After
extracting the corresponding features, a driver fatigue level
recognition model was trained by using the support vector
machine (SVM) method. Xu et al. divided fatigue into
awake, moderate fatigue, and severe fatigue, respectively.
After using a driving simulator and extracting relevant in-
dicators, he used an ordered Logit (OL) model and an ar-
tificial neural network (ANN) model to evaluate the fatigue
state[34]. -e accuracy of the LSTM model used in this
paper is compared with the accuracy of these models, and
the results are shown in Table 7.

It can be seen from Table 7 that the deep learning ap-
proach works better than the traditional machine learning
approach in the driver’s fatigue status recognition based on
the driver’s physiological response signals. -e long short-
term memory network model showed a substantial im-
provement over the OL model, ANN model, and decision
tree model in the recognition rate of each level of fatigue and
the total recognition rate. Compared with the SVM model,
the LSTM network model improved the recognition rate of
moderate fatigue by 13% and the overall recognition rate by
6.7%. -erefore, the LSTM model is very effective in rec-
ognizing the fatigue level of drivers.
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Figure 11: LSTM network structure.

Table 5: Dimensions of each layer of the network.

Layer Input size Output size
Input [64, 1, 2] —
LSTM 1 [64, 1, 2] [256, 2]
LSTM 2 [256, 2] [256, 64]
LSTM output — [64, 1, 64]
Linear 1 [64, 64] [64, 32]
Linear 2 [64, 32] [64, 4]
Output — [64, 4]
Note.— indicates that the value was not assigned with any meaning for the
related indicator.
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Figure 12: Change of loss rate during LSTM model training.
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Figure 13: Change of accuracy rate during LSTM model training.

Journal of Advanced Transportation 11



7. Conclusion

-e era of intelligent transportation is coming, and the
future must be the era of autonomous driving. However,
there is still a long time for autonomous driving in the true
sense. People are the most important link in a traffic system
composed of people, vehicles, and roads. By monitoring the
driver’s driving status, we can effectively achieve regional
traffic safety and operational efficiency in multiple traffic
modes, improve traffic economy, and enable the coordinated
and benign development of regional traffic.

Based on the driving simulator experiment, the classi-
fication threshold of driver’s fatigue degree in two monot-
onous environments of the expressway and low-grade rural
highway is defined from the eye movement parameters of 36
drivers and refers to the driver’s subjective fatigue state. -e
results show that the thresholds of different fatigue levels of
them are different, and the drivers on the freeway will feel
fatigued faster. Driver’s fatigue level in the expressway is
deeper than that in the rural highway during the same
driving time. Because fatigue is a gradual process, it needs to
be analyzed and processed in stages and the driver’s fatigue
state will be different in different monotonous driving en-
vironments.-e deep learningmethod is also used to test the
data samples obtained from the experiment. -e results
show that the total accuracy of identifying different fatigue
states can reach 97.8%, which is significantly improved
compared with the method based on the traditional machine
learning model in the traditional literature.

-ere are only 38 subjects in this study, which did not
fully cover the physiological signal characteristics of drivers,
so more experimental samples are needed in the future.
Moreover, only two commonmonotonous driving scenarios
were considered for the study, while the real monotonous
driving environment scenarios are much more than that.
Although advanced driving simulators can provide driving
scenarios that are highly similar to the real driving situation,
making the driver’s perception and reactions highly similar
to the real driving situation, some factors such as projection
resolution and lighting conditions in the experiment can also
affect the driver, so the real driving situation is still needed as

a reference in the future study. Although this paper dis-
tinguishes different fatigue thresholds and uses the deep
learning model to identify the fatigue degree, the identifi-
cation after obtaining the data cannot identify the fatigue
state synchronously while driving [35–44].
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