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.e reliable and accurate detection of bridges plays an important role in imaging-driven transportation surveillance. It is capable
of timely providing the traffic information, leading to safer and more convenient transportation. However, the visual quality of
observed images is often inevitably reduced owing to the adverse weather conditions, e.g., haze and low lightness. It is still difficult
to adopt the existing powerful deep learning methods to reliably and accurately detect the bridges under different imaging
conditions. To achieve satisfactory bridge detection results, we first propose to exploit the data augmentation strategy and physical
imaging method to generate the natural-looking experimental dataset, which contains latent high-quality images and their hazy
and low-light versions.We then investigate how to further promote the deep learning-based bridge detectionmethods through the
manually generated dataset. It is obvious that the generalization abilities of these deep neural networks are significantly improved
using this data augmentation strategy. In this work, we constructed an original dataset consisting of 3500 images of size 900×600,
collected under normal imaging condition. Extensive detection experiments will be performed based on the augmented dataset.
Experimental results have demonstrated that our automatic bridge detection framework could generate more reliable and accurate
results compared with existing detection methods.

1. Introduction

With the rapid developments of unmanned aerial vehicles
(UAV) and remote sensing techniques [1, 2], it has become
flexible to capture the visual data of bridges in a wide range
[3]. .e synthetic aperture radar (SAR) images [3] are able to
expand the imaging range containing the bridges. However,
the SAR images inevitably suffer from the random noise and
low-contrast signal. In addition, it is not flexible to timely and
accurately capture the visual images related to the traffic flow
on bridges. In addition, the visual data collected from UAV-
enabled imaging sensors are able to generate meaningful and
important information in transportation surveillance. It is
capable of timely providing the traffic information, leading to
safer and more efficient transportation. Due to the poor

weather conditions (e.g., haze [4] and low-light [5]), the visual
quality of observed images is often inevitably impaired in
practice. Under poor imaging conditions, it will be chal-
lenging to detect the bridges precisely. In recent years,
considerable effort has been invested in the detection of
bridges under normal imaging conditions. Traditional de-
tection methods, deep learning–based methods, and com-
bined detection methods comprise the three main categories
of general detection techniques. Deep learning–based
methods have significantly improved their detection precision
and efficiency due to their powerful learning and represen-
tation capabilities. However, the degraded images provide few
details in terms of geometrical structures and color appear-
ance, making it difficult to detect bridges reliably and precisely
under adverse imaging conditions.
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.e deep learning–based detection methods are
highly dependent on the training dataset. To achieve
satisfactory bridge detection results, we will construct an
original dataset with 3500 images of size 900×600, col-
lected under normal imaging conditions. To promote the
volume and diversity of the training dataset, we will
exploit the data augmentation method based on physical
imaging modeling [6–8] to enlarge the original image
dataset. In particular, the enlarged dataset will contain
the latent sharp images and their hazy and low-light
versions. Furthermore, four typical deep learning–based
detection methods (i.e., Faster R-CNN [9], YOLOv3 [10],
YOLOv4 [11], and YOLOv5 [12]) will be introduced to
implement the detection of bridges of interest. In this
work, we will investigate how to further promote the
deep learning–based bridge detection methods through
the enlarged dataset. Existing studies have demonstrated
that the generalization abilities of these deep neural
networks could be significantly promoted according to
the data augmentation strategy. .e proposed deep
learning-enabled automatic computational framework
could significantly improve the reliability and accuracy
of bridge detection. .erefore, the main contributions of
this work can be summarized as follows:

(1) We proposed a deep learning-enabled automatic
computational framework for detection of bridges in
transportation surveillance.

(2) We construct an original image dataset consisting of
3500 images of size 900×600 captured under stan-
dard imaging conditions. Owing to the physical
imaging methods, the synthetically degraded images
are generated to expand the image dataset and en-
hance the generalization capabilities of deep learning
methods. .e expanded dataset is used to train deep
learning–based detection methods, resulting in more
reliable and accurate detection of bridges under
various imaging conditions.

(3) Experiments have shown that our automatic
framework can produce more robust and accurate
detection results than existing methods. .e satis-
factory detection performance is primarily attrib-
utable to the robust learning ability of neural
networks and the physical imaging-based data
augmentation strategy.

.e remainder of this work is structured as follows.
Section 2 briefly reviews the recent work related to bridge
detection. Four typical deep learning-based bridge detection
methods and data augmentation strategies are introduced in
Section 3. Numerous experiments are implemented to il-
lustrate the effectiveness of our method in Section 4. .is
work is finally ended by giving the main contributions in
Section 5.

2. Related Work

Recent efforts in the literature have focused on the automatic
detection of bridges of interest. .e current detection

methods can be roughly classified into three categories:
traditional, deep learning–based, and combined versions. In
this section, we will review these detection methods briefly.

2.1. Traditional Bridge Detection Methods. As early as 1989,
Baker et al. [13, 14] studied the detection of concrete bridges
in close-up side-shot images. It is assumed that the sides of
the bridge had an approximate rectangular geometry.
.erefore, there would be a pair of parallel lines on the upper
and lower sides of the bridge. .e rectangular side could be
obtained by detecting the parallel lines. According to this
assumption, Wang et al. [15] proposed a multistep bridge
detection framework. It first extracted the river regions from
the image and then selected the regions between two dis-
parate water areas as candidate selections..e final detection
results could be obtained by extracting parallel lines from
these regions. To further enhance detection performance,
more structural correlations between bridges and rivers have
been exploited [16]. By considering both local radiometric
and textural features, Loménie et al. [17] proposed a com-
putational system for robustly detecting bridges from high-
resolution satellite images. According to the image prior
knowledge, an integrated method was developed [18] to
automatically detect the bridges over rivers from satellite-
borne visual images. In particular, this method first extracts
the river areas and then detects the brides of interest through
the knowledge-driven strategy. To take full advantage of the
spatial relation between bridge and water, Liang et al. [19]
developed an automatic computational method to detect
bridges using the HJ-1 satellite remote sensing images. .e
multispectral and morphological information in images
were combined to guarantee bridge detection.

.e above computational methods mainly focus on the
extraction and processing of line features rather than the
position relationship between the bridge and river. However,
methods only based on the parallel line features of the target
will easily generate unsatisfactory detection results. To
overcome this limitation, Sita [20] first proposed a method
for template matching, moment feature matching, and
transformation feature matching according to the geometric
or regional features, moment features, and transformation
features of the target. On this basis, Wang et al. [21] pro-
posed a depict segmentation method for recognizing
bridges, which used Hough transform to extract the longest
straight lines from the coarse-resolution images. .ough
these methods perform well in detection efficiency and
accuracy, the parameter selection of the Hough transform
has a great influence on the result. It is not suitable for the
situation where there are multiple similar targets in the
image.

To effectively solve the above problems, Han et al. [18]
first used the grey level cooccurrence matrix (GLCM)
method to obtain the entropy, contrast, homogeneity, en-
ergy, and other characteristics from the remote sensing
image. .en, they used these features to divide the image
into river and land areas and finally detected bridges by
using prior knowledge. As a consequence, Fu et al. [22] first
established knowledge models of the bridges of interest.
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.ey utilized concurrently the segmentation of waters,
the extraction of regions of interest (ROI), the connec-
tivity signal, and the detection of candidate regions for
the approximate positioning of bridges. During the
testing procedure, the grey characteristics were used to
identify the potential bridge. To take full advantage of
spatial information, both structural information and
topological relations in bridges regions were considered
to enhance bridge detection performance [23]. In ad-
dition, Liu et al. [24] proposed a bridge information
extraction method based on multisource data fusion,
which is mainly based on the representation of bridges,
land, and rivers, by fusing panchromatic and near-in-
frared images to recognize and extract bridge informa-
tion automatically.

.e premise of these methods is that the road information
in the image is available. For the positional relationship be-
tween roads, rivers, and bridges to be unknown, Shu-Kui and
Nie [25] proposed amethod for water bridge recognitionwhich
is object oriented, which used the region growth method to
segment the image. According to the special reflection char-
acteristics of the water body, the image objects generated after
segmentation were used as the basic units to be classified..en,
based on the characteristics of the bridge, they extracted the
bridges from images by using the shape feature of image objects
and the contextual relationship between bridges and water
bodies. However, due to the limitation of spatial resolution, the
detection of bridges on some small tributaries was not perfect.
Subsequently, through the research on the morphological filter
and regional growing, Gu et al. [26] proposed a method of
bridge extracting based on the difference between the above
filtering methods. By combining the characteristics of bridges,
the bridge information can be extracted from the difference in
filtered DEM. .e proposed method was capable of detecting
different bridge designs. Based on the high spatial images, Yuan
et al. [27] developed a target-oriented computationalmethod to
automatically extract bridges from original images. Firstly, they
selected the optimal segmentation scale through multiscale
segmentation experiments and the underlying surface features;
secondly, they established a rule set by using water body index,
threshold function, and other methods. .ey gradually ob-
tained vectors of water bodies and potential areas of bridges.
Finally, they successfully extracted the bridge through binar-
ization, mathematical morphology processing, overlay analysis,
and other methods.

2.2. Deep Learning-Based Bridge Detection Methods. .e
above-mentioned bridge detection methods are highly
depended on traditional image processing techniques.
.e corresponding detection results often suffer from
several limitations, such as unstable detection perfor-
mance under complex imaging conditions. Besides, it
becomes difficult to generate high accuracy and essen-
tially fails to generate real-time detection. As the rapid
development of artificial intelligence technique [28, 29],
the deep learning–based detection methods have gained
great success in the fields of target detection and rec-
ognition, due to its powerful learning capacity.

In the literature, the existing deep learning-based target
detection methods can be broadly divided into two classes,
i.e., the two-stage and one-stage methods..e representative
two-stage detection methods mainly include the R-CNN
[30] and its extensions, such as Fast R-CNN [31], Faster
R-CNN [9], and mask R-CNN [32]. .ese methods first
extract the candidate bounding boxes according to the
position of the target of interest. .e classification and re-
gression are then implemented to produce the detection
results. .ese methods are capable of accurately detecting
the bridges from the original images. However, they inev-
itably suffer from high computational load, leading to un-
real-time detection of bridges in practice. Fortunately, the
introduction of one-stage detection method could deal with
this limitation. .e one-stage detection method mainly
include the single shot multibox detector (SSD) [33], as well
as you only look once (YOLO) [34] and its extensions. .e
popular YOLO [34] directly estimated the category proba-
bility, bounding box, and class confidence. It is able to
significantly improve the detection efficiency. YOLOv2 [35]
and YOLOv3 [10] have enhanced the capacities of feature
extraction by introducing the Darknet-19 and Darknet-53,
respectively. .e target detection results were improved
accordingly. More recently, the newly developed YOLOv4
[11] and YOLOv5 [12] have attracted considerable attention
and could significantly improve the detection accuracy,
efficiency, and robustness.

With the rapid developments of airborne and satellite-
bone imaging systems, it becomes more flexible to detect the
bridges to monitor traffic status. For example, based on the
satellite-bone SAR images, Chen et al. [36] proposed an
advanced bridge detection method, termed as single shot
detection-adaptive effective feature fusion (i.e., SSD-AEFF),
to perform accurate bridge detection from complex SAR
images. .e multiresolution attention and balance network
(i.e., MABN) [3] were also proposed to identify bridges from
SAR images. .e proposed network is mainly composed of
three parts, i.e., the attention and balanced feature pyramid
module, the region proposal network (RPN), the regression,
and classification. However, the SAR images often suffer
from the random noise and low-contrast signal. It is thus
difficult to detect small-scale bridges. In contrast, the optical
aerial images become more popular and practical for bridge
detection. By taking into consideration the auxiliary water
body extraction task, an accurate bridge detection network
[37] has been presented, which could enhance the feature
representation through semantic context. However, the
quality of optimal images is often degraded due to the poor
weathers, such as hazy and low lightness, leading to un-
satisfactory detection results. In this work, we will incor-
porate the data augmentation strategy into existing deep
learning method to make bridge detection more robust and
accurate under complex imaging conditions.

2.3. Combined Bridge Detection Methods. It is sometimes
difficult for a single detection method to generate satisfac-
tory detection results. To enhance the detection results,
Mirmehdi et al. [38] proposed to introduce the specific
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control strategies to enhance the traditional methods. Based
on the joint features and knowledge rules, Sang et al. [39]
proposed a new method for quickly detecting bridges on
water from visible light remote sensing images. .e whole
detection framework could be mainly divided into four
steps, i.e., water area segmentation, preliminary bridge edge
detection, matching, and verification to remove false
bridges. It is well known that traditional methods and deep
learning methods have their own advantages and disad-
vantages. .ere is a potential to combine the advantages to
further enhance bridge detection. .erefore, a hybrid de-
tection framework, proposed by Loménie et al. [17], has been
proposed to implement robust detection. .is hybrid ver-
sion exploited a voting strategy to classify the image pixels
into the corresponding classes and introduced the bottom-
up and top-down parts to accurately detect bridges. Tria-
Sanz and Loménie [40] first introduced the radiation fea-
tures to classify the pixels into different geographic types and
then searched for bridges based on the above classification.
By introducing the prior-information auxiliary module
(PAM) [41], which is able to receive and integrate prior-
information feature maps, four popular target detection
networks, i.e., YOLOv3 [10], YOLOv4 [11], Faster R-CNN
[9], and CenterNet [42], have been extended to obtain more
meaningful features. By integrating the prior-information
feature maps into the existing neural networks, the domain-
specific knowledge will be more meaningful, beneficial for
promoted bridge detection.

3. Deep Learning-Enabled Automatic
Detection of Bridges

.is paper mainly focuses on the automatic detection of
bridges under hazy and low-light situations. To improve the
generalization ability of our detection method, we first
synthesize both hazy and low-light images to expand the
original dataset. We then train the object detection methods
and compare the computational accuracy and efficiency
under the same imaging conditions. In particular, several
typical networks, e.g., Faster R-CNN, YOLOv3, YOLOv4,
and YOLOv5, will be exploited to detect the bridges of
interest in this work. Experiments show that our automatic
framework can produce more robust and accurate bridge
detection results than existing methods.

3.1. Faster R-CNN. Faster R-CNN has recently become a
typical two-stage target detection method. In particular, it
first estimates the target candidate regions. .ese candidate
regions are then classified and regressed, beneficial for ac-
curate and robust target detection..is is due to the fact that
Faster R-CNN exploits the RPN to generate candidate re-
gions on the feature map. Compared with the selective
search (SS) algorithm [43], the RPN reduces the number of
candidate regions for each image to 300, which significantly
reduces the calculations and greatly improves the efficiency
during the network training and test. To make it easier to
understand, the architecture of Faster R-CNN is visually
shown in Figure 1. .e widely used Faster R-CNN is mainly

composed of four components, i.e., backbone network,
feature pyramid network (FPN), RPN, and feature branches.
.e backbone network is capable of extracting the feature
information from the original input image.

.e RPN is a fully convolutional network, which greatly
reduces the calculations because it does not contain a fully
connected layer. .e input of RPN is a feature map of any
size. In addition, its output is a batch of candidate frame
position information and the probability of whether there is
a target. Because the size of feature map of the fully con-
nected layer is fixed, the ROI pooling layer is required to
perform feature transformation on the candidate region.
.is part is achieved by the local max pooling.

During the network training, the input image is firstly
scaled to prevent distortion. .e shared feature map is then
extracted through the backbone network for subsequent
RPN and ROI pooling. .e RPN is composed of two layers,
i.e., the convolutional layer and the activation function layer.
In particular, it exploits the anchor mechanism to generate
anchor boxes for three different scales and three aspect
ratios. Let the size of the feature map of the input RPN be
w × h, and a total of w × h × 9 anchor boxes are generated
accordingly. After screening the candidate frames, the fea-
ture extraction is performed through a convolution kernel of
size 3×3. Two 1×1 convolutions are then exploited for target
classification and frame regression. It becomes flexible to
obtain the position information of the candidate frame and
the probability of containing the targets.

To obtain the candidate area, the candidate frame ob-
tained through the RPN is mapped to the last layer of the
feature map. .e feature size transformation is then per-
formed through the ROI pooling layers. .e object classi-
fication and bounding-box regression are finally performed
in the detection network. During the training process, the
multitask loss is utilized to jointly train the regression and
classification networks in practical applications.

3.2. YOLOv3. .e popular one-stage target detection net-
work YOLOv3 essentially considers the target detection task
as a regression problem. Compared with the Faster R-CNN,
it avoids the generation of candidate regions. It directly
performs classification and regression on the feature map,
which greatly improves the detection efficiency and reduces
the computational cost compared with traditional two-stage
detection networks.

As shown in Figure 2, YOLOv3 can predict targets of
interest at three different scales. By dividing the image into
grid cells of the same size (i.e., 13×13, 26× 26 or 52× 52),
each grid point is responsible for the prediction of a region.
.e final prediction result is represented using a 3-d tensor,
which contains the position information of the predicted
bounding box, the confidence score, and the class predic-
tions. In particular, YOLOv3 utilizes the Darknet53 as a
feature extractor, which applies the convolution kernels of
size 3× 3 and 1× 1, alternately. It also employs the skip
connections to enhance the ability of the network to extract
meaningful features. In the literature [10], YOLOv3 can
extract feature maps with three different scales, which are
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13×13×1024, 26× 26× 512, and 52× 52× 256, respectively.
By strengthening the capacity of feature extraction, the
prediction heads could exploit the feature maps by FPN to
robustly and accurately predict the bounding-box coordi-
nates and class probabilities.

.e YOLOv3 network firstly resizes the input image to a
fixed size and then divides the image into grids of three
scales. .e k-means clustering is introduced to obtain a
priori boxes of each different scale. .e important feature
extraction strategy is performed on the image through the
backbone network. .rough an existing multiscale pre-
diction method, the feature maps with three different sizes
extracted from the model are utilized to predict the final
results. .e feature fusion is finally performed on the
prediction results of the three scales..e network filters out
the bounding boxes whose confidence is lower than the
predefined threshold. .e final bounding boxes can be
obtained through the widely used nonmaximum sup-
pression (NMS).

3.3. YOLOv4. YOLOv4 is an extension of traditional
YOLOv3, which is able to generate more robust and accurate
detection results. In particular, YOLOv4 exploits the mosaic

data augmentation method to enrich the existing dataset.
.is method randomly scales four training images and then
randomly stitches them into a new image. .is generation
process of image dataset could make the detection network
more robust and general under complex imaging conditions.
As shown in Figure 3, YOLOv4 directly exploits the
CSPDarknet53 as the backbone network to extract mean-
ingful image features. Unlike the Darknet-53 by YOLOv3,
YOLOv4 further modifies the residual block structure on
Darknet-53. It also tends to replace the Leaky ReLU with the
Mish activation function in the backbone network. Different
from the FPN utilized as the parameter aggregation method
in YOLOv3, the more powerful path aggregation network
(PANet) is introduced in YOLOv4.

.e neck is exploited to fuse image features and transfer
these features to the prediction layer. In the neck part, the
spatial pyramid pooling (SPP) [44] is introduced to increase
the receptive field of the network. In addition, YOLOv4
employs the PANet to fuse and combine image features to
promote the capacity of target detection with different scales,
which is obviously different from the FPN utilized in
YOLOv3. .e head of YOLOv4 network is responsible for
robustly and accurately predicting the bounding boxes and
object classification.

...
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In addition, YOLOv4 commonly exploits the complete
intersection over union (CIoU) as the loss function, which
considers not only the overlap area of the bounding box, but
also the distance from the center point and the aspect ratio.
As a consequence, the regression speed and accuracy, related
to the bounding-box prediction, are improved accordingly.

3.4. YOLOv5. YOLOv5 also exploits the mosaic data aug-
mentation method to enrich the image dataset. However,
unlike the YOLOv4, it employs the mechanism of auto
learning bounding-box anchors to learn the anchor boxes
based on the enriched training data. .e architecture of
YOLOv5 network is visually illustrated in Figure 4. It can be
observed that the backbone of YOLOv5 directly combines
the focus structure and CSP structure. .e focus layer slices
the input image and warps H × W × 3 into H/2 × W/2 × 12.
.is method allowsmore detailed information to be retained
during the downsampling process, which can prevent the
information loss in practical applications.

.e neck part contains FPN and PAN structures. In
particular, the FPN transfers and integrates the high-level
feature information through the upsampling from top to
bottom. It is able to convey the robust semantic features
accordingly. In addition, the PAN is a bottom-up feature
pyramid which conveys the robust positioning features. Both
FPN and PAN are simultaneously utilized to strengthen the
network feature fusion capabilities. In the literature [12],
YOLOv5 employs the generalized intersection over union
(GIoU) as the loss function to constrain the prediction of
bounding boxes. .is strategy could effectively improve the
performance for target classification and bounding-box
regression. .e nonmaximum suppression (NMS) is then
exploited to eliminate the redundant bounding boxes and
generate the optimal detection results.

3.5. Data Augmentation Method. To evaluate the detection
performance of our learning method, it is necessary to
enlarge the original image dataset under different imaging
conditions. Both hazy and low-light imaging conditions will
be considered to generate the degraded images.

3.5.1. Synthetic Generation of Hazy Images. According to the
popular atmospheric scattering theory [6], the scattering of
light by particulate impurities suspended in the air is the
main reason for the degradation of hazy images. .e inci-
dent light attenuation model refers to the attenuation of the
reflected light on the surface of the object due to the scat-
tering effect, which reduces the intensity of the light reaching
the imaging system. .eoretically, as the propagation dis-
tance increases, the intensity of reflected light on the target
surface will decay exponentially.

It is well known that the atmospheric scattering model
has been widely exploited to describe the formation process
of haze images, which can be expressed as follows:

I(x, y) � J(x, y)e
− β d(x,y)

+ 1 − e
− β d(x,y)

􏽨 􏽩A. (1)

(x, y) denotes the pixel location, I is the observed hazy
image, J denotes the latent sharp image, d(x, y) represents
the depth at the pixel (x, y), β is a scattering coefficient
which denotes the medium density, and A is the global
airlight.

By manually setting different scattering coefficients and
global airlights, we can synthesize different kinds of hazy
images, contributing to an enlarged dataset which contains
both original and hazy images. In our numerical experi-
ments, we propose to randomly select different values of A

and β, i.e., A ∈ [0.7, 1.0] and β ∈ [0.4, 0.8].

3.5.2. Synthetic Generation of Low-Light Images. .e Reti-
nex theory has been widely used to synthetically generate the
low-light images. In particular, the Retinex theory could be
exploited to decompose an image into two independent
components, i.e., reflectance and illumination components.
It is well known that the color of a target observed by the
human eyes is only related to the reflection component on
the target surface. .e Retinex-based image decomposition
is defined as follows:

S(x, y) � R(x, y) · L(x, y), (2)

where S(x, y) is the observed image, L(x, y) represents the
light intensity (i.e., illumination component), andR(x, y)

represents the reflection component of the object image.
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Based on the Retinex theory, for each clean illumination
image R, a low-light image can be synthesized by randomly
setting a random illumination value L.

4. Experimental Results and Analysis

According to the representative target detection methods
introduced in Section 3, we will implement extensive
experiments using Faster R-CNN, YOLOv3, YOLOv4,
and YOLOv5. In this study, all detection experiments are
performed with Ubuntu 18.04 system and run in Intel®Core i9-9900X CPU @ 3.50 GHz, 128 GB ram, and a
single NVIDIA GeForce RTX 2080 Ti computing envi-
ronment. It is worth noting that the YOLOv5 mainly
includes 5 different types, i.e., YOLOv5s, YOLOv5m,
YOLOv5l, and YOLOv5x. We propose to select the
YOLOv5s in this work, which is the lightweight version
to efficiently and robustly detect the targets of interest.

4.1. Evaluation Criteria. In our experiments, two main
evaluation metrics, i.e., frames per second (FPS) and
average precision (AP), will be introduced to evaluate the
detection performance. In particular, the FPS represents
the execution efficiency for bridge detection. It is the
number of FPS that the detection network is able to
perform bridge detection. In addition, the AP denotes
the area surrounded by the PR (precision-recall) curve.
Instead of AP, we propose to use the average version (i.e.,
mAP) to evaluate the detection accuracy. .e mAP
represents the mean of the AP value of all classes. It is
pointed out that there is only one class of bridge con-
sidered in our experiments. .e value of mAP is thus
equivalent to AP. Both FPS and mAP have become the
most widely used standards for measuring target de-
tection performance. .e mAP (or AP) is defined as
follows:

mAP � AP � 􏽚
1

0
P(R)dR. (3)

4.2. Experimental Dataset and Settings. .e original image
dataset consists of 3500 images of size 900×600 collected
under normal imaging condition. In our experiment, we
take 67% of the bridge images for network training and the
others for testing. Each image is annotated with correct
bridge labels and ground truth boxes. In order to explore the
influence of data augmentation on bridge detection, we
enlarge the original image dataset according to the gener-
ation of synthetically degraded images shown in Section 3.5.
In Figures 5 and 6, both hazy and low-light images include
three different levels. We propose to exploit the TensorFlow
1.13.1 tool package as the framework and ResNet101 as the
backbone of Faster R-CNN. We train YOLOv3 and
YOLOv5s networks with the Pytorch1.8.1 package and the
YOLOv4 network with the Darknet framework. During
network training and testing, all detection networks are
implemented with the optimal parameters.

4.3. Comparisons with Other DetectionMethods. To evaluate
the detection performance, we have implemented several
experiments on bridge detection under normal imaging
conditions. .e bridge detection results can be visually il-
lustrated in Figures 7–10. In particular, four typical methods,
i.e., Faster R-CNN, YOLOv3, YOLOv4, and YOLOv5s, are
simultaneously introduced to detect bridges of interest in
our experiments. It can be found that it is easy to perform
robust and accurate detection at the presence of large-scale
bridges, as shown in Figure 7. .ese high-quality bridge
detection results are beneficial for safer andmore convenient
transportation. From a theoretical point of view, the
cooccurrences of water and land in Figure 8, single back-
grounds in Figure 9, and complex backgrounds in Figure 10
could make bridge detection more difficult in practical
applications. Due to the more powerful learning capacity,
YOLOv5s is able to implement more robust and accurate
detection results. .e suboptimal detection results, yielded
by Faster R-CNN, YOLOv3, and YOLOv4, could lead to
poorer transportation surveillance.

SPP UpSampl
ing

CBL CBL
Concat

UpSampl
ing

Focus
CSP2_1

CSP2_1CSP1_1 CSP1_3 CSP1_3

Conv

Conv

Conv

CSP2_1

CSP2_1

CSP2_1

CBL Conv BN Leaky
relu=add= CBL CBL

Res
unit

Conv

Conv

CBLCSP2_X = CBL

CBLBN Leaky
relu

slice

Focus =

slice

slice

slice

CBL CBL

Maxpool

Maxpool

Maxpool

SPP = CBL

X Res unit

Conv

Conv

CBLRes
unit

CSP1_X = CBL

CBLBNConcat

Concat

Concat

Concat

Concat

Concat

Concat

Leaky
relu

CBL CBL CBL
CBL

CBL

CBL

Figure 4: .e architecture of YOLOv5 network.
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4.4. Influences of Hazy and Low-Light Conditions on Bridge
Detection

4.4.1. Detection Results on Synthetic Weather Conditions.
.ere are two training sets and three testing sets in this
experiment, which can be matched to six data groups.

Data augmentation is used on both training and test sets.
.ese datasets are composed of original, hazy, and low-
light images. Visual comparisons with several detection
methods under different conditions are shown in
Figures 11–16. .e composition of data sets is shown in
Table 1.

β=0.4

β=0.5

β=0.6

Original

Figure 5: .e displays of original images and their hazy versions. From top to bottom: original sharp images and hazy images with β� 0.3,
β� 0.4, and β� 0.5, respectively. In particular, β denotes the scattering coefficient. In addition, the global airlight A is set to 0.7 in these
images.

Original

L=0.3

L=0.4

L=0.5

Figure 6:.e displays of original images and their low-light versions. From top to bottom: original sharp images and low-light images with
L� 0.3, L� 0.4, and L� 0.5, respectively. In particular, L denotes the illumination value.
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As shown in Table 1, the models are trained in original
images and then used to test the bridge detection model in
original, low-light, and hazy images, respectively. .e mAP
results from high to low is YOLOv4, YOLOv5s, Faster

R-CNN, and YOLOv3. .e FPS performance of the model
from high to low is YOLOv5s, YOLOv4, YOLOv3, and
Faster R-CNN. .e models can meet the needs of real-time
bridge detection, except for Faster R-CNN, of which FPS is

(a) (b) (c) (d) (e)

Figure 7: .e comparisons of different competing methods for detection of large-scale bridges. From left to right: (a) original images and
detected results by (b) Faster R-CNN, (c) YOLOv3, (d) YOLOv4, and (e) YOLOv5s, respectively.

(a) (b) (c) (d) (e)

Figure 8: .e comparisons of different competing methods for bridge detection at the presence of cooccurrences of water and land. From
left to right: (a) original images and detected results by (b) Faster R-CNN, (c) YOLOv3, (d) YOLOv4, and (e) YOLOv5s, respectively.
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only 8. In Table 1, the precision of the hazy image test set is
about 10% lower than the clear image test set. .e precision
of the low-light image test set is about 3% lower than the
clear image test set. .e Faster R-CNN model gets better
precision than YOLOv3, but it cannot fulfill the need for

real-time detection. In practice, even if Faster R-CNN gets
better detection precision, it cannot effectively carry out the
bridge detection task. YOLOv4 not only leads Faster R-CNN
in precision but also surpasses Faster R-CNN in speed. .e
models are trained with augmented datasets and then used

(a) (b) (c) (d) (e)

Figure 9: .e comparisons of different competing methods for bridge detection under simple backgrounds. From left to right: (a) original
images and detected results by (b) Faster R-CNN, (c) YOLOv3, (d) YOLOv4, and (e) YOLOv5s, respectively.

(a) (b) (c) (d) (e)

Figure 10: .e comparisons of different competing methods for bridge detection under complex backgrounds. From left to right:
(a) original images and detected results by (b) Faster R-CNN, (c) YOLOv3, (d) YOLOv4, and (e) YOLOv5s, respectively.
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to test the bridge detection model in original, low-light, and
hazy images, respectively. Except for YOLOv4, the precision
of the hazy image test set is about 2% higher than the clear
image test set. .e precision of the low-light image test set is
about 8% higher than the clear image test set. Surprisingly,
the precision of the YOLOv5s model in the low-light image
test set is improved by 16%. YOLOv4 gets insufficient im-
provement and relatively stable results..e YOLOv5s model
performs very well in the low-light. It even surpasses
YOLOv4. Meanwhile, the YOLOv5s model is more suitable
for real-time detection, and FPS is also the best.

.erefore, Table 1 proves that data augmentation is a
beneficial trick for training models. .e additional data can
improve the generalization ability and robustness of the
bridge detection model. It enables the model to deal with the
complex natural environment. It has momentous practical
significance.

4.4.2. Detection Results under Real Weather Conditions.
.is subsection evaluates the performance of Faster R-CNN,
YOLOv3, YOLOv4, and YOLOv5s under realistic weather

(a) (b) (c) (d) (e) (f )

Figure 11: .e comparisons of Faster R-CNN under normal, hazy, and low-light imaging conditions. F R-CNN represents the Faster
R-CNN. (a) Original. (b) Original + F R-CNN. (c) Hazy. (d) Hay + F R-CNN. (e) Low-light. (f ) Low-light + F R-CNN.

(a) (b) (c) (d) (e) (f )

Figure 12: .e comparisons of YOLOv3 network under normal, hazy, and low-light imaging conditions. (a) Original. (b) Origi-
nal + YOLOv3. (c) Hazy. (d) Hay +YOLOv3. (e) Low-light. (f ) Low-light +YOLOv3.
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conditions. Figures 15 and 16 depict the detection results
under low-light and hazy imaging conditions, respectively.
.e Faster R-CNN method has been found to have excellent
detection accuracy. However, this method typically has a
lengthy computational time. It is thus impossible to detect
the bridges in real time. .e detection capability of YOLOv3
and YOLOv4 may be impaired in low-light and hazy en-
vironments, whereas YOLOv5s have the best accuracy and
speed performance.

4.5.Discussion. In practical applications, the purpose of data
augmentation is to reduce the negative effects of bridge
detection. We can conclude from the imaging experiments
that hazy and low-light images have different effects on the
detection of bridges. According to exhaustive experiments,
both hazy and low-light images can easily have a negative
impact on the representation of bridge features. In practice,
the effect of low-light conditions is weaker than that of hazy
conditions. .e improvement of low-light conditions after

(a) (b) (c) (d) (e) (f )

Figure 13: .e comparisons of YOLOv4 network under normal, hazy and low-light imaging conditions. (a) Original. (b) Origi-
nal + YOLOv4. (c) Hazy. (d) Hay +YOLOv4. (e) Low-light. (f ) Low-light +YOLOv4.

(a) (b) (c) (d) (e) (f )

Figure 14: .e comparisons of YOLOv5s network under normal, hazy, and low-light imaging conditions. (a) Original. (b) Origi-
nal + YOLOv5s. (c) Hazy. (d) Hay +YOLOv5s. (e) Low-light. (f ) Low-light +YOLOv5s.
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(a) (b) (c) (d) (e)

Figure 15: .e comparisons of four different detection methods (i.e., (b) Faster R-CNN, (c) YOLOv3, (d) YOLOv4, and (e) YOLOv5s) for
bridge detection under realistic low-light imaging scenarios. (a) Original. (b) Faster R-CNN, (c) YOLOv3, (d) YOLOv4. (e) YOLOv5s.

(a) (b) (c) (d) (e)

Figure 16: .e comparisons of four different detection methods (i.e., (b) Faster R-CNN, (c) YOLOv3, (d) YOLOv4, and (e) YOLOv5s) for
bridge detection under realistic hazy imaging scenarios. (a) Original. (b) Faster R-CNN, (c) YOLOv3, (d) YOLOv4. (e) YOLOv5s.
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the implementation of a data augmentation strategy is su-
perior to that of haze. Not only can data augmentation
improve the detection accuracy, but it can also increase the
robustness of bridge detection.

5. Conclusions

In this work, we propose a deep learning–enabled au-
tomatic bridge detection method for promoting trans-
portation surveillance under different imaging
conditions. It contributes to reliable and robust video
surveillance to guarantee more reliable and effective
intelligent transportation. .e major contributions of
this work are as follows: first, a deep learning-enabled
automatic bridge detection framework is proposed for
transportation surveillance. Second, we construct an
original dataset consisting of 3500 images of size
900×600, collected under normal imaging conditions.
Moreover, the synthetically degraded images obtained
using physical imaging methods are generated to enlarge
the imaging dataset to improve the generalization abil-
ities of the deep learning methods. Last, the deep learning
methods are effectively trained using the enlarged image
dataset, contributing to more reliable and accurate
bridge detection results under different conditions.

Although our proposed method has already provided a
solution for high-accuracy bridge detection, to further im-
prove the accuracy of bridge detection for better application
in tasks such as traffic management, we will conduct the
related work from the following three aspects.

(1) To improve the generalization ability for the de-
tection of morphologically inconsistent bridges, we
will further expand our dataset through field pho-
tography, web browsing, etc. In addition, we will
perform the collection of bridges in really harsh
imaging environments to further improve the ro-
bustness of bridge detection.

(2) To facilitate the subsequent work of bridge detection,
we will introduce a rotated detection frame to match
the length and width of the bridge as much as
possible. .erefore, we intend to redesign the net-
work to further refine the bridge features under high-
altitude photography. It will be able to improve the
accuracy of small-scale bridge detection.

(3) In the real-world harsh imaging environment, not
only fog and low-light are included, but rainy days
and sandstorms are also key factors affecting the
imaging quality. To be able to adapt to bridge de-
tection in various scenarios, we will develop a bridge
detection model suitable for various harsh imaging
scenarios in practical applications.
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