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Driver fatigue detection (DFD) is an effective method to prevent traffic accidents. (e existing research on DFD using facial
features is an effective and noninvasive fatigue detection method. However, this approach is affected by facial occlusions (glasses,
sunglasses, masks, etc.) and the large facial pose deformations in the extraction of effective fatigue features. In this paper, we
introduce a novel DFD method using human pose information entropy. (e method first estimates human pose from video
sequences and then uses them as clues to extract multiple fatigue-related features which can reduce the influence of facial
occlusion and head pose deformation. Information entropy and sliding window algorithm are applied to analyse and calculate
sufficient consecutive video frames to obtain more robust and accurate fatigue-related values than by using a single frame. (ese
information entropy values are combined resorting to the support vector machine (SVM) to recognize the driver fatigue state.
Experimental results show that the method can achieve much higher accuracy and robustness, and the detection speed meets the
requirements of real time.

1. Introduction

(e World Health Organization (WHO) released “Road
safety” in 2017 and emphasized the number of deaths caused
by traffic has continued to rise. About 3,200 people die in
everyday traffic globally [1]. Many studies have shown that
fatigued driving is an important cause of road accidents. In
the process of fatigue driving, it will cause impairments to
normal driving; therefore, impacting driving performance
and attention which can result in traffic may happen [2].

(erefore, it is necessary to develop advanced driver
assistance systems (ADAS) to reduce road accidents, and the
driver fatigue detection research is significant to improve
road safety. A driver fatigue detection (DFD) system with
good performance can give a warning when the driver is
fatigued and is helpful to prevent road accidents [3].

When the driver is fatigued, the driver’s electroen-
cephalogram (EEG), electrocardiogram (ECG) and skin
conductance, and other neurophysiological signal fluctua-
tions will be quite different from the normal driving state, so
the physiological signal-based DFD method has been widely

studied [4, 5]. Physiological signals can timely and correctly
reflect the fatigue state, but physiological signal acquisition
requires the help of various sensors in direct contact with the
driver, which will affect the driver’s normal operation [6, 7].
(erefore, in the actual driving scene, the practical appli-
cation of this detection method is limited. (e noninvasive
fatigue detection method can effectively avoid direct contact
with the driver. Among them, an example of noninvasive
fatigue detection is using vehicle behaviour metrics since a
measuring device is not required on the driver’s body while
the car’s operation details are observed [8]. (is method can
effectively avoid direct contact with the driver and pay at-
tention to the operation details of the vehicle itself [9, 10].
However, it is possible that in the early stages of drowsiness,
there may be normal operation of the vehicle, and therefore,
the vehicle signal is difficult to timely and accurately reflect
the driver’s actual driving state, and this detection method
takes too much time to detect driver fatigue, and the real-
time performance is insufficient [11]. (erefore, sometimes
the vehicle behaviour-based DFD method only detects the
fatigue state when the driver is extremely sleepy. In addition,
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the computer vision-based DFD method is also a nonin-
vasive detection method. At present, this method mainly
uses facial behaviours (blinking, yawning, and nodding) to
detect fatigue. (is method has a high probability of
reflecting whether the driver is fatigued. Literature [12, 13]
noted that yawning is an indication of fatigue in drivers and
delivered good results in fatigue tests. Among them, the
PERCLOS (percentage of eyelid closure) metric can directly
and effectively reflect the changes of the eye-opening and
closing state [14]. (erefore, this method is widely used in
the research of driver fatigue detection [15, 16]. Bergasa et al.
[17] combined eye and head features including PERCLOS,
eye closure duration, and nodding frequency, and the
driver’s fatigue state was detected using a fuzzy classifier.
Sigari et al. [18] extracted the information related to the eye
region (PERCLOS, eyelid distance change) and face region
(head rotation) and achieved good results in fatigue de-
tection. However, there are still some challenges in the
detection method based on facial features [19], including the
following:

(i) Facial Occlusion. (e challenge of facial occlusion
comes from the fact that when the driver wears
glasses, masks, and other facial occlusions, it will
seriously affect the extraction of key facial features
(such as eye or mouth information), resulting in a
decrease in the performance of the fatigue detection
model.

(ii) Driver’s Head Posture Deformation. (e driver’s head
posture will change at any time during driving.When
the change exceeds a certain angle, facial images
cannot be obtained, which may cause the fatigue
detection model to fail. And when the driver’s head is
nodding, the sleepiness is quite developed, and it is
already too late to detect the driver’s fatigue state.

To solve the problems discussed above, in this paper, we
introduce a novel DFD method using human pose infor-
mation entropy. (e overall framework of our system is
shown in Figure 1.

(e main contributions of this work are as follows:

(1) A novel driver fatigue feature extraction method
based on human pose is proposed, which integrates
the action information of the shoulder, wrist, and
hand using the key points.

(2) (e information entropy theory is introduced to
describe the change of fatigue features. (e amount
of disorder of fatigue feature values over a specified
period will vary depending on the driver’s state.
(erefore, the change of information entropy can
reflect the difference between fatigue and normal
state driving.

(3) Considering the time accumulation characteristics of
the driver fatigue state, we have designed a sliding
window to calculate the information entropy values
of consecutive frames. (e SVM classifier with in-
formation entropy values used as input realizes the
driver’s fatigue state prediction.

2. Related Work

2.1. Vision-Based Fatigue Detection. At present, there have
been many studies on the computer vision-based DFD
method, and many researchers have established fatigue
features using the driver’s facial information or head pos-
ture. Khan et al. [21] detect the curvature of the eyelid and
evaluate the sleepiness based on the correlation between the
curvature and the openness of the eyes. Zhao et al. [22] take
the driver’s head posture as a fatigue feature, count and
analyse the head posture differences between different fa-
tigue states, and then predict the driver’s state. Chen et al.
[23] combine the facial features to predict the fatigue level.
Although the fatigue detection technology using the driver’s
facial features [24–26] can obtain good detection results, the
extraction of facial feature points will be affected by the
driver’s head posture offset deformation or occlusion. We
investigate these problems to find a stable method to extract
key points and more robust fatigue features. At present, the
research on human pose has become a new direction to
study human behaviour, and the extracted human pose
information belongs to the overall feature, which has great
advantages in the robustness of detection and extraction.
(e research on human pose has been widely used in safety
supervision, human-computer interaction, and other fields
[27, 28]. (e study by Bin et al. [29] showed that abnormal
behaviour of the human body is detected based on the
human pose, detects the pose of human behaviour in dif-
ferent scenes, and judges whether human behaviour is in the
abnormal state. In the related field of safe driving, the re-
search on driver attitude has become one of the most im-
portant research directions of ADAS [30]. Dua et al. [31]
consider that some drivers covering their mouth with hands
would lead to wrong judgment of yawning. (erefore, the
change of the driver’s hand posture is integrated into the
fatigue detection method. In the work of Yang et al. [32], a
motion capture system is used to capture the driver’s human
pose trajectory, and the extracted human pose motion data
are used to evaluate the driver’s motion quality during
driving based on kinematics and dynamics analysis.

(rough the research on the application of human pose
information in the field of safe driving, it is found that
human pose data contain rich information that can reflect
the current state of drivers. In addition, the driving fatigue
detection method based on computer vision is a noninvasive
method, which is easier to be accepted by drivers. (erefore,
in this paper, we extract human pose data based on com-
puter vision and take this as the basis of fatigue feature
extraction. We classify and predict the fatigue state by
analysing the changes of the driver’s human pose.

2.2. Fatigue Status Classification Prediction. After the fatigue
feature is extracted, the fatigue state classification prediction
needs to consider the interaction between multiple fatigue
features. (e classifiers are not universal for different fatigue
features. In order to improve the performance of classifi-
cation models, researchers combine a variety of methods to
design the most suitable classifier. Du et al. [33] combined
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heart rate, eye, and mouth to detect driver fatigue and
proposed a new multimode fusion recurrent neural network
(MFRNN), which can combine these three features, and
different time information extraction networks are designed
for different information sources to improve the accuracy.
Ansari et al. [34] used the capture system to monitor the
driver’s head posture movement to measure the driver’s
mental fatigue and drowsiness, and combined with this
fatigue feature, they adopted a new and improved deep
learning network reLU-BILSTM to observe and identify its
related different driving head activity patterns. In a similar
method of using appearance actions to establish fatigue
features, Huang et al. [35] adopted a new multigranularity
deep convolution model called RF-DCM, which integrates
multigranularity extraction, feature recalibration, and fea-
ture fusion used for driver fatigue detection and has better
improvement effects in extraction and classification pre-
diction. Ye et al. [36] proposed an improved method based
on sample entropy and kernel principal component analysis
for fatigue feature extraction. (e SVM classifier is used to
realize the effective recognition of driver fatigue state.

In this paper, the driver’s pose information is selected as
the fatigue feature, and information entropy is introduced to
quantify the amount of disorder of the fatigue feature, and
with that, the driver’s fatigue state is identified by combining
with SVM. In addition, driver fatigue is a continuous

process, and the time change of fatigue feature is very
important for the identification of fatigue driving. In the
study by Ouabida et al. [37], a single frame or fixed frame
was used for fatigue detection, ignoring the time change of
fatigue. (erefore, in the calculation of the fatigue feature
classification, the sliding window is used to extract the
feature change over a while, which can have a better pre-
diction of the driver’s fatigue state.

3. Methodology

3.1. FatigueFeatureExtraction. In this paper, OpenPose [38]
is applied to detect 18 key points of the human body. It takes
an image as input and outputs the two-dimensional coor-
dinates of key points. (e human-skeleton structure located
by OpenPose is shown in Figure 2.

When the driver is driving normally, the driver will
constantly adjust vehicle status according to the road con-
ditions, and even on straight roads, the driver always has to
make some slight rotation in the steering wheel. When
drivers are fatigued, the operating speed of the vehicle slows
down and the range decreases. Consequently, the frequency
and amplitude of changes can reflect the fatigue state of the
driver [39]. When the driver is fatigued, not only drowsy
facial behaviours (blinking, yawning, and nodding) will
occur but also the range of body movements becomes
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Figure 1: (ere are four main steps. First, the OpenPose algorithm is applied to extract skeleton information and detect the key points.
(en, four types of fatigue features (Fright, Fs, F(x, y), and Fleft) are extracted using the key points. Next, information entropy theory [20] is
employed to calculate the entropy value of fatigue features over a specified period. Finally, an SVM classifier is proposed to obtain the fatigue
state.
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smaller and the frequency becomes lower. To study the
relationship between human pose and driver fatigue, this
paper intends to calculate the projected Euclidean distance
of the arms, the area between the arms, and the dispersion
degree of the wrist coordinate using human body key points
and takes them as the fatigue features.(e rest of this section
is the description of extracting fatigue features.

3.1.1. Euclidean Distance of the Arms Projection (Lright and
Lleft). (e driver’s arm posture contains the information of
operating the steering wheel. (e change in Euclidean
distance of the projection of the two arms on the projection
surface can reflect the differences of drivers in different states
(normal or fatigue). In the fatigue state, the Euclidean
distance of arms changes little or remains unchanged be-
cause the driver’s operation slows down or even stops.
Figure 3 shows the movement of the driver’s arm posture.
(e black solid line and the red dashed line are the driver’s
arm posture before and after the body pose change,
respectively.

Based on the driver’s arms movement information, the
key points P2, P3, P5, and P6 are selected to calculate the
Euclidean distance Lright between P2 and P3, and the Eu-
clidean distance Lleft between P5 and P6, which are defined
as (1) and (2).

Lright �

�������������������

x2 − x3( 
2

+ y2 − y3( 
2



, (1)

Lleft �

�������������������

x5 − x6( 
2

+ y5 − y6( 
2



. (2)

(e schematic diagram of the changes of Lright and Lleft

is shown in Figure 4. When the driver is driving normally,
the Euclidean distance of the arms on the projection surface
changes greatly in value. When the driver is fatigued, the
frequency of the arms movement will be reduced, and the
fluctuation of Lright and Lleft is small or even unchanged.

As shown in Figure 4, with the change of the driver
human pose, Lright and Lleft change greatly. Fatigue leads to
slow body pose change, which makes the difference between
Lright and Lleft value change between normal state and fa-
tigue state. (is difference can be reflected in the level of
driver fatigue.

3.1.2. Projected Area between the Arms (S). (e area S be-
tween the arms can be calculated using the four key points
P2, P3, P5, and P6 of the two upper arms as shown in
Figure 5. (e value of S changes with the rotation of the
steering wheel, and the shaking of the body will also affect
the change of S. (e gray and red shadows are the changes in
S caused by the driver’s pose variety.

Swill change with themovement of the arm. As shown in
Figure 5, S and S′ are, respectively, the shape of the area
between the elbows before and after the change. Where S is
calculated by (3)

S �
x3 · y6 + x5 · y3 + x6 · y5 − x3 · y5 − x5 · y6 − x6 · y3


 + x2 · y5 + x3 · y2 + x5 · y3 − x2 · y3 − x3 · y5 − x5 · y2




2
. (3)

3.1.3. Wrist Coordinate Point Dispersion (L(x,y)). When the
driver is driving normally, the wrist moves as the driver
operates the steering wheel, causing the wrist coordinate

point to change across a wide range. During fatigue driving,
body movements become less frequent and have a smaller
amplitude, and the movement frequency and amplitude of
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Figure 3: (e driver’s arm posture movement.
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Figure 2: Key points of the human skeleton.
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the corresponding wrist coordinate point are lower than
when driving normally. P7 is the wrist coordinate point as
indicated in Figure 2. In a period, the wrist coordinate point
set is {(x1, y1), (x2, y2), . . ., (xi, yi)}. (e coordinate dis-
tribution is shown in Figure 6.

According to the coordinate point information, the
dispersion degree of the coordinate point is quantified, and
the fluctuation of the dispersion degree can reflect the
movement of the wrist. First, calculate the center
point (x, y) of the coordinate point set generated in the
time Δt:

x �
 xn

N
,

y �
 yn

N
.

(4)

(en, calculate the distance L(x,y) between each coor-
dinate point and the center point and define it as the wrist
coordinate dispersion as follows:

L(x,y) �

�����������������

xi − x( 
2

+ yi − y( 
2



. (5)

3.2. Human Pose Information Entropy. After extracting the
four groups of fatigue features Lright, Lleft, S, and L(x,y), the
generated fatigue feature data are processed based on in-
formation entropy theory. When the driver’s body pose
changes, resulting in an angle change or a distance variation
from the camera, it will interfere with the result of infor-
mation entropy. With the introduction of the correction
factor, an improved calculation method for information
entropy is proposed so that the human pose information
entropy reaches a better degree of discrimination during
classification training. In the four groups of features Lright,
Lleft, S, and L(x,y), the coordinate information is different
from the other three features, so corresponding methods are
used in the correction calculation.

3.2.1. Lright, Lleft, and S Correction Method

(1) According to the data in the time Δt, the fatigue
features Lright, Lleft, and S are calculated, respec-
tively, and then, the mean values Lright, Lleft, and S of
the period are calculated as follows:

Lleft �
 Lleft

N
,

Lright �
 Lright

N
,

S �
 S

N
,

(6)

where N is the total number of data generated in a
sliding window.

(2) (e correction value f for reducing interference with
Lright, Lleft, and S is obtained by combining the
correction factors ileft, iright, and is with the mean
value of each fatigue feature.

fleft � Lleft + ileft,

fright � Lright + iright,

fS � S + iS.

(7)

(3) Use the correction value to correct each fatigue
feature in Δt time to calculate the final L′, and the
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Figure 6: Wrist coordinate distribution.
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calculation method is given in the following
equation:

Lleft
′ � Lleft − fleft



,

Lright
′ � Lright − fright



,

LS
′ � S − fS


.

(8)

3.2.2. L(x,y) Correction Method

(1) (e correction factor (ix, iy) is added to the center
point (x, y) to yield the correction point (fx, fy).
(e correction point setting formula is shown as
given in the following equation:

fx � x + ix,

fy � y + iy.
(9)

(2) Calculate the distance between each coordinate point
and the correction point in Δt time:

L(x,y)
′ �

�������������������

xi − fx( 
2

+ yi − fy 
2



. (10)

3.2.3. Calculation of Human Pose Information Entropy.
Calculate the data in a fixed sliding window, where n is the
number of fatigue feature data falling into the same interval
in this period, and N is the total amount of data in this
period. When driving with fatigue, the change range of
human pose becomes smaller, and the value of fatigue
feature (Lright, Lleft, S, and L(x,y)) remains unchanged or
changes very little. It leads to a large number of repeated
fatigue feature data, and the information entropy obtained is
relatively low. When the driver is driving normally, the body
moves frequently, causing changes in the fatigue feature
data, which raises the fatigue feature’s information entropy
value.

According to the correction fatigue feature value cal-
culated by (8) and (10), further, calculate the mean value μ
and variance σ and the equal interval Δ and obtain the
information entropy value used to detect fatigue and normal
state.

μ �


N
i�1 Li
′

N
,

σ �

�����������


N
i�1 Li
′ − μ( 

2

N



,

Δ �
μ
σ

.

(11)

Calculate the fatigue features in a sliding window and
divide them equally by (11), that is, (0, Δ), (Δ,
2Δ). . .. . .((i − 1)Δ, iΔ) count the number of data in each set
of sliding windows in distinct equal divisions n and then
insert them into equation (12), (13). p(e) is the proportion of

the quantity dropping in each interval in the entire amount
of data.

p(e) �
ni

N
, (12)

Hp(E) � − 

imax

i�1
p(e)log p(e). (13)

(13) is the information entropy calculation formula.
Different information entropy values are derived from
different fatigue features in this method, and the four in-
formation entropy values are designated as (x1, x2, x3, x4) to
further classifier training and prediction.

3.3.<eClassifier. (e classification algorithm’s content is to
determine the class of features using the extracting features.
In our model, four human pose information entropy are
extracted from the human pose, and fatigue labels are
corresponding to the information entropy. Given a training
data set (X1, y1), (X2, y2), . . ., (Xi, yi) on a feature space, Xi

is the input sample, including the information entropy of
Lright, Lleft, S, and L(x,y), and yi is the label corresponding to
Xi. When y � 1, Xi is called a normal sample, and when
y � 0, Xi is a fatigue sample. We use three classification
methods for comparative experiments, namely, Naive Bayes,
Multilayer Perceptron (MLP), and SVM.

(e experiment establishes a classification model using a
supervised classification approach and performs tests using
three classification methods to verify the method’s accuracy
and select the best classifier.

4. Experiments

4.1. Data Set Acquisition. Currently, the majority of com-
puter vision-based driver fatigue detection technologies
attempt to conduct research focused on the driver’s facial
traits. (e available public data sets are the YawDD data set
[40], NTHU driver drowsiness data set [41], DROZY [42],
etc. Fatigue detection based on facial features alone is limited
and not comprehensive enough for actual application sce-
narios, so it is necessary to mine more fatigue features to
improve detection performance. As we know, the driver’s
pose also contains a wealth of fatigue-related information.
However, there is currently no public data set based on the
human pose for the DFD. (erefore, we construct a driver
data set based on the human pose and carry out experiments
to verify the accuracy and validity of the proposed method.

4.1.1. Hardware and Environment Setting. (e computer
configuration is AMD Ryzen5 4600H CPU with 16G DDR4
RAM, and the graphics card is GTX1650. (e driving
simulation platform is “Euro Truck 2,” and the steering
wheel kit uses the Logitech steering wheel kit, which con-
tains a steering wheel, a manual gear lever, and an adaptive
angle linear pedal. (e camera is positioned on the upper-
left corner of the driver with a fixed height. (e resolution of
video capture is 1280∗ 720. Each video is approximately five
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minutes in length. (e road environment during acquisition
is shown in Figure 7.

4.1.2. Record Information. (irteen healthy subjects (9
males and 4 females), aged 20–50, are selected for two
rounds of driving simulation and video recording. It should
be noted that these selected subjects usually have lunch break
habits. In the process of collecting the data set, the partic-
ipants in the capture drive freely, without being directed, and
the road is not fixed. Each driver maintains their driving
habits such as the range of steering wheel operation and the
way of observing road conditions.

Before data collection, the subjects will understand the
division standard of the Karolinska Sleepiness Scale (KSS)
[43], and the levels of KSS are divided into two catego-
ries—normal state (KSS≤3) and fatigue state (KSS≥7). Since
KSS is a subjective self-evaluated method, subjects’ under-
standing of it will vary from person to person. (erefore, in
order to reduce the misjudgment of mental state caused by
this difference during data collection, the time of data
collection is determined according to the subjects’ sleep
habits. (e first round of data collection is carried out from
8:00 to 9:00 in the morning so that the subjects can get
enough sleep the night before, drive in the self-evaluated
normal state, and collect five minutes of normal-state
driving data. (e second round of data collection is con-
ducted from 14:00 to 15:00. From the end of the first round
to the beginning of the second round, the subjects are not
allowed to take a lunch break, nor did they involve any

refreshing items. When the self-evaluation is fatigued, they
begin to simulate driving and collect driving data under
fatigue. (e recording result is shown in Figure 8:

(e self-built data set contains 28 video samples (22
training and 6 tests). (e training set is divided into 11
positives (fatigue state) and 11 negatives (normal state).

4.2. Driver Fatigue Feature Extraction and Information En-
tropy Calculation. (e purpose of this section is to compare
and analyse the variation range of fatigue features under
different conditions. (e human body key points are located
based on the self-built data set before fatigue feature ex-
traction, and the result is shown in Figure 9:

When the driver is driving in a normal state, he/she can
observe the road traffic situation in time and make driving
responses. When the driver is fatigued, the reaction to the
road situation is relatively slow, and the corresponding
driving action amplitude and frequency become smaller
[44].

(e fatigue features between normal and fatigue states
are compared. Figures 10 and 11 show the values of fatigue
features S and Lright in normal and fatigue states, respec-
tively. Among them, the black line represents the normal
state, and the red line denotes the fatigue state. Since the
fluctuations of Lright and Lleft are similar, we take Lright as an
example here. Figure 12 shows the coordinate information of
the left wrist in normal and fatigue states.

As shown in Figures 10 and 11, it can be seen that there is
a clear difference in the degree of disorder between the

Figure 7: Simulated road environment.
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Figure 8: Samples of our data set.

Figure 9: Human body key points location result.
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Euclidean distance and the area in the two states. When the
driver is fatigued, the magnitude of the change is signifi-
cantly smaller. In the left wrist coordinate comparison chart,
it can also be seen that there is a clear difference between the
dispersion information of the wrist coordinate in the dif-
ferent states. When the driver is fatigued, the overall co-
ordinate information of the wrist is more concentrated.

(is paper uses the sliding window method to calculate
information entropy. (e processing interval is 50 frames,
and the information entropy value is generated every
1.67 seconds according to the camera speed of 30 frames per
second.

(e information entropy will change with the driver’s
movement, but under the interference of some angles or
distance from the camera, the different effect of information
entropy in different states is not obvious. Hence, the cor-
rection factor is introduced to regularize the fatigue feature
value, which can reduce the interference. (e value of the
correction factor will have a greater impact on the result of
the information entropy. After the experimental test on the
value of the correction factor, Table 1 lists the specific value
of the determined optimal correction factor. Figure 13 shows
the change in information entropy before and after the
modification.

From the above results, the interference caused by the
projection is reduced by using the correction factor. (e

discrimination of information entropy is more obvious in
different states. (e information entropy calculated by the
final method can well indicate the driver’s fatigue state.

4.3. Evaluation Index. To evaluate the performance of the
proposed driver fatigue detection method on the self-built
data set, the evaluation index of accuracy, precision, and
recall is used as in the following equation:

Accuracy �
TP + TN

TP + TN + FP + FN
,

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
.

(14)

4.4. Fatigue Detection Result. According to the evaluation
index in Section 4.3, the comparison result among the
different driver fatigue detection classifiers on the data set is
listed in Table 2.

As shown in Table 2, in both training and test, the results
show that SVM and MLP have stronger classification effects
than Naive Bayes. MLP can be used for classification ex-
periments, and the number of neurons can be adjusted to
find the best classification model based on MLP. Increasing
the number of neurons improves the classification effect;
however, when it continues to increase, the classification
performance will decline. When the hidden layer is three
layers of 128 neurons, the classification effect of MLP reaches
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Figure 12: Comparison of wrist coordinates between fatigue and
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the best, and the accuracy reaches 98.30%. SVM can use
different kernel functions to better handle classification
problems such as linear kernel function (T� 0) and poly-
nomial kernel function (T�1), and adjusting the parameter
d in the polynomial kernel function also has an impact on
the classification effect. Many experiments using the SVM
model show that better results will be obtained when the
kernel function is selected as a linear kernel function (t� 0).
(e result of the test set under this classification model
reaches the optimal result, the accuracy reaches 99.35%, and
the accuracy and recall are in the best performance of all

classification results. Figures 14 and 15 show the information
entropy and prediction results in the test set.

(e selected information entropy results have two states:
fatigue and normal state. As shown in Figure 14, comparing
the information entropy results of the two states, the in-
formation entropy in the normal state is significantly higher
than that produced by the fatigue state. (e classification
results in Figure 15 show that the prediction results closely
reflect the driver’s current state, among which the red line
shows the prediction result. (e prediction result produces
wrong results in frames 383–387, and fatigue is predicted as
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Figure 13: When comparison of information entropy changes before and after adding the correction factor, the information entropy result
(H) represents the result before adding the correction factor (red and black broken lines in the figure), while the information entropy result
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the normal state. (e driver’s body pose will shake at a
moment even if tired due to physiological reactions,
resulting in a sudden change in information entropy, and
affecting the classification results. (e result shows that the
information entropy based on the human pose can predict
the driver’s fatigue level well.

4.5. Runtime Performance. According to the hardware en-
vironment listed in Section 4.1.1, an experiment is carried
out on the test set to calculate the runtime of the proposed
DFD method (Table 3)

It can be seen that a single detection requires a total of
41.874ms, and the detection speed can reach 23.88 FPS.
Consequently, the proposed detection method has a good
runtime performance and canmeet the requirements of real-
time fatigue detection.

5. Discussion

5.1. Selection of Fatigue Feature. We propose a method using
human pose information entropy to recognize driver fatigue,
and we combine the information entropy of four fatigue
features for classification, which differs from the result of
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Table 2: Fatigue detection results among different classifiers.

Classifier Setting
Accuracy (%) Precision (%) Recall (%)

Train set Test set Train set Test set Train set Test set
BAYES — 90.13 89.36 88.51 87.56 91.63 88.53

MLP

(32, 32) 96.3 98.1 95.51 98.23 98.62 97.53
(64, 64) 96.4 97.85 95.68 98.12 98.31 97.43
(128, 128) 96.7 98.1 94.64 98.21 98.73 97.45
(32, 32, 32) 98.32 98.01 97.91 97.42 98.83 99.21
(64, 64, 64) 98.46 98.13 97.93 97.47 98.87 99.13

(128, 128, 128) 98.70 98.30 98.11 97.50 98.98 99.23

SVM
T�1, d� 10 95.07 95.75 93.39 94.32 96.95 97.20
T�1, d� 8 94.30 94.22 92.87 93.71 95.93 94.91

T� 0 98.81 99.35 99.23 98.98 98.61 99.49
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fatigue classification based on only a single feature. (e
fatigue detection accuracy of different features is shown in
Table 4.

(e experimental result shows that using only H(Lleft)
and H(Lright) for fatigue detection, the accuracy is lower,
74.45% and 69.19%, respectively. Using H(S), Hv(x, y) can
get higher detection accuracy. After the fusion of the in-
formation entropy of four fatigue features, the overall ac-
curacy is increased to 99.35%. (is is because the driver’s
body movements during driving are complicated, and the
overall pose needs to be considered. Each fatigue feature
changes with the driver’s pose during driving, and different
fatigue features vary in different periods. (erefore, the
fusion of multiple fatigue feature information entropy can
effectively improve the accuracy and robustness of fatigue
detection.

5.2. Correction Optimization. In this paper, the correction
factor is introduced to the optimal calculation of the fatigue
feature information entropy. (e calculated information
entropy has a higher degree of difference between fatigue
and normal state. At the same time, the information entropy
before and after correction also has a great impact on the
classification results. We resort to the information entropy
results before and after correction to classify the fatigue state.
When all classification parameters are kept the same, the
results are shown in Table 5:

(e arms are one of the most active components of the
human body when the vehicle is operating regularly. (e
projection of the arm on the plane will fluctuate with the
driver’s driving action, and the area between the arms and
the dispersion of wrist coordinates will also change.
(erefore, according to the changing trend of these four
characteristics, they are selected as fatigue features. How-
ever, during the calculation process, the uncorrected fatigue

features will interfere with fatigue prediction results. After
the correction factor is added, the interference can be re-
duced and the classification result between fatigue and
normal can be optimized. When uncorrected data are used
for classification, the accuracy is only 90.68%, but when
corrected data are used for classification, the accuracy is
improved by 8.67%. (e results show that the corrected
calculation method is more effective in driver fatigue
detection.

5.3. Comparison. (is paper proposes a human pose in-
formation entropy-based DFD method and evaluates it on a
data set. Table 6 shows the result of the proposed method
compared with other methods.

Due to a limitation of research on the DFD using the
human pose and the limited content that can be utilized for
comparison, the latest fatigue detection method has been
chosen for comparison and analysis in this paper.(e fatigue
feature of the chosen approach combines multiple features
of the face and heart rate, expression, and head posture.

(e stability of the process of extracting fatigue features
is significant for detecting driver fatigue. (e facial feature is
prone to fail to detect feature information when the driver’s
face is covered (such as wearing sunglasses or masks).
According to the comparative experiment, facial occlusion
affects the extraction of fatigue features and the accuracy of
driver fatigue detection. Although the head posture-based
DFD method is unaffected by face obstructions when the
driver’s head posture is deformation, certain key points
information will be lost, decreasing the accuracy and ro-
bustness. (is paper detects the fatigue state using the
human pose information, and the facial mask or head
posture movement will not affect the detection process,
making it more robust than the approaches mentioned
before.

Table 3: (e time statistics of the proposed DFD method.
Pose detection 38.657ms
Fatigue feature extraction 0.521ms
Information entropy calculation 2.681ms
SVM classification 0.015ms
Total time 41.874ms

Table 4: Classification accuracy of different features.

Feature Accuracy (%)
H(Lright) 69.19
H(Lleft) 74.45
H(S) 95.25
H(x, y) 98.45
All combined 99.35

Table 5: (e effect of the correction factor on the result.

Adjustment Accuracy (%) Precision (%) Recall (%)
Before 90.68 90.17 93.11
After 99.35 98.98 99.49
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Driver fatigue is a sequential process. Huang et al. [35]
use a single frame or a set frame to detect the fatigue state.
Although the approach achieves high accuracy, it is a
transitional problem to ignore fatigue when judging the
fatigue process. (is paper considers the importance of the
time change of fatigue feature for the identification of fatigue
driving because the final classification prediction is a
quantifiable process, and it has a higher performance in
properly predicting the driver’s state.

In addition, in the comparison of these works, this paper
applies the mathematical theory of information entropy to
fatigue features and uses the disorder degree of the fatigue
feature as the final fatigue evaluation index.

6. Conclusion

(is paper proposes a DFD method using human pose
information entropy. (is method extracts fatigue features
from the driver’s human pose, avoiding interference from
the driver’s face occlusion and head posture deformation.
(e theory of information entropy is used to quantify the
fatigue feature after it has been extracted. (e fatigue fea-
ture’s quantified information entropy value represents the
fatigue feature’s disorder degree with time, which is more
suitable for subsequent classification prediction. Finally,
SVM is used to classify and predict the results of information
entropy. (e experiments have constructed a driver fatigue
detection data set, and the efficiency of the proposed method
is proved on the self-built data set. (e results show that the
human pose-based DFD method can accurately predict the
driver’s fatigue state and has high detection accuracy and
robustness. However, when the driver drives with one hand,
it will affect the accuracy of the proposed method. Future
research should study this problem to make this method
applicable to more drivers with different driving habits as
much as possible. In addition, this work will study how to
solve the problem of the effect of light change on fatigue
detection. At the same time, it is considered to fuse facial
information with human pose to further improve the per-
formance of driver fatigue detection.

In the future, the method will seek cooperation or funds.
In addition to improving KSS-based self-evaluation, the
driver’s EEG, ECG, and other signals will be collected to
formulate more accurate and suitable fatigue standards. And

then, the driver fatigue test experiment will be conducted in
combination with the new state standard to compare with
our test results so as to improve our method and make the
driver fatigue test results based on human posture infor-
mation entropy more accurate. In order to support deeper
research, the data set collection scheme will be further
optimized (e.g., sleep restriction) to induce the driver to
experience a fatigued state closer to the real driving scene.
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