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Taxis play a critical role in public traffic systems, and they deliver myriad travelers with convenient service due to temporal-spatial
availability. However, anomalous trajectories such as trip fraud often occur due to greedy drivers. In this study, we propose an
anomalous trajectory detection method that incorporates Route Choice analysis into Masked Autoregressive Flow, named
MAFRC-ATD. *e MAFRC-ATD integrates data-driven and model-based methods. First, we divide the urban traffic network
into small grids and represent subtrajectories with a sequence of grids. Second, based on the subtrajectories, we employ the
MAFRC-ATD model to calculate the anomaly score of each trajectory. *ird, according to the anomaly score, we can identify the
anomalous trajectories and distinguish between intentionally and unintentionally anomalous. Finally, we evaluate our method
with a real-world dataset in Porto, Portugal. *e experiment demonstrates that the MAFRC-ATD can effectively discover
anomalous trajectories and can identify the unintentional detours due to traffic congestion.

1. Introduction

Taxis provide convenient and available services for a mul-
titude of urban passengers. However, passengers may be
victims who are overcharged deliberately by greedy drivers.
Two examples are as follows.

Example 1. Many people, mostly tourists, are victims of
taxi-driving frauds committed by greedy taxi drivers who
overcharge passengers by deliberately taking unnecessary
detours [1]. In New York City, nearly 1.1 million dollars have
been overcharged due to 21,819 taxicab drivers swindling
money out of customers arbitrarily [2].

Example 2. Car hailing is a combination of the Internet and
sharing economy, fundamentally changing the way people
travel. However, car-hailing platforms lower employment
requirements and increase effective supply, bringing safety
and economic risks. *e risk of overcharging, leaking per-
sonal information, or even crimes [3] could occur due to its

strong characteristics of a “stranger economy.” *us, to
avoid potential crises, scouring the potential anomalous
behaviors from historical record data of cabbies is prohib-
itively crucial.

To tackle this issue, collecting the GPS traces and dis-
covering the anomalous trajectories from the sheer volume
of data is an effective approach. *e rapid advances in big
data and machine learning grant us an unprecedented op-
portunity to detect anomalous trajectories via the trace data
of moving objects.

Anomalous trajectory detection has attracted extensive
research attention. Recently, with the proliferation of deep
learning and deep generative models (DGMs), anomalous
trajectory detection methods based on deep learning have
made remarkable progress in recent years. However, the
existing methods are usually faced with the following
challenges:

Spatiotemporal information for DGM: as a branch of
deep learning, deep generative models are employed to
identify anomalous trajectories by reconstruction error.
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However, most deep generative models [4–7] are dif-
ficult to directly capture sequential information of
trajectory data.
Unintentional anomalous trajectory: mostly, drivers
may take unintentionally anomalous detours with their
experience to avoid traffic congestion. *e experience
of drivers, particularly, is crucial for route recom-
mendations when traffic congestion occurs. However,
traditional anomalous trajectory detection methods
seldom consider mining this unintentionally anoma-
lous trajectory pattern.

We take an unintentional anomaly for instance. As
shown in Figure 1, there are two trajectories denoted as t1
and t2. Obviously, t1 is normal, whereas t2 seems to take a
detour trace. However, the travel time of t1 is similar to the
travel time of t2, suggesting that the driver of t2 may take a
detour to reduce the travel time if traffic congestion or a
traffic incident occurs. In real life, this unintentional
anomaly is critical to route recommendations for traffic
congestion.

To mitigate the above problems, this study proposes a
framework that integrates the route choice model in the
masked autoregressive flow (MAF), which is one framework
of DGMs. Our key insight is that anomalous trajectory
detection can be transformed into a distribution estimation
task. MAF can fully capture the sequential information of
trajectory data by leveraging the autoregressive mechanism
and ought to assign the low probability density at the
anomalous trajectory (i.e., the likelihood). On the contrary,
to capture the actual route choice behavior, the route choice
model is applied to distinguish unintentional anomalies due
to traffic congestion or traffic incident. When traffic incident
or traffic congestion occurs, people will normally take other
routes which may be longer in distance, to avoid congestion
or incident. Henceforth, the route choice model can suc-
cessfully mine the patterns of unintentionally anomalous
trajectories through the choice probability of corresponding
routes.

In a nutshell, this study proposes an anomalous tra-
jectory detection method based on masked autoregressive
flow considering route choice analysis, named MAFRC-
ATD. First, we extract valid trajectories from the historical
dataset and split the traffic network into equal-sized grids;
hence, subtrajectories can be represented with a sequence of
grids. Second, we employ the MAFRC-ATD model to cal-
culate the anomaly score of each trajectory through the
likelihood of subtrajectories and the choice probability of the
corresponding route. Finally, according to the anomaly
score, each trajectory can be determined whether it is
anomalous and, if anomalous, which type of anomalous
trajectory it belongs to.

Overall, the contributions of this study can be summarized
as follows.

We propose an unsupervised framework based on
normalizing flow, which takes advantage of the

spatiotemporal information and autoregressive char-
acteristics of trajectories.
To explore the unintentional anomalies, we incorporate
the route choice model in the normalizing flow. As
such, we develop a method MAFRC-ATD which in-
tegrates the data-driven and model-based method. In
MAFRC-ATD, the route choice model is exploited to
distinguish the unintentionally anomalous trajectories
due to traffic congestion or traffic incident.
We evaluate the proposed method in a real-life dataset
in Porto, Portugal. *e results show that the MAFRC-
ATD model can effectively discover anomalous tra-
jectories and successfully discover unintentional tra-
jectories due to traffic congestion.

*is study is organized as follows. Section 2 briefly reviews
the related work. Problem formulation and proposed
methodology are introduced in Section 3. In Section 4, we
evaluate our model with a real-life dataset and analyze the
results. Section 5 concludes this study and outlines the future
scope.

2. Related Work

In this section, we will give a brief literature review on
anomalous trajectory detection, the probability density es-
timation with the flow-based model.

2.1. Anomalous Trajectory Detection. Trajectory anomaly
detection methods can be divided into statistic-based,
cluster-based, grid-based, classification-based, and deep
learning methods.

2.1.1. Statistic-Based Method. With the help of the popular
routes, Zhu et al. [8] proposed time-dependent popular
routes-based trajectory outlier detection (outlier is also re-
ferred to as anomaly detection in this study) method,
considering both spatial and temporal anomalies

Figure 1: An illustration of trips traversing from Porto cathedral to
Clérigos church.
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simultaneously. Liu et al. [9] found that top drivers were
better at finding the fastest route than ordinary drivers.
However, these algorithms mainly focus on the geometric
information of trajectories and neglect semantic informa-
tion. *us, Qin et al. [10] proposed the ProbDetect model,
which transforms anomaly detection problems into a route
choice problem considering semantic information such as
trip time and fare, as well as traffic variability. In addition,
Kong et al. [11] employed a statistical model to calculate the
travel distribution of travel time, driving distance, and travel
cost, making it possible to explore the reason for outlier
trajectories.

2.1.2. Cluster-Based Method. Knorr and Ng [12, 13] and
Knorr et al. [14] applied the distance-based algorithm to
detect trajectory anomalies in multidimensional multiscale
space. However, “few” anomalies may be averaged over the
whole trajectories’ dataset. Based on subtrajectories, Lee
et al. [15, 16] proposed TRAOD, which includes two phases:
partitioning a trajectory into a set of line segments and then
detecting outlying line segments. In addition, Bu et al. [17]
and Yu et al. [18] built local clusters and neighbor-based
trajectory outliers, respectively, to discover the outlier of
trajectory streams. In contrast to the above distance-based
mechanism, Wang et al. [19] proposed an anomalous tra-
jectory detection method based on edit distance and hier-
archical clustering, which was employed to determine the
number of clusters.

2.1.3. Grid-Based Method. Ge et al. [20] proposed an al-
gorithm Top-Eye, where the continuous data space was
discretized into grids. Later, Ge et al. [21] applied travel route
evidence and driving distance evidence to the trip fraud
detection system, finding that the fraudulent drivers do earn
more income than drivers without scams. Additionally,
Kong et al. [22] proposed the LoTAD method to mine
anomalous regions, where the center of each region and the
region’s boundary were determined by the improved
k-means method and the Voronoi graph while conforming
to traffic conditions. Wang et al. [23] proposed a detection
method based on the difference and intersection set (DIS)
distance.

Inspired by the isolation mechanism [24] that the
anomalous trajectories are susceptible to being isolated,
iBAT [25] was proposed to identify the anomalous trajec-
tories. Based on iBAT, Chen et al. [26] and Sun et al. [27]
proposed the online model iBOAT and application,
respectively.

2.1.4. ClassificationMethod. Motion-alert algorithm [28, 29]
leveraged the support vector machine (SVM) to learn the
features of the extracted pattern motif, which are a sequence
of motion features related to time and location. Similarly,
Piciarelli and Foresti [30] employed a single-class SVM, and
then, Piciarelli et al. [31] introduced the clusteringmethod to
improve the robustness.

2.1.5. Deep Learning. With the development of the neural
network, some researchers have employed deep learning
methods, such as recurrent neural networks (RNN) [32, 33],
to discover anomalies. Generative models were widely
employed to discover anomalous trajectories. GM-VSAE
method [34] and IGMM-GANmethod [4], for instance, can
be applied to uncover outliers in the latent space. In ad-
dition, Dias et al. [35] proposed a method using an NF
scheme, effectively discovering anomalies in contrast to the
GMM method. However, it might be unreasonable to di-
rectly flatten multidimensional trajectory data into one
dimension and unpractical to evaluate the model in bus data
since buses might take bypass routes as well.

2.2. Probability Density Estimation with the Flow-Based
Model. Many tasks in machine learning, including
anomalous trajectory detection, can be formulated as
learning and manipulating density distribution. *e
problem of modeling a probability distribution from a set
of given samples is a major goal of probabilistic unsu-
pervised learning or generative modeling [36]. A generative
model ought to assign low likelihoods to samples from
different distributions, making it attractive to anomaly
detection methods.

Generative modeling has undergone tremendous ad-
vances in recent years, such as generative adversarial net-
works (GANs) [37] and variational auto-encoders (VAEs)
[38]. Recently, NF methods have improved dramatically.
Contrary to the GANs and VAEs, NF methods offer an exact
density evaluation of probability density. NF was defined in
Tabak and Vanden-Eijnden [39] and Tabak and Turner [40]
and later popularized by Rezende and Mohamed [41] and by
Dinh et al. [42]. NF methods can be divided into autore-
gressive flows, linear flows [43], residual flows [44–46],
planar flow [41], Sylvester flow [47], and infinitesimal flows
[48]. Among these flows, autoregressive flows remain the
most popular.

Regardless of its wide application nowadays, autore-
gressive architecture was even overlooked in previous work
[49] due to the huge cost of high dimensionality. To alleviate
this problem, several approaches have been proposed, in-
cluding recurrent mechanism, masked mechanism, and
coupling layer. Recurrent mechanism [50] shares parameters
by jointly using an RNN. *e main drawback of the RNN-
based mechanism is that the internal state of RNN is cal-
culated sequentially, with higher computational complexity
than the other two mechanisms. *e masked mechanism
[51] uses a feedforward neural network and removes ap-
propriate connections by multiplying a binary matrix.
However, masked mechanism MAF is efficient to evaluate,
but slower to invert, indicating that MAF is appropriate to
estimate density probability. Coupling layers [42], which
splits the input into two disjoint partitions that the first part
stays the same as the input and the second part undergoes an
affine transformation, which are equally fast to evaluate the
probability density and invert for sampling (sampling from
the model and evaluating the model’s density are two in-
vertible operations for normalizing the flow model).
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2.3. Route Choice Model. Route choice modeling is essential
to evaluate travelers’ choice perception within a set of al-
ternative routes, helping analyze and understand travelers’
behavior [52]. Generally, a route choicemodel has two stages
[53]: first is the choice set of possible alternative routes and
second is the choice probability of a path, given the route
choice set [54, 55]. Route choice models mainly include logit
structures [56], GEV structures [57], and non-GEV struc-
tures [58].

3. Problem Formulation

Problem formulation is as follows.

3.1. Problem Definition and Framework. Problem definition
and framework is described in the following secions.

3.1.1. Problem Definition. As stated by Agrawal and Agrawal
[59], the goal of anomaly detection is to find data patterns
that differ from what is expected. In our work, such un-
expected patterns are related to trajectories sufficiently
different from the majority which is considered to be
normal, such as detour traces. *e definitions of this
anomalous trajectory detection problem are as follows.

Definition 1 (trajectory). A raw trajectory
T � q1, q2, . . . , qn  is a sequence of records, and each
recorded qi is represented by (loni, lati), where (loni, lati) is a
pair of latitude and longitude coordinates. q1 and qn are the
origin and destination of the trajectory T, respectively.

Definition 2 (anomaly). Anomaly is data that are different
from others in the dataset, making people assume that the
outlier of these data is not caused by random factors, but by a
completely different mechanism [60].

Definition 3 (anomalous trajectory). Given an OD pair, we
assumed that there are a set of trajectories whose pick-up
locations and drop-off locations are the origin and desti-
nation respectively. Let D � T1, T2, . . . , TM  denote this set
of trajectories, where the anomalous trajectory is signifi-
cantly different from the majority in this OD pair.

Definition 4 (unintentionally anomalous trajectory). *e
unintentionally anomalous trajectory is an anomalous tra-
jectory in a spatiotemporal pattern, which is caused by
travelers’ unintentional detours to avoid traffic congestion.

3.1.2. Overview of the Methodology. To achieve the goal of
anomalous trajectory detection, we propose the MAFRC-
ATD model, and the methodology is shown in Figure 2.

In detail, we first deal with treating the raw trajectories in
the following procedures: (1) removing the invalid trajec-
tories, (2) discretizing the traffic network into equal-sized
grids (that is grid mapping), (3) extracting all traces crossing
the same OD cell pairs, and (4) partitioning trajectories into
subtrajectories.

Based on the subtrajectories, we employ the MAFRC-
ATD to discover anomalies. *e anomaly score of each
trajectory can be computed through the likelihood of sub-
trajectories and the choice probability of the corresponding
route.

Finally, according to the anomaly score, each trajectory
can be determined whether it is anomalous and, if anom-
alous, which type of anomalous trajectory it belongs to.

3.2. Data Preprocessing. As stated in Section 1, data pre-
processing mainly includes two phases: grid mapping and
partitioning trajectories into subtrajectories.

3.2.1. GridMapping. As shown in Figures 3(a) and 3(b), grid
mapping is to split the city traffic network into small grids. In
detail, for given Nlon and Nlat, the urban traffic network can
be split into Nlon × Nlat equal-sized grids. Consequently,
each taxi trajectory Tk � qk,1, qk,2, . . . , qk,i, . . . , qk,n  can be
represented with a sequence of traversed grids
Tk � t1, t2, . . . , ti, . . . , tn , where ti � g(qk,i, Nlon, Nlat) and
g is a grid mapping function.

3.2.2. Partitioning Trajectories. As discussed by Lee et al.
[15], the difference between anomalies and normal trajec-
tories might be averaged out over the whole trajectory. To
alleviate this problem, trajectories are segmented with
subtrajectories. A trajectory Tk � t1, t2, . . . , ti, . . . , tn  can
be partitioned with equal d-length sized subtrajectories as
follows:

Ω Tk( : s1, s2, . . . , st, . . . , sl , (1)

whereΩ(Tk) is a set of continuous subtrajectories and sl can
be completed as last d-length GPS points. *us, we can
obtain the set of subtrajectories Ω(T) regarding this OD.

3.3. Masked Autoregressive Flow. As stated in Section 1, the
anomalous trajectory detection problem can be formulated
as the probability density estimation problem. NF ought to
assign low likelihoods to data from different distributions,
making it possible to discover anomalies with low-likelihood
predictions. MAF is applied to detect anomalous trajectories
as follows.

NF pushes an initial density (such as normal distribu-
tion) through a series of transformations to produce a richer
distribution with more expressive power than the constit-
uent components of these transformations [51]. Assuming
that s is a d-length subtrajectory and u is the d-dimensional
random variable of the base distribution pu(u), then s can be
represented through the transformation F:

s � F(u), (2)

where u ∼ pu(u), and the transformation F must be dif-
ferentiable and invertible. *en, the density of s, i.e., p(s),
can be calculated as follows:

p(s) � pu F
− 1

(s)  detJF− 1(s)


, (3)
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where the inverse of differentiable transformation F− 1 and
Jacobian determinant |detJF− 1(s)| can be implemented by
MAF.

Since the spatiotemporal autoregressive character of s,
p(s) can be decomposed into a product of conditional
densities using the chain rule of probability:

p(s) � 
d

h�1
p sh ∣ s1, s2, . . . , sh− 1(  � 

d

h�1
p sh ∣ s1: h− 1( .

(4)

Assume that conditional distributions p(sh ∣ s1: h− 1) are
parameterized as single Gaussian:

p sh ∣ s1: h− 1(  � N sh ∣ μh, exp αh( 
2

 , (5)

where μh � fμh
(s1: h− 1) and αh � fαh

(s1: h− 1), for
h � 1, 2, . . . , d. Specifically, fμh

and fαh
are unconstrained

scalar functions that compute the mean and log standard
deviation given all previous variables, and both two scalar
functions are estimated by Germain et al. [61]. *e hth

dimension of subtrajectory, i.e., sh, can be sampled from the
base distribution:

sh � uh exp αh + μh, (6)

where uh ∼ N(0, 1). *us, the invertible transformation F is
easy to access as follows:

uh � sh − μh( exp − αh( , (7)

where the absolute determinant of the Jacobian matrix is

detJF− 1(s)


 � det
zF − 1

zs
 




� exp − 

h

αh
⎛⎝ ⎞⎠. (8)

*erefore, p(s) can be successfully evaluated through
(3), where the inverse transformation and its Jacobian de-
terminant can be calculated by (6) and (8)

After calculating the likelihood of subtrajectories, the
likelihood of the whole trajectory can be calculated as fol-
lows. For any trajectory Tk, the likelihood of the
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Figure 3: An illustration of grid mapping. t1 to t3 are shown in Figure 2 (a) An illustration of t1 to t3. (b) Grid mapping.
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corresponding subtrajectory p(st) can be obtained via the
aforementioned process, and the likelihood of trajectory Tk

can be defined as the mean value of the p(st), i.e.,

p Tk(  �
1
l



l

t�1
p st( ( , (9)

where t � 1, 2, . . . , l.

3.4. Route Choice Analysis. As mentioned above, we have
detected anomalous trajectory with the MAF method,
mostly using geometrical information and sequential in-
formation. However, in the real world, anomalous trajec-
tories may occur due to lots of factors, such as travel time
and traffic conditions. As described in Section 1, detours can
be unintentionally generated by drivers whose intentions are
to avoid traffic congestion to reduce trip time during peak
hours. Apparently, it is extremely crucial to explore this
route choice motivation behind anomalous behaviors.
However, modeling the motivation behind the choice be-
havior could be problematic due to the complicated traffic
conditions of the road network. *e impact of traffic control
regulation at an intersection on the Network Macroscopic
Fundamental Diagram (NMFD) [62, 63], for example, could
also influence the aggregate traffic conditions of the road
network. In this study, following Qin et al. [10], we adopt a
random utility model based on a multivariate Gaussian
model to explore the motivation behind the random choice
behaviors.

Assumed there are a set of trajectories
D � T1, T2, . . . , TM  for each pair of OD,
C � C1, C2, . . . , Cm  is a set of choice routes that all distinct
trajectories pass through in this OD. For any route Cj in the
route choice set C, LCj

and TCj
are its travel length and trip

time, and the generalized cost is

GCj
� LCj

+ cTCj
, (10)

where c is the velocity equivalent coefficient, which can be
interpreted as the trip length value for a unit of the trip time.
*e choice probability of the route Cj can be defined as a
vectorized form:

pCj
� P(Z≤ 0), (11)

where Z is the difference of generalized cost, i.e.,
Z � (Gcj

− Gc1
, . . . ,Gcj

− Gcm
)T, and Z and 0 are both

R(m− 1)×1 vectors. *us, pCj
can be calculated by the integral

of the probability density function for Z:

pCj
� 

0

− ∞
. . . 

0

− ∞

exp − (1/2) Z − μZ( 
⊤Σ− 1 Z − μZ(  

����������

(2π)
m− 1 ΣZ




 dZ,

(12)

where μZ and ΣZ are the mean vector and covariance matrix
of Z. To calculate μZ and ΣZ, Z are further decomposed into
as follows:

Z � AU⊤, (13)

where A �

− 1 · · · 1 · · · 0
0 · · · 1 · · · 0
⋮ ⋱ ⋮ ⋱ ⋮
0 · · · 1 · · · − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(m− 1)×m

and

U � [GC1
,GC2

, . . . ,GCm
]. *us,

μZ � AμU,

ΣZ � AΣUA
T
,

⎧⎨

⎩ (14)

where μZ and ΣZ can be derived by μU and ΣU. Obviously,

μU � μGC1
, μGC2

, . . . , μGCm
 , (15)

and ΣU is

ΣU �

cov GC1
,GC1

  cov GC1
,GC2

  · · · cov GC1
,GCm

 

cov GC2
,GC1

  cov GC2
,GC2

  · · · cov GC2
,GCm

 

⋮ ⋮ ⋱ ⋮

cov GCm
,GC1

  cov GCm
,GC2

  · · · cov GCm
,GCm

 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(16)

Furthermore, ΣU is given by

ΣU �

σ2C1
σ2C1∩2

· · · σ2C1∩m

σ2C2∩1
σ2C2

· · · σ2C2∩m

⋮ ⋮ ⋱ ⋮

σ2Cm∩1
σ2Cm∩2

· · · σ2Cm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (17)

where σ2Ci∩j
is the variance of Ci∩j which reflects the over-

lapped portion of two routes Ci and Cj, and Ci and Cj are
arbitrary routes in route set C, for i, j � 1, 2, . . . , m.

In this way, the choice probability of the route Cj can be
obtained by equation (12) by substituting equations (15) and
(17) into equation (14).

3.5. Anomaly Score. As described in Section 1 and Section
3.1, the MAFRC-ATD model integrates the data-driven
learning and route choice model.*ereby, the anomaly score
is designed to combine the two aspects as follows.

*e likelihood of a given trajectory and the route choice
probability of the given trajectory can be calculated in
Sections 3.3 and 3.4. For a given OD pair, we assumed that
Cj is the corresponding route of trajectory Tk, p(Tk) and pCj

are the likelihood of Tk and choice probability of route Cj

respectively, and an anomaly score E(Tk) is defined as

E Tk(  � − pCj
−
1
m
ξ  · sigmoid log p Tk( (  + 1, (18)

where m is the number of all routes for this OD pair and ξ is
the coefficient of unintentionally anomalous. In (18), sig-
moid (·) is a sigmoid function, i.e.,
sigmoid(x) � (1/1 + e− x), and is monotonically increasing
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with outputs in the range 0 to 1. Obviously, pCj
and p(Tk) of

normal trajectories are higher than anomalous trajectories.
Assuming that threshold δ is applied to decide whether

the trajectory is anomalous, there are three cases.

When E(Tk)≥ 1, i.e., pCj
− (1/m)ξ ≤ 0, Tk is likely to be

an intentionally anomalous trajectory
When E(Tk) <1 and E(Tk)≥ δ, Tk can be categorized
as unintentionally anomalous trajectory
When E(Tk) >0 and E(Tk)< δ, Tk can be regarded as a
normal trajectory

4. Case Study

In this section, we will evaluate our MAFRC-ATD model
using the real-world dataset and present the results as well as
discussions of experiments.

4.1. Experimental Setup

4.1.1. Dataset Preprocessing. Our experiments are conducted
on the real-world taxi trajectory dataset provided by Kaggle
ECML-PKDD 2015 competition (https://www.kaggle.com/
c/pkdd-15-predict-taxi-service-trajectory-i/data). In detail,
the dataset is generated from 442 taxis running in the city of
Porto from 01/07/2013 to 30/06/2014.*ere are 1710670 raw
trajectories in total and each taxi reports its location every 15
seconds.

Out of approximately 1.7 million trajectories from the
original dataset, we remove the trajectories with less than 20
GPS. After filtering, we split the city traffic network space
into 100m × 100m grids, i.e., gl � gw � 100m. Consequently,
GPS points can be represented with grids and each trajectory
can be denoted by a sequence of grids. Subsequently, we
extract 4 OD pairs, denoted as OD1 to OD4, respectively. In
this study, we segment a trajectory into subtrajectories with
20 GPS points, that is, d � 20. Given the fact that there is no
labeled dataset available, we choose to manually label
anomalies in this paper.

Additionally, inspired by Liu et al. [34], to alleviate the
problem of unbalanced learning in anomaly detection, we
select several detour paths from which anomalous trajec-
tories are generated. *e detour paths, called generated
routes, traverse the real-world links and are implemented in
ArcGIS and Google maps. Among the generated routes,
generated anomalous trajectories can be generated through
sampling from the GPS points of generated routes. *e
generated anomalous trajectories are injected into the
original dataset for “data argument.”

As stated above, the related information of those OD
pairs is shown in Table 1, where O and D are represented
with (longitude and latitude), and each OD pair can be
shown in Figure 4. Out of all testing trajectories, the coral
color lines represent the original historical dataset in the
testing dataset, whereas other colors represent the generated
routes from which the generated anomalous trajectories are
sampled.

4.1.2. Baseline. In this study, we will evaluate our model
compared with the following methods.

iBAT [25]: iBAT exploits an isolation mechanism that
anomalous trajectories are susceptible to, i.e., anoma-
lies are easy to be separated from the majority of the
trajectories since anomalies are “few and different.” It is
more likely to be anomalous for a higher anomaly
score.
ATDC [23]: ATDC proposes a distance metric, namely,
the DIS distance, to evaluate the similarity between any
two trajectories. Based on the DIS distance, ATDC can
further calculate the anomalous score of a trajectory
and then determines if it is an anomalous trajectory.

4.1.3. Evaluation Criteria. In this study, we employ the area
under the receiver operating characteristic curve (AU-ROC)
as the evaluation metric. To evaluate the performance of the
anomaly detection method, detection rate (DR) and false
alarm rate (FAR) (in this study, we refer to true positive rate
(TPR) and false positive rate (FPR) as detection rate and false
alarm rate respectively) are two important metrics. As
shown in the confusion matrix Table 2, trajectories are la-
beled either as anomalous (i.e., positive) or normal (i.e.,
negative).

A trajectory will be classified as one of our possible
outcomes: (1) true positive (TP): an anomalous trajectory is
correctly predicted as anomalous; (2) false positive (FP): a
trajectory is predicted as anomalous while it is normal; (3)
false negative (FN): a trajectory is predicted as normal while
it is anomalous; (4) true negative (TN): a normal trajectory is
correctly predicted as normal. *e DR measures the rate of
correctly predicted anomalous trajectories among all real
anomalies, i.e.,

DR �
TP

TP + FN
. (19)

*e FAR is defined as the proportion of normal tra-
jectories that are predicted as anomalous, i.e.,

FAR �
FP

FP + TN
. (20)

*e better anomaly detection method will have a higher
DR and a lower FAR. *e ROC curve shows the detection
rate (Y-axis) against the false alarm rate (X-axis) at various
thresholds, which depicts the tradeoff between false alarms
and accurate classifications. AU-ROC value is the area under
the ROC curve, and the anomaly detection method is of
better quality for higher AU-ROC.

4.2. Results

4.2.1. Performance Evaluation on Anomalous Trajectory
Detection. We evaluate the results on OD pair with the
above baselines. Taking the instance of OD2, the results of
anomalous trajectory detection in OD2 are shown in Fig-
ure 5. As shown in the figure, the MAFRC-ATD model
shows the highest detection rate under a given false alarm
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rate, indicating that it can effectively detect the anomalies.
Similarly, the MAFRC-ATD model possessed of the lowest
false alarm for a given detection rate, indicating that it has
less potential for mistaken detection. For the overall curve,
the ROC curve of the MAFRC-ATD model covers other the

other two curves, suggesting that the MAFRC-ATD method
performs better and has expressive power on anomalous
trajectory detection.

To explore the influence of anomalous trajectory de-
tection on different OD pairs instead of a given OD pair, we

Table 1: *e information on OD pairs.

OD1 OD2 OD3 OD4

O (− 8.6399, 41.1598) (− 8.6109, 41.1457) (− 8.6141, 41.1412) (− 8.5856, 41.1485)
D (− 8.6542, 41.1806) (− 8.6098, 41.1605) (− 8.6497, 41.1544) (− 8.6068, 41.1457)
Historical trajectories 996 946 687 559
Training dataset 897 852 619 504

Testing dataset

Historical testing dataset 99 94 68 55
Generated trajectories 12 9 6 9
Anomalous trajectories 15 10 10 10
Anomaly ratio (%) 13.51 9.71 13.51 15.63
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Figure 4: *e testing dataset of each OD pair, where the lawn green color upper triangle represents the pick-up location and the cyan color
lower triangle represents the drop-off location. (a) OD1, (b) OD2, (c) OD3, and (d) OD4.
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conduct experiments on 4 OD pairs. In detail, we train the
model with the training dataset of each OD pair and then
evaluate the testing dataset, respectively. OD pairs and the
final results are shown in Table 3. *e results indicate that
MAFRC-ATD achieves the best results over the 4 OD pairs
and has the potential power to be well-suited for different
situations.

*e experiments indicate that the MAFRC-ATD model
could effectively capture the autoregressive characteristics of
trajectories and model the probability density of sub-
trajectories. However, the reason for the undesirable results
of iBAT and ATDC might be that those methods are based
on distance or isolation mechanisms, mainly focusing on
geometric information of the trajectory and neglecting the
sequential information of the trajectory. Obviously, iBAT is
well adapted to identify various detours, but may not be
suitable for situations where anomalies are intertwined with
normal ones (OD4). ATDC performs a little terribly when
existing local anomalous trajectories (such as OD2 and OD3);
it applies to intertwined situations.

4.2.2. Unintentionally Anomalous Trajectory Analysis. In
addition to the performance of anomalous trajectories de-
tection, discovering unintentionally anomalous trajectories
is also essential. Route choice analysis is employed to dis-
cover the unintentional anomalies as follows.

Taking OD1, for instance, there are 10 routes for this OD
pair, denoted as r1 to r10, respectively, i.e., m � 10 and C �

rj, forj � 1, 2, . . . , 10 . Trajectory set as well as link infor-
mation for each route regarding OD1 can be shown in
Table 4. Among all paths, r1 contains the most amount of
trajectories. For the sake of convenience, “(. . .)” in r1 rep-
resents the trajectories of OD1 except what are contained in
r2-r10. ?? shows each route in the OD1.

In this study, we set velocity equivalent coefficient c as
8.91m/s according to the mean speed value of historical
trips. For any given link in OD1, the generalized cost of each
route is calculated as the mean value of the generalized costs
of all trajectories corresponding to this route.

When δ sets to 0.02 and ξ sets to 1.5, experiments show
that the trajectories corresponding to Cn � C1, C2, C3  are
normal, whereas trajectories to
Can � Cj, forj � 4, 5, . . . , 10  are anomalous. Among all
anomalous trajectories, the trajectory corresponding to
Cun � r6 , i.e., 82nd trajectory, is unintentionally anoma-
lous, whereas trajectories corresponding to Cun � Can/r6 are
intentionally anomalous. Simply we can find that the 82nd
trajectory happened on the evening peak hours, Tuesday.
*e choice probability of the 82nd trajectory is large enough,
i.e., greater than 1/mξ, to make the anomaly score less than 1
despite greater than δ. Henceforth, we have sufficient con-
fidence that the 82nd trajectory (i.e., corresponding to r6) has
the strong potential to be chosen when taking this trip. *is
result indicates that the 82nd trajectory could be

Table 2: *e confusion matrix of the binary classification problem.
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Normal FN TN
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Figure 5: *e performance evaluation on anomalous trajectories
detection regarding OD2.

Table 3: Performance evaluation on anomalous trajectory detec-
tion in contrast to baseline.

Methods
OD

OD1 OD2 OD3 OD4

MAFRC-ATD 1.00 0.98 1.00 1.00
iBAT 0.92 0.94 0.92 0.62
ATDC 0.82 0.72 0.83 0.93
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unintentionally generated by drivers whose intentions are to
avoid traffic congestion to reduce trip time during peak hours.
*e results agree well with the route choice probability result,
as shown in Figure 6.

5. Conclusion

Anomaly trajectory detection is crucial for preserving the
legitimate interests of passengers and discovering the pattern
of anomalous driving behaviors. In this study, we propose an
unsupervised detection framework, namely, MAFRC-ATD,
to detect anomalous trajectories. Compared to traditional
methods, MAFRC-ATD can carry out the following:

(1) Taking the spatiotemporal information of trajectory
data into consideration, the MAFRC-ATD model
exploits the autoregressive character of trajectories
and effectively captures the spatiotemporal infor-
mation of trajectories, making it possible to assign
lower likelihoods to anomalous trajectories

(2) Incorporating the route choice model to discover the
unintentional anomalous due to traffic congestion,
route choice analysis is employed to further explore
the motivation behind random choice behaviors,
such as traffic congestion

Moreover, multi-od experiments are also conducted to
evaluate the generalization properties of the MAFRC-
ATD model. Experiments on the real-world dataset
demonstrate the effectiveness of our methods over
baseline methods. Furthermore, testing the proposed
method with more real-world datasets is crucial to
evaluate the applicability and robustness of the method,
which is left for our future study.

In the future, we will extend our model online with time-
series methods, such as the self-attention mechanism. In
addition, the ensembling-based NF model could perform
better to alleviate the imbalance learning problem.
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Our experiments are conducted on the real-world taxi
trajectory dataset provided by Kaggle ECML-PKDD 2015
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