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With advent of the postepidemic era, the development of digital logistics operationsmanagement is imminent. Among the various
logistics delivery methods, same-city delivery is chosen by the vast majority of customers for its timeliness and safety. Online
ordering and delivery methods for same-city delivery are also gaining increasing attention from enterprises which need to know
the inventory balance of all same-city warehouses in time for early deployment and response. However, in practice, the inventory
balance of each warehouse can be affected by other warehouses in the same city, and there is often a lack of data in the inventory
management system due to equipment and other issues resulting in a poor response from the company to handle emergencies. To
address these issues, an improved matrix decomposition model was designed to interpolate the missing data by taking into
account the spatiotemporal correlation between warehouses. ,e L-curve criterion was used to select hyperparameter values, the
spatiotemporal regularize was used to capture the time dependence of the time series, and the model performance was evaluated
using root mean square error and mean absolute percentage error. Comparisons with classical interpolation techniques were
made to validate the improved performance of the proposed method.

1. Introduction

,e emergence of the meta-universe concept in recent years
has promoted digital development. With the advent of
digital logistics, customers are increasingly demanding from
platform-based e-commerce companies [1]. Due to many
physical warehouses of platform-based e-commerce enter-
prises, orders are fragmented, statistics are untimely,
equipment errors are unable to be transmitted in real time,
and other realities, which make it difficult for companies to
know the inventory balance of the same-city physical
warehouses in time. It can easily lead to problems such as
low sensitivity of inventory scheduling and the inability of
companies to respond in time after customers adjust their
delivery time. Integration of same-city physical warehouses
data with enterprise systems is urgent [2]. Completeness of
the same-city physical warehouse data has a direct impact on
the integration performance. Interpolation missing data in
same-city physical warehouses is of importance [3].

However, current research methods for the interpolation of
missing data in logistics are less developed than in other
fields such as transportation [4], meteorology [5], and so on.
,e main reason is the redundancy of logistics data and is
influenced by synergies across regions.,e current approach
would result in an additional computational burden on the
model. Regularized decomposition as a fast measure to deal
with missing data by using different regular term functions
to deal with low-rank matrix decomposition problems and
have being decreased the time cost dramatically. ,e flexible
use of regularized decomposition clearly achieves a better
performance [6]. To improve the interpolation performance,
researchers at home and abroad have carried out research on
regularized data interpolation models.

In the logistics field, new technology, new markets, new
business models, and new customer expectations cause the
logistics industry to face immense change, which brings both
risk and opportunities. Big data technology makes the lo-
gistics transportation process easier to manage, so that goods
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can be quickly transported to the designated location, to
ensure the efficiency of logistics transportation [7].

For example, to explore time-series analysis of the dy-
namic variables and their interrelated influence in both the
short and long run on the relationship between modern
logistic industry and economic growth, it implies that lo-
gistic industrial development is comparatively quicker in the
geographical areas where economic growth is higher than
those areas where economic growth is low [8]. Logistics 4.0
details the strategic direction of future logistics in the in-
dustrial sector [9]. For logistics inventory, BP neural net-
works can be used to explore the complex relationship
between inventory demand and various influencing factors
to obtain effective measures for inventory control [10]. Long
Short-TermMemory (LSTM), on the other hand, as a variant
of RNN, has been applied in the field of logistics data
processing because it is ideally suited for problems that are
highly correlated with time series. For example, LSTM is
used to build a prediction model for stock price forecasting
in the logistics industry [11]. To improve the overall effi-
ciency of the logistics system and the level of customer
service proposes the coordinated development of urban
intelligent transportation data system and supply chain
management. Aims to study the importance and advantages
of the coordinated development of urban intelligent
transportation data system and supply chain management
[12]. Unfortunately, there are few of these analyses for
missing data in logistics.

In machine learning, different issues arise during the
statistical or data-driven control of interpolation methods,
which result in discrepancies between the interpolation and
the true values. Most popular imputation methods rely on
discriminative models such as decision trees, regression
models, and neighborhood-based methods, which are rel-
atively interpretable. Unfortunately, systematically missing
data may yield biased sample statistics, which causes these
methods to generalize poorly. To address this limitation,
different imputation methods turn to generative models to
improve imputation accuracy, the structural assumptions
encoded in the models can lead to better generalization. A
multilayer perceptron-multivariate imputation of chain
equation regression imputation method optimized by the
limit-memory-BFGS algorithm is proposed, considering the
temporal and spatial characteristics of traffic volume [13].
,e vehicle dispatching system is one of the most critical
problems in online ride-hailing platforms, which require
adapting the operation and management strategy to the
dynamics of demand and supply. In this paper, we propose a
single-agent deep reinforcement learning approach for the
vehicle-dispatching problem called deep dispatching, by
reallocating vacant vehicles to regions with a large demand
gap in advance [14]. Bayesian interpolation model is pro-
posed to characterize the data generation process and to
learn the underlying statistical patterns in the traffic data
[15]. Considering the spatiotemporal nature of IoTdata and
the uncertainty of the data collected by sensors, Bayesian
maximum entropy (BME) which to impute missing values
utilizing as a convenient means to estimate the missing data
from IoT applications [16]. On the other hand, state-of-the-

art imputation methods are based on graph Laplacian (GL)
transform for a semisupervised feature extraction; the scatter
matrix fused features update the output weights in real-time
online [17]. Training on limit learning machines, with the
ability to extract features, realize the multivariate real-time
prediction of the time series and complements the model
according to the general matrix and low-rank matrix de-
composition by the regularization matrix factorization
(MF). ,e decomposed matrix factors are weighted by a
common symmetric matrix new matrix completion model
and regularization weighted functions are obtained, and
then the optimal completion matrix for data completion is
obtained [18].

,e model software implementation, Spss, uses mean fill
which is not suitable for nonrandommissing datasets. Amos
uses the original highest likelihood method which is suitable
for randomly missing datasets. Solas uses multiple fill re-
gression which is not suitable for nonrandom missing
datasets. Matlab is suitable for fast running and needs to
display the results step by step. Python is suitable for cases
where the data package can be called directly.

,ese studies have highlighted that most of the models
have a strong reliance on mathematics, and there is little
research on models for interpolation of missing datasets in
logistics. Modeling errors due to different data types can
have an impact on the actual results. To addresses problem of
large-scale fine-grained traffic state prediction, a deep
learning architecture is proposed to handle the challenge of
data scale, granularity, and sparsity. Based on the domain
knowledge of traffic engineering, the propagation of traffic
state is analyzed, and four modules are specially designed
and elaborated in the aspects of the temporal propagation of
traffic state, spatial propagation of traffic state, etc. [19]. To
achieve higher performance for interpolationmissing data in
logistics, this paper designs an improved LSTM and Graph
Laplacian Regularized Matrix Factorization (LSTM-GL-
ReMF) system [20]. ,e L-curve, the temporal regularizer
LSTM, and the spatial regularizer GL are combined to build
the entity interpolation model for the inventory balance
dataset of logistics entities warehouses in each region of the
same city. ,e L-curve is used to select hyperparameters to
take values [21]. ,e temporal regularizer, LSTM, is to
capture temporal dependencies in time-series data and the
spatial regularizer, GL, is to capture spatial correlations
between different warehouses, solving the problem that
interpolation results considering only individual warehouses
are far from reality by considering spatiotemporal correla-
tion. ,e model is evaluated using two evaluation metrics,
RMSE and MAPE, and compared with other state-of-the-art
decomposition models to prove the superior interpolation
performance of the improved LSTM-GL-ReMFmodel in the
field of missing logistics data. ,e main contributions of this
paper are summarized as follows:

(i) ,e L-curve criterion is used to select the values of
the regularized hyperparameters and to increase the
interpretability of the hyperparameter values.

(ii) Fusing the L-curve criterion with the LSTM and GL
algorithm to construct the model.
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(iii) Apply the improved model to the domain of lo-
gistics operations management.

2. Fundamentals

,is section presents the basic theory and modeling prin-
ciples of this thesis. Includes the definition of operations,
matrix decomposition steps, and LSTM-GL-ReMF model
theory, where matrix operations are the basis of matrix
decomposition and the improved models are optimized on
the basis of the basic principles.

2.1. Matrix Decomposition

Definition 1. Given two matrices A ∈ Rm1 ∗ n1 and
B ∈ Rm2 ∗ n2 , the Kronecker product is as follows:

A∗B �

a11B . . . a1m2
B

⋮ ⋱ ⋮

am11
B · · · am1m2

B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (1)

Definition 2. Given two matrices A � (a1, a2, . . . , ar)

∈ Rm∗r and B � (β1, β2, . . . , βr) ∈ Rϖ∗r which have the same
number of columns, the KR product is as follows [22]:

AϕB � a1 ∗ β1, a2 ∗ β2, . . . , ar ∗ βr(  ∈ R
(mϖ)×r

. (2)

,e matrix decomposition steps (Algorithm 1) are as
follows:

,ere are three matrices r(|U|∗ |D|), p(|U|∗K),

q(|D|∗K) which are trained using either random gradients
or batch gradient and combined with a gradient descent
method with repeated sampling. ,e specific formula is as
follows: first calculate the minimum differential as shown in
equations (3) and (4), where the potential characteristic is K
and the minimum value of the difference is e [23]:

δ
δpij

e
2
ij � −2 rij − rij  qkj  � −2eijqkj, (3)

δ
δqij

e
2
ij � −2 rij − rij  qkj , � −2eijpkj. (4)

Get iterative matrix elements pik
′ and qkj

′:

pik
′ � pik + α

δ
δqij

e
2
ij � pik + 2αeijqkj,

qkj
′ � pkj + α

δ
δqkj

e
2
ij � pkj + 2αeijpik.

(5)

Finally, set the threshold value and reduce the error by
the error function.

2.2. LSTM-GL-ReMF. In the LSTM-GL-ReMF, its tem-
poral regularizer introduces the recurrent neural network
LSTM with extremely strong learning performance to
discover hidden correlations in the samples. Hochreiter

and Schmidhuber proposed the LSTM which could
overcome long-term dependencies and determine the best
time window automatically [24]. Calculate the hidden
layer sequence (6) and output sequence (7) by equations ε
to c:

εt � fa wxεxt + wεεεt−1 + bε( , (6)

ct � wεcεt + bc, (7)

where the activation function is fa, the given sequence is x,
the weight matrix is ω, the bias vector is b and the moment is
t [25]:

it � σ ωxixt + ωεiεt−1 + ωcict−1 + bi( ,

ζt � σ ωxζxt + ωεζεt−1 + ωcζct−1 + bζ ,

ct � ζtct−1 + it tan ε ωxcxt + ωεcεt−1 + bc( ,

Ot � σ ωxoxt + ωεoεt−1 + ωcoct + bo( ,

εt � ot tan ε ct( ,

(8)

where the input gate is i, the forgetting gate is ζ, the cell state
is c, and the output gate is O. ,e sigmoid activation
function is σ and the tangent hyperbolic activation function
is tan ε. Spatial regularizers are based on GL spatial regu-
larization [26] and this can be able to combine complex
spatial and temporal dependencies into the decomposition
to increase the accuracy of the interpolation performance.
Data smoothing is measured using ‖fk‖2M:

fk

����
����
2
M

� 
x∈M

Mfk

����
����
2dpx(x), (9)

where ΔM is used to denote the gradient of fk along the
stream shape M. Define the edge weight matrix wij as
follows:

wij �
1, ifxi ∈ Nρ xj  orxj ∈ Nρ xi( ,

0, otherwise,

⎧⎨

⎩ (10)

where Nρ(xi) denotes the set of xi nearest neighbors of ρ.
Subsequently, the discrete approximation is calculated as
follows:

Rk �
1
2



N

i,j�1
fk xi(  − fk xj  

2
wij � v

T
k Lvk. (11)

Of these, Graph Laplacian is L and the mapping function
is vk. ,en the objective function is as follows:

O � X − UV
T

����
����
2
F

+ λTr V
T
LV . (12)

Of these, matrix trajectory is Tr, regularization pa-
rameter is λ [27].

3. Model Development and Refinement

,is section describes the improvements made to the model.
,e improvedmodel is more applicable to the type of dataset
presented in this paper.
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3.1. Problem Definition. With the development of e-com-
merce, city–city distribution has been favored by more users,
such as booking delivery in city–city delivery. However, due to
various external factors, customers’ predetermined time is easy
to change. At this time, enterprises need to have an overall
control of the same-city inventory, timely, and reasonable
scheduling. At present, when most enterprises use Warehouse
Management System (WMS) system for data integration, there
is often some missing data, resulting in enterprises being
unable to control the overall inventory in the same city. Based
on the same-city warehouse inventory in its time and space of
the close connection, a modified LSTM-GL-ReMF algorithm
was designed to interpolate the missing data.

3.2. L-Curve Guidelines

Lemma 1. Operator equations on Banach spaces X, Y.

Kx � y. (13)

Of these, x ∈ X and y ∈ Y, K is a bounded linear tight
operator from X to Y, y is the measurement data item, yδ is
the test data after being perturbed by the error, error level
δ > 0.

y − y
δ

�����

�����≤ δ, y
δ ∈ Y. (14)

Lemma 2. In the plane, all points (‖Kxα,δ − yδ‖, ‖xα‖) form
a monotonically decreasing L-curve with the point of greatest
curvature being the corner of the L-curve [28]:

u(α) � log Kx
α,δ

− y
δ

�����

�����,

v(α) � log x
α,δ

�����

�����.
(15)

Of these, xα,δ � Rαyδ and Rα is a family of consistent-
bounded operators. De curvature function of the L-curve
with α as a parameter [29]:

K(α) �
u′v′′ − u′′v′




u′( 
2

+ v′( 
2

 
3/2, (16)

De triple spline interpolation method can be used to
approximate the corner angles and thus select the regulari-
zation parameters. De main idea is to form a better ap-
proximation to the L-curve by gradually increasing the
number of nodes and to use the parameter corresponding to
the point of maximum curvature on the final strip as the
regularization parameter. De steps are as follows [30]:

Step 1: given the initial regularization parameter, αi and
its corresponding (ui, vi).
Step 2: interpolation of three splines about βi � log αi for
ui and vi, respectively, note that the interpolation
functions are u(β) and v(β).
Step 3: calculate the point on the curve (u(β), v(β)) with
the greatest curvature and let it be (u(β0), v(β0)), note
that α0 � 10β0 .

Step 4: solve the regularization problem corresponding to
α0 and note that the regularization solution is xα0 ,δ.
From the regularization solution, we can obtain the new
point pair (u0, v0), of these u0 � ‖Kxα0 ,δ − yδ‖,

v0 � ‖xα0‖.
Step 5: add the new point pairs (u0, v0) and α0 to the
previous point pairs and parameters.
Step 6: repeat steps 2 to 5 for the point pairs and pa-
rameters obtained in step 5 until convergence.

3.3. Model Construction. ,e LSTM is applied to the time
dimension of the training set, the GL is applied to the spatial
dimension, and the L-curve criterion is introduced to take
values for the regularization hyperparameters. Based on this,
an improved model is used to interpolate the data for the test
set of time series. ,e schematic diagram of the improved
model is shown in Figure 1.

As shown in Figure 1, the powerful learning capability of
the LSTM is used to discover concealed correlations in the
data. ,e GL space regularizer computes discrete approxi-
mations from the nearest neighbor graph of the scatter of
data points, determination of the corner angle of the L-curve
bymeans of cubic spline interpolation and hence the value of
the regularization hyperparameter.

,e regularizer is able to combine complex spatial and
temporal dependencies into the decomposition process by
setting up an error calculator, embedding the current time
and interpolating themissing data in the current observation
matrix. ,e complete time-series dataset is used as the
training set to train the model to access the model pa-
rameters, and then the dataset containing the missing data is
used as input to the model. ,e data interpolation result is
the interpolation result considering the temporal spatial
correlation.

4. Simulation Analysis

,is section presents the experiments conducted in order to
evaluate the algorithm proposed in this work.

4.1. Simulation Preparation

4.1.1. Dataset. ,e training set selected for this thesis is
obtained by collation in the WMS intelligent warehouse
management system. ,e software in the WMS intelligent
warehouse management system refers to the software part
that supports the operation of the whole system, including
pick operation, shelf management, receive processing, re-
plenishment management, matrix charging, platform
management, warehouse operation, cycle counting, over-
stock operation, RF operation, and process management,
[31]. ,e WMS process is shown in Figure 2.

,e data are in the form of 4∗ 744. ,e number 4 de-
notes four warehouses and 744 denotes a record of stock
balances for each hour of the day for a month. Four
warehouses are located in different areas of the chosen city.
,e four warehouses are in a circular configuration, three of
which are closer to each other and on one side of the ring, the
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remaining warehouse is on the other side of the ring
structure. ,e test set is one month’s stock balance data for
certain good in a warehouse extracted directly from the
WMS intelligent warehouse management system.

4.1.2. Evaluation Indicators. ,e commonly used evaluation
metric in machine learning regression problems is the
RMSE, which is more intuitive as a model evaluation metric
in terms of order of magnitude. In this paper, there are no

zeros in the original data but to prevent the existence of zero
in the interpolated values, MAPE is also chosen as the
evaluation metric [32].

,e MAPE was chosen, the number of measurements
was n, and the number of measurement set scores was yi.
,e specific formula was as follows:

MAPE � 
n

i�1

yi − yi




yi

∗ 100. (17)
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Figure 3: Improved LSTM-GL-ReMF model interpolation results.
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Figure 4: Continued.
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Figure 4: Continued.
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Figure 4: Compare the results of the models: (a) TRMF, (b) BTMF, (c) BPMF, (d) BTRMF, (e) LSTM-ReMF, and (f) LSTM-GL-ReMF.

Table 1: Table of values for each parameter.

Parameters Values
Missing rates/% 25
Regularization parameter 50
Lambda 50
Sampling rate 1.0
Maxiter 100
Patience 6

24
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(a)
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(b)

Figure 5: Model evaluation for different absence rates. (a) RMSE. (b) MAPE (%).

Table 2: Model evaluation.

Evaluation indicators MAPE/% RMSE
Improved model 27.24 9.22
LSTM-GL-ReMF 30.52 12.16
LSTM-ReMF 27.91 16.13
BPMF 47.51 20.15
BTMF 33.27 11.23
TRMF 40.17 16.85
BTRMF 28.67 12.37
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,e RMSE was also chosen with the following equation
[33]:

RMSE �

����

1
n



n

i�1




yi − yi( 
2

. (18)

4.2. Simulation Studies. To validate the performance of the
proposed improved model, a dataset of one month’s in-
ventory balance of certain good in a warehouse was selected
and set up in an Intel i5-7200u cpu@2.70GHz processor and
Jupyter Notebook environment. Python3 was used for the
experiments. ,e values of some of the parameters are
shown in the table for each parameter in Table 1.

To verify the effectiveness and superiority of the im-
proved model, simulations are conducted and the simu-
lation results are quantitatively profiled in this paper. ,e
simulation results are shown in Figure 3 for the improved
LSTM-GL-ReMF model interpolation.

,e interpolation results of the improved LSTM-GL-
ReMF model are shown in the figure, where the blue bars
indicate the actual data. Green straight lines indicate the
simulated data, which can clearly show that the model
interpolates the missing data. ,e interpolation results
show that the interpolated lines overlap with the true
values to a high degree. Because of the spatial correlation,
the existence of zero values in the interpolated part is in
line with the actual situation.,e fact that the interpolated
stock balance fluctuates greatly due to the different de-
mand for goods by customers in different regions at
different times of the year is also in line with the actual
situation. ,e interpolated values for the end of Sep-
tember 2021 in this improved model have a zero value,
which may be related to regional user activities such as
end of month clearance and delayed start of the school
season due to the epidemic.

A comparison is made with other models. ,e problem
studied in this paper is a regression problem and the
Bayesian correlation algorithm is highly used in regression
problems and the time matrix is also a commonly used
model for time series. Bayesian probabilistic matrix fac-
torization (BPMF), temporal regularized matrix factoriza-
tion (TRMF), Bayesian temporal matrix factorization
(BTMF), Bayesian temporal regularized matrix factorization
(BTRMF) [34], LSTM-ReMF, and LSTM-GL-ReMF are
chosen for comparative analysis. ,e simulation results are
shown in Figure 4.

,e blue bar charts in Figure 4 show the actual data.
Vacancy parts show the missing data. Green straight lines
show the model simulation data, which can clearly show the
interpolation of the missing data by the model. RMSE,
MAPE was used as an evaluation indicator and the results
are shown in Table 2.

To further investigate the generalization ability of the
model, simulation experiments were conducted for data
with missing rate of 15% and 35%, respectively. Error
evaluation was obtained as shown in Figure 5.

From the above results, it can be seen that the inter-
polation results with the inclusion of spatiotemporal analysis
are more realistic. ,e improved model in this paper per-
forms better compared to the original LSTM-GL-ReMF
model, but is still affected by the missing rate of data, with
the larger missing rate the larger the model error. ,e
comprehensive simulation results show that the improved
LSTM-GL-ReMF model can effectively interpolate the
missing inventory balance data in the logistics field with high
performance. From a practical point of view, there is a
relationship between inventory balances and interregional
user behavior in different regions of the same city. ,e
improved model in this paper has very good performance.

5. Conclusion

In this paper, a method for interpolating missing data in
logistics based on regularized decomposition is proposed.
,ere is empirical evidence that our research has some
contribution to make. Regularization techniques are used to
interpolate missing data in logistics to improve the LSTM-
GL-ReMF model by considering spatiotemporal data
characteristics and apply L-curve method to select regula-
rization parameters. It is provided proof for the introduction
of missing data interpolation models into the logistics do-
main. In addition, a rigorous theoretical derivation of the
model’s operating mechanism has been carried out, which
provides theoretical support for the model algorithm. ,e
results show that the interpolation model, which takes into
account the spatial correlation between the inventory bal-
ances of different same-city physical warehouses, is closer to
its real situation and has a higher interpolation accuracy.
Future experiments will consider different types of missing
data to find the range of missing data with the best inter-
polation capability and thus improve the model interpola-
tion performance.
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