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With the development of technology, shared autonomous vehicles may become one of the main traffic modes in the future.
Especially, shared autonomous vehicle reservation system, commuting, and other trips with fixed departure time mostly submit
their travel requests in advance. +erefore, it is important to reasonably match shared autonomous vehicles and reservation
demands. In this paper, reservation requests are divided into short-term and long-term requests by inputting requests in a more
realistic way. An integer linear programmingmodel considering operator scheduling cost and system service level is established. A
detailed scheme considering rolling horizon continuity and ridesharing is used to improve the dispatching result. Based on traffic
data in Delft, the Netherlands, 164 scenarios are tested in which the parking cost, fuel cost, ridesharing effect, service level, and
network size are analyzed. +e results show that a better relocation and ridesharing matching scheme can be obtained when the
rolling horizon is small, while the overall effect is better when the rolling horizon is large. Moreover, the buffer time, distance, and
travel time limit for vehicle relocation should be selected according to the request quantity and the calculation time requirement.
+e result can provide a suggestion for the dispatching of shared autonomous vehicle reservation system with ridesharing.

1. Introduction

With the rapid development of science and technology, au-
tonomous vehicles, which can improve safety, alleviate traffic
congestion, and reduce pollutant emissions and energy
consumption, have become a hot issue in the automotive field
in recent years. +e introduction of autonomous vehicles will
have a great impact on the future travel mode, especially mass
transit [1]. Shared autonomous vehicles (SAVs) apply auto-
matic driving technology to car sharing and taxi services,
which is convenient for travelers: travelers do not need to get
to the car sharing location before they can use it. So, SAVs can
pick up passengers according to their needs and provide
“door-to-door” services. Some studies have indicated that an
SAV can replace 3 to 13 private vehicles depending on dif-
ferent system settings [2, 3]. In particular, when passengers
are willing to share a vehicle with other passengers on similar

routes, the fleet size and vehicle miles travelled (VMT) of the
SAV system can be further reduced [4–7].+erefore, the wide
use of SAVs can effectively reduce the number of vehicles to
improve the utilization rate of vehicles. At present, SAVs have
gradually begun to serve the public. Apollo GO Robotaxi,
developed by Baidu, was first used in Beijing on October 11,
2020. People who are 18–60 years old can use the service, with
a maximum of 2 passengers. Similar driverless taxis have also
been put into trial use in Guangzhou, Dalian, Wuhan, and
other cities in China. Some studies [8–11] surveyed the
public’s preference for SAVs, and the optimistic situation
proved the potential of the SAV traffic system. Although it
remains a technical challenge to reach driving automation
level 5, the rapid development of driverless technology
provides the possibility of new travel modes in the future.

+e SAV traffic system allows passengers to submit travel
requests in real time or make an appointment in advance.
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Work commuting, travel when there are fewer available
SAVs, or trips arranged in advance can take advantage of
making a reservation in advance to improve and guarantee
the service. At present, many car sharing applications
provide reservation services. Travelers can book a trip from a
few hours to a few days in the future using Didi. Lyft allows
customers to book a ride seven days in advance. Uber Re-
serve was launched in 20 cities in the United States at the end
of 2020; it can be used to book a ride from 2 hours to 30 days
ahead of the scheduled pickup time. Customers are matched
to a driver two hours before departure, and the fare is paid in
advance. Previously, Uber did not match passengers and
vehicles until at least 15minutes before the scheduled pickup
time. +us, different demand processing methods will affect
the scheduling and matching results. In particular, the de-
mand processing interval is an influential factor. If it is too
long, subsequent requests may not be well arranged. But if it
is too short, the processing burden of the system will be
greatly increased. +erefore, it is necessary to research the
matching problem between reservation requests and SAVs.

In this paper, the dispatching scheme of the SAV res-
ervation request is optimized by combining the integer
linear programming model and the idea of the rolling ho-
rizon. +e scheduling costs of operator and the service level
of demand are taken into account.+e ridesharing scheme is
proposed by service-level constraints. Using traffic data from
Delft in the Netherlands, the influence of different opti-
mization times and scopes on the matching and scheduling
of SAV reservation requests, such as parking costs, fuel costs,
and penalties, is tested. +e effects of reservation requests,
road congestion, and vehicle relocation range are also an-
alyzed. +is paper contributes to the literature in two as-
pects. First, in order to improve the performance of the SAV
reservation system, the reservation request is divided into
the short-term and long-term request. It is more realistic
when requests enter the system, and it can better reflect the
relative state between requests and optimization time.
Second, a detailed rolling horizon continuity scheme is
proposed, and the best system parameter setting under
different goals is described by analyzing system scheduling
cost, and service-level and operation efficiency.

+e structure of the paper is as follows. In the literature
review part, the demandmatching and schedulingmethods of
traditional shared vehicle reservation services and shared
autonomous vehicle reservation services are summarized,
respectively, and the researchmotivation is clarified. Section 3
introduces themodel andmethod considering rolling horizon
continuity and ridesharing. +en, the application and the
result of the method are discussed. Finally, the research
conclusion and future research direction are put forward.

2. Literature Review

Real-time and reservation requests of SAVs are handled
differently due to the difference in submissionmethods. SAV
real-time requests are submitted to the system shortly before
departure and need to be arranged as soon as possible.
+erefore, SAV real-time request systems mostly use agent-
based or activity-based models [12–17] to match vehicles

and requests to better research the dispatching of SAVs from
a micro perspective. SimMobility, Transims, MATSim, or
other simulation platforms are typically used. In addition,
optimization models and other mathematical analysis
methods [18–21] can be developed and used in SAV real-
time request systems. Reservation requests are submitted to
the system several hours or even days in advance; the re-
quests are known and the system has sufficient time to create
a schedule. +erefore, optimization model is usually used to
deal with the matching and scheduling of the reservation
demand.

2.1. Traditional Vehicle Sharing Reservation Services. +e
traditional one-way shared vehicle service, which is similar
to the SAV service, also provides a way to submit travel
requests by appointment. After the user submits a travel
request in advance, if there are vehicles available at the
starting station and there is a place to park at the destination,
the system determines the appropriate station, and the
traveler needs to travel to the station before using the vehicle.
+e system achieves a balance between vehicles and de-
mands by dispatching vehicles between stations. +e tra-
ditional one-way car sharing service is mostly station based,
and simulation and optimization methods have been used to
solve related problems. +is kind of problem is relatively
simple: the main focus is the matching of vehicles and re-
quests, and the subsequent routing of vehicles is not ex-
plicitly accounted for. Alfian et al. [22] studied a one-way car
sharing system including reserved and real-time requests
based on discrete event simulation. +ere were four events
for reservation requests, namely, calling, assigning, starting,
and ending, and only two, starting and ending, for real-time
requests. Hu and Liu [23] proposed a mixed queuing net-
work optimization model, including customer queues, ve-
hicle route travel queues, and vehicle virtual service queues,
to study the parking capacity and fleet size of a one-way
station-based car sharing system. In addition, it was assumed
that there was an aggregated and exclusive route between
two stations, and the relationship between travel time and
the queue state of the route was an increasing function to
consider road network congestion. +is method of con-
sidering road congestion is simple, but a gap with reality
remains. An optimization model and simulation can be used
in combination. Boyaci et al. [24] proposed an integrated
optimization and simulation framework to study a station-
based one-way electric car sharing system. Multi-objective
mixed-integer linear programming was used to optimize the
service and relocation costs: two objectives were combined
into one objective by weight coefficients, and the weight set
was determined by the hierarchical method according to the
importance of the objective. Vehicle states were constructed
as spatial-temporal networks including parking, trip, and
relocation. Discrete event simulation was used to judge the
feasibility of the results of the operations optimizationmodel
and personnel flowmodel. Some studies have focused on the
time and space flexibility of reservation requests. Li and
Petering [25] analyzed a one-way reservation car sharing
system based on discrete-time simulation. If additional
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parking time at the origin and destination station was
allowed, the system would be more flexible. Strohle et al. [26]
studied the impact of reservation time and space flexibility
on a two-way station-based car sharing system. A mixed-
integer optimization minimizing the fleet size was used for
the offline case. +e minimum fleet size obtained in the
offline case was used for the online case because of insuf-
ficient request information, and the objective of the online
case was to maximize the quality of service. +e results
showed that the influence of spatial flexibility was greater in
the latter case. Roca-Riu and Menendez [27] proposed an
auction scheme with flexible vehicle reservation time to
reduce the fleet size of a two-way station-based car sharing
system. Drivers were given individual utility according to
their preferences and could choose different travel time
flexibilities. +e goal of the system was to maximize the
driver’s utility in which drivers submitted reservation re-
quests through bidding. Integer programming was used to
allocate drivers’ vehicles and travel time, and the optimi-
zation results were used to solve the pricing problem to
determine how much drivers needed to pay to reserve a car.
To improve the efficiency of vehicles, when to implement the
matching scheme was important. Lu et al. [6] proposed a
two-stage stochastic integer programming to approximately
solve the multistage dynamic model. In the first stage, the
number of vehicles and parking lot allocation were deter-
mined, and the dispatching decision was made in the second
stage. A rolling horizon was used to improve the integer
programming to obtain the optimal relocation. Demand
uncertainty was considered by a spatial-temporal network
and turned to a minimum cost flow problem. Molnar and
Correia [28] proposed a relocation-based reservation en-
forcement method for the vehicle locking and relocation
movements of a one-way free-floating car sharing system.
+at is, customers could reserve vehicles for a long time in
advance, but the system would not lock the vehicles im-
mediately. Instead, the system would arrange vehicles at an
appropriate time before the demand to improve the effi-
ciency of vehicle use. If there were idle vehicles at the station,
the system would lock the vehicles; otherwise, it would
consider relocating from other stations. Simulation-based
optimization was used to operate the system, and the model
was solved by iterated local search metaheuristics. Dou et al.
[29] studied the influence of demand uncertainty on the
customized reservation bus system by using a mixed-integer
linear programming model. A branch-and-price method
and a column-generation-based heuristic method were used
to solve the model.

2.2. Shared Autonomous Vehicle Reservation Services.
Compared with traditional shared vehicles, SAVs have better
autonomy, and vehicle scheduling does not require drivers or
other human resources. +is makes the scheduling of SAVs
more like a driverless taxi that completely obeys the in-
structions of the system. +e SAV traffic system has more
pickup and drop-off nodes, and they are more scattered.
Vehicles are dispatched to locations with greater demand
according to the balance between vehicles and demand. +e

system not only focuses on vehicle matching but also con-
siders vehicle routing and even ridesharing, so the problem is
more complex, and an optimization model is typically used to
address reservation-based SAV traffic systems. Wang et al.
[30] proposed a trip-chaining strategy for dispatch in a
reservation-based intelligent taxi system; two phases were
used to solve the pickup and delivery problem. In the con-
struction phase, the request with the pickup point closest to
the drop-off point of the previous request was selected, and
the trip chain was optimized by the improvement phase. +e
objective of the optimization model was divided into the
operator’s perspective and user’s perspective. Liang et al. [31]
proposed two integer programming models to optimize
reservation requests to connect railway stations in SAV
systems. One was that the demand can be rejected without
punishment according to the maximization of interests, and
the other was that all demands in the service area must be
served. +e objective was to achieve the maximal total profit,
and SAV routing was implemented via a spatial-temporal
network. +e results indicated that the total profit was larger
when the system was free to choose which requests to serve.
Pimenta et al. [32] proposed integer linear programming to
minimize the number of stops of autonomous electric ve-
hicles to ensure the reliability of travel time. +e study
considered vehicles traveling along a closed circle network,
and each parking spot on the network had a loading or
unloading area. +e time spent by a vehicle in this area was
random and related to the number of loading or unloading
operations performed in the area. Moreover, a greedy ran-
domized adaptive search procedure heuristic based on an
insertion mechanism was used to solve a static version of the
problem. +is static version could be regarded as a reser-
vation-based problem. Su et al. [33] used a tabu search
method combined with K-means or K-medoids clustering
algorithms to minimize the total vehicle travel time and
customer waiting time of reservation-based SAV systems.+e
objective function was decomposed into several subproblems
by clustering. +e results indicated that the K-medoids
clustering algorithm was more suitable for large-scale
problems. Some studies have studied the impact of road
network congestion. Levin [3] proposed a linear program
with dial-a-ride service constraints to route SAV systems with
requests known in advance and used the link transmission
model to reflect traffic congestion; thus, the travel time
changed with the vehicle route assignment. +e objective was
to minimize the total system travel time, including travel time
and waiting time. Since each link in the model had only
upstream and downstream terminal variables, the number of
variables could be reduced, and the number of variables
varied with the size of the network in polynomial form. +e
results indicated that travel time during peak hours increased
considerably without considering link congestion. Liu et al.
[34] proposed a three-dimensional space-time-state path-
based flow-based linear programming model for an offline
shared mobility system with ridesharing, and Dantzig-Wolfe
decomposition was used to solve the model. +e study ob-
served that network efficiency could be overestimated without
considering congestion. However, in the process of optimi-
zation, when to optimize and determine the scheduling
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scheme was subjective. Ma et al. [35] proposed a linear
programming model for an SAV reservation system without
ridesharing and analyzed the effect of a single-horizon and
multi-horizon model on the vehicle use rate. +e single-
horizon model optimized the SAV system for one service
horizon; that is, the system ran the optimization program
every fixed period of time, and the service horizon was equal
to the update horizon. +e multi-horizon model allowed
different service horizons, and the update horizon was equal
to the shortest service horizon. +e results indicated that the
longer the system was considered, the higher the vehicle use
rate would be. Table 1 provides a summary of the literature
review.

In previous studies, reservation requests entered the
system step by step, that is, the system only allowed res-
ervations at integer hours in advance, such as 2 or 4 hours in
advance. However, in reality, passengers may not submit
demand just a few hours ahead of the departure time; they
just need to meet the minimum reservation time allowed by
the system. So, the time of demand entering the system is
continuous. Besides, in the previous study, continuity of the
optimization rolling horizon was considered simply. +e
unfinished link was just given a larger value to ensure the
continuity of service, so the analysis of the system is not very
in-depth. +us, in this paper, continuous reservation time of
SAV and a more detailed scheme of rolling horizon con-
tinuity is considered.

3. Method

3.1. Mathematical Model. +e optimization of SAV reser-
vation requests is a pickup and delivery problem. In this
paper, only reservation requests are considered, so there is
no waiting time for passengers. If the vehicle is not dis-
patched to the next demand after the service, it is parked on
the roadside until the next request. In addition, ridesharing
is allowed. If two requests want to realize ridesharing, they
need to meet the following requirements:

(1) +e difference between the desired departure times
of the two requests is no more than the time limit td.
In this way, two requests with longer departure time
interval will not be matched.

(2) +e vehicle should be able to reach the pickup node
of the ridesharing request before the desired de-
parture time.

(3) +e travel time delay caused by ridesharing detours
should be within the acceptable range of passengers,
which is defined as ta.

After finding all possible ridesharing schemes, a greedy
algorithm is used to find the ridesharing scheme with the
minimum detour distance and number of trips, and the
result is brought into the model for optimization. Table 2 is
notations of the model.

+e SAV reservation request matching network is
constructed as (G, L). As shown in Figure 1, there are six
types of links in the network.

(1) Each vehicle departs from the station to pick up
requests through departure links (o, ip)

(2) Each vehicle finishes the service of a request through
a service link (ip, id)

(3) A vehicle drops the passenger at id and then travels to
jp to pick up the next passenger through a relocation
link (id, jp)

(4) If it is not the final optimization, each vehicle travels
to a virtual node through waiting link (id, vd) after
finishing request i

(5) If it is the final optimization, each vehicle travels back
to the station through ending link (id, d)

(6) If a vehicle is not dispatched to serve a request and
stays at the initial station, the vehicle is assumed to
travel through virtual link (o, vd) or (o, d)

Vehicles can pick up requests if constraints (1) or (2)
can be satisfied. Buffer time θ is considered because
congestion may lead to travel delay, and different values
can be used for peak hours and off-peak hours. Moreover,
when searching for the next demand that can be served,
one can consider the distance limit μd and travel time limit
μt of the search range to reduce the problem size and the
amount of computation.

t o, i
p

(  + θ≤ ti
p
, (1)

ti
d

+ t i
d
, j

p
  + θ≤ tj

p
. (2)

If a link is not a virtual link, its link capacity is one
because a request needs to be served only once. For a virtual
link, its capacity is the maximum available fleet size F. F is a
value set in advance by the system to ensure that there are
sufficient vehicles to service demands, which is not the
number of vehicles actually called.

lkl �
1, if(k, l) ∈ A,

F, if (k, l) � (o, v d)or(o, d).
 (3)

According to the practical situation, the costs of
different types of links are shown in equation (4). For links
belonging to set A2, vehicles may arrive at the pickup
nodes of next requests ahead of time, so parking costs are
considered.

Ckl �

Cv + Cfkl · dis(k, l), if k � o, l � i
p
,

−Cli , if (k, l) ∈ A1,

Cfkl · dis(k, l) + Cpkl · tp(k, l), if (k, l) ∈ A2,

Cfkl · dis(k, l), K if k � i
p
, l � d,

0, others.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

For the optimization system of SAV reservation requests,
the objective function of the linear program is to minimize
the cost of dispatching.
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Table 1: Summary of literatures.

Authors
Demand

Ridesharing
Model

Algorithm or solverReal-
time Reservation Vehicle-traveler

match Vehicle routing Vehicle
rebalancing

Fagnant and
Kockelman
[2]

✓ ✕ ✕ Searching for the
nearest vehicle —

Four strategies
based on block

balance

Agent-based model
simulated in C++

Wang et al.
[30] ✕ ✓ ✕ Pickup and delivery problem with time

Window — +e two-phase solution
heuristics

Alfian et al.
[22] ✕ ✓ ✕ Discrete event

simulation — — C++

Liang et al.
[31] ✕ ✓ ✕ Integer program — Branch-and-cut in

Xpress
Hu and Liu
[23] ✕ ✓ ✕ Mixed queuing

network Optimization — Genetic algorithm

Ma et al. [35] ✕ ✓ ✕ Linear program Cplex
Levin [3] ✕ ✓ ✕ Linear program — Cplex
Mora et al.
[18] ✓ ✕ ✓ Linear program Greedy assignment

Liu et al. [7] ✓ ✕ ✕ Searching for the
nearest vehicle

Activity-based
agent-based
simulation

— MATSim

Pimenta et, al.
[32] ✕ ✓ ✕ Integer linear program —

A greedy randomized
adaptive search

procedure
Boyaci et al.
[24] ✕ ✓ ✕ Mixed-integer linear programming C#

Vazifeh et al.
[19] ✓ ✓ ✕ Vehicle-shareability network and path

cover algorithm — Hopcroft–Karp
algorithm

Li and
Petering [25] ✕ ✓ ✕ Discrete event simulation — C++

Lu et al. [6] ✕ ✓ ✕ Two-stage stochastic integer programming

Branch-and-cut
algorithms with mixed-

integer rounding-
enhanced Benders cuts

Javanshour
et al. [12] ✕ ✓ ✕ Strategy Fritzche model Linear program An agent-based traffic

simulation tool
Segui-Gasco
et al. [14] ✓ ✕ ✓ Agent-based simulation — MATSim and IMSim

Dandl et al.
[13] ✓ ✕ ✕ Agent-based simulation — —

Strohle et al.
[26] ✕ ✓ ✕ Mixed-integer

optimization — — Gurobi

Roca-Riu and
Menendez
[27]

✕ ✓ ✕ Integer programming — — Branch-and-cut with
Cplex

Molnar and
Correia [28] ✕ ✓ ✕

Optimization with a
variable quality of
service model

—
Simulation-

based
optimization

Java

Liu et al. [34] ✕ ✓ ✕ Integer linear program — Dantzig-Wolfe
decomposition.

Dou et al. [29] ✕ ✓ ✓ Mixed-integer linear programming — MATLAB

Winter et al.
[17] ✓ ✕ ✕ Searching for the

nearest vehicle —
+ree pro-active

relocation
strategies

MATSIM

Nahmias-
Biran et al.
[16]

✓ ✕ ✓ Activity-based
accessibility measure

Within-day
simulation — SimMobility

Liang et al.
[21] ✓ ✕ ✓

Integer nonlinear
programming model

(INLP)

Lagrangian
relaxation

algorithm with
INLP

— Xpress

Su et al. [33] ✕ ✓ ✕ Integer program — A metaheuristic tabu
search method
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min 
k, l∈H

Cklxkl, (5)

xkl ≤ lkl, ∀k, l ∈ H (6)


o∈O

xoip + 

jd∈Id

xjdip � xipid , ∀i ∈ I, i
p ∈ I

p
, i

d ∈ I
d
,

(7)

xipid � 
mp∈Ip

xidmp + 
v d∈D

xidv d + 
d∈D

xidd, ∀i ∈ I, i
p ∈ I

p
, i

d ∈ I
d
, (8)

Table 2: Notations.

Sets
G Set of vehicles and requests.
L Set of links.
En Set of the requests optimized in the current optimization, ∀n ∈ N.
Enal Set of the newly arrived long-term reserved requests for the current optimization.
Enas Set of the newly arrived short-term reserved requests for the current optimization.
Enb Set of the unfinished reservation requests from the last optimization.
Enc Set of the unimplemented reservation requests from the last optimization.
Ip Set of pickup nodes ip.
Id Set of drop-off nodes id.
H Set of all kinds of nodes.
I Set of pickup and drop-off nodes, Ip, Id ∈ I.
O Set of initial station nodes.
D Set of final station nodes.
Op Set of nodes op.
Od Set of nodes od.
A Set of links except the virtual link (o, vd) and (o, d).
A1 Set of service links (ip, id).
A2 Set of relocation links (id, jp).
Parameters
N Optimization horizons in an operation day.
ip, id Pickup or drop-off node of request i, i ∈ En.
o Initial station node, o ∈ O.
d Final station node, d ∈ D.
op Initial node comes from ip node of last optimization.
od Initial node comes from id node of last optimization.
vd Sink node, vd ∈ D.
tip, tid Time that a vehicle arrives at node ip or id, ip ∈ Ip, id ∈ Id.
top, tod Time that a vehicle arrives at node op or od.
t (k, l) +e minimum travel time from node k to l.
dis (k, l) +e travel distance between node k and l.
tp (k, l) +e parking time on the link (k, l).
Tr +e time of the rolling horizon.
Th +e time of the considered horizon.
Ckl Cost of using link (k, l), k, l ∈ I.
Cli Cost of losing request i.
Cfld Fuel cost from node k to l, k, l ∈ I.
Cpkl Parking cost from node k to l, k, l ∈ I.
Cv Cost of vehicle depreciation.
F Fleet size.
lkl Link capacity of (k, l), k, l ∈ I.
θ Buffer time for vehicle relocation.
μd Distance limit for vehicle relocation.
μt Travel time limit for vehicle relocation.
fsl Proportion of short-term reservation requests to total requests.
Decision variables
xkl +e number of vehicles using link (k, l), k, l ∈ I.
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ip∈Ip

xoip + 
v d∈D

xovd + 
d∈D

xod � F, ∀o ∈ O, (9)



id∈Id

xidvd + 
o∈O

xovd + 
o∈O

xod + 

id∈Id

xidd � F, ∀d ∈ D, (10)

xkl ≥ 0, ∀k, l ∈ H (11)

Constraints (6) are constraints for link capacity.
Constraints (7)–(10) are flow conservation constraints.
For a pickup node ip ∈ Ip, its previous node can be the
initial station node o or another requests’ drop-off node jd,
and its subsequent node must be the corresponding
pickup node ip. For a drop-off node id ∈ Id, its previous
node must be the corresponding pickup node ip, and its
subsequent node can be the final station node d, sink node
vd, or other requests’ pickup node jp. Moreover, if a ve-
hicle visited a pickup node ip or a drop-off node id, it
indicates that request i must be served. For an initial
station node o, all of its available vehicles must be dis-
patched to requests, final station node d, or sink node vd.
For a final station node d or a sink node vd, all vehicles
must return from drop-off nodes or initial station nodes.
Constraints (11) are constraints for variables.

3.2. Rolling Horizon Framework and Continuity. A rolling
horizon framework is used to optimize the service of SAVs.
+e rolling horizon framework divides the operation day
into N horizons, and themodel described previously in every
horizon is optimized. +en, the optimization horizon rolls
forward with a specific rolling length and reaches the next
optimization horizon. +e rolling horizon framework is
shown in Figure 2. If the desired departure time of the
request is in the considered horizon, the request will be

handled in the current optimization, and the system opti-
mizes requests every Tr time length.

+e SAV reservation system in this paper allows
passengers to submit reservations at least 2 hours and up
to 24 hours in advance. +erefore, short-term reservation
requests will not enter the system until 120 minutes after
each optimization. In each optimization, there are two
types of requests that must be addressed: long-term and
short-term reservation requests. Compared with the op-
timization time, long-term reservation requests submitted
earlier are relatively fixed, while short-term reservation
requests submitted recently enter the system gradually.
Short-term reservation requests are submitted after the
start of the system, and the desired pickup time of requests
is 2 hours later. In each optimization, only recently
submitted requests with the desired departure time in the
considered horizon are regarded as short-term reserva-
tion requests. Short-term reservation requests with a
desired departure time after the considered horizon are
considered as long-term reservation requests relative to
the optimization time, because by the time such requests
are processed, there are already requests submitted earlier
than the optimization time. In Figure 3, the shadow part
represents short-term reservation requests considered in
each optimization when the considered horizon is less
than the sum of the rolling horizon and the minimum
reservation time. Requests with a departure time in the

Parking in the station

Depot

Origin 1

Origin 2

Waiting

Origin 3

Destination 3

Destination 1

Destination 2

Departure link

Service link

Relocation link

Ending link

Waiting link

Virtual link

Figure 1: Links of the reservation-based SAV traffic system.
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diagonal shadow area enters the system once, and requests
with a departure time in the vertical shadow area are
divided into two parts and enter the system in sequence.

+e length of the rolling horizon and considered horizon
affect the optimization matching results. As shown in
Figure 4, the considered horizon is 60 minutes; when t� 0,
vehicle 1 successively serves request 1 and request 4, vehicle
2 serves request 2, and vehicle 3 serves request 3. When
t� 15, request 5 reserves a trip with the departure time of 135
minutes. If the rolling horizon is 120 minutes, when the
system optimizes at time 120minutes, vehicle 1 is on the way
to the pickup node of request 4. Assume that vehicle 1 does
not change the path, the optimization result of vehicle 3 is to
serve request 5 after request 3 is completed. If the rolling
horizon is 90 minutes, the system performs a second op-
timization at time 90 minutes. Vehicle 1 is serving request 1,
since it has not reached the destination of request 1, and the
subsequent path of vehicle 1 can be changed. At this time,
the scheduling result is that vehicle 2 picks up request 4 after

serving request 2, and vehicle 1 waits in the same place after
serving request 1 and then it picks up request 5. +erefore,
different rolling horizons bring about different scheduling
results due to the vehicle states. A smaller rolling horizon can
ensure a quicker response to short-term reservation requests
if the considered horizon is large enough. +e optimal
schedule might be better if more future requests are
included.

At each optimization moment after the first optimiza-
tion, some links might be in an unfinished state, and vehicles
can be traveling between nodes. To ensure the continuity of
service, it is necessary to clarify the initial positions of ve-
hicles in the next optimization and the time of arrival at
these nodes; that is, the vehicles would start at that time in
the next optimization and travel from the initial nodes to
complete the subsequent services. +erefore, we created new
link types: (od, ip), (op, id), (od, vd), and (od, d). +e origins
and possible link types for the unfinished links in the nth
optimization are shown in Figure 5.

Considered horizon
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Considered horizon

Rolling
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Optimization
times

Time (min)

Time (min)

Time (min)

Rolling
horizon

n=1
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0

Figure 2: +e rolling horizon framework.
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Figure 3: +e rolling horizon framework of short-term reservation requests.
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In a new optimization, op and od are the initial nodes,
which means there are no upstream links to reach them.
Link (id, vd) or (od, vd) can be understood as the vehicle
stopping at the same place after dropping off a request
until the next service. Links (o, ip), (id, jp), and (od, jp) with
pickup times larger than the next optimization time are
added to the set of unimplemented reservation requests
from the previous optimization Enc to achieve better
optimization results. Links (id, d) and (o, d) only exist in
the final optimization, so their continuities are not con-
sidered. +us, in the nth optimization, the request that

needs to be optimized is En � Enal ∪Enas ∪Enb ∪Enc , where
Enb and Enc include both short-term and long-term res-
ervation requests.

Based on service continuity, the model is modified as
follows:

lkl �

1, if (k, l) ∈ A,

F, if (k, l) � (o, v d), n � 1,

Fo, if (k, l) � (o, v d)or(o, d), 1< n≤N,

⎧⎪⎪⎨

⎪⎪⎩
(12)

where Fo is the number of vehicles that pass through link (o,
vd) after each optimization; it equals the number of vehicles
that stop at the initial stations and are not allocated to travel
demands.

Due to the addition of new types of links, the cost is
changed to

Ckl �

Cv + Cfkl · dis(k, l), if k � o, l � i
p
,

−Cli , if (k, l) ∈ A1,

Cfkl · dis(k, l) + Cpkl · tp(k, l), if (k, l) ∈ A2,

Cfkl · dis(k, l) + Cpkl · tp(k, l), if k � o
d
, l � d,

Cpkl · dis(k, l), if k � o
d
, l � v d,

Cfkl · dis(k, l), if k � i
p
, l � d,

0, others,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

where link (op, id) is added to A1 and link (od, jp) is added to
A2. In the nth optimization, for a link that transforms to (od,
d), (od, vd), or (od, jp), if the drop-off time of its original
corresponding node is less than nTr, the parking cost from tid
to tod must be considered.

When n> 1, constraints (7) should be modified to
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Figure 4: Comparison of different rolling horizon scheduling results.

Figure 5: Processing scheme for unfinished links.
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o∈O

xoip + 

od∈Od

xodip + 

jd∈Id

xjdip � xipid , ∀i ∈ I, i
p ∈ I

p
, i

d ∈ I
d

(14)

Vehicles that can serve request i come not only from the
current optimization but also from the previous optimiza-
tion. Moreover, when n> 1, constraints (15) and (16) must
be added. In each optimization, vehicles on node od have one
of the following three states: traveling to the next request,
waiting for the next request, or driving to the station. Ve-
hicles at node op must finish this request.


ip∈Ip

xodip + 
v d∈D

xodvd + 
d∈D

xodd � 1, o
d ∈ O

d
, (15)



id∈Id

xopid � 1, o
p ∈ O

p
. (16)

4. Case Study

+emodel was applied to Delft in the Netherlands. +e data
came from the Dutch mobility dataset (MON 2007/2008),
which was provided by the Dutch government for academic
research and could be obtained free of charge on the Internet
[36]. By filtering the trips completed by taxis and cars within
the surveyed day in Delft city, 1112 available travel demands
were obtained from 22,240 data points. +e dataset included
information on travel requests and traffic networks. Short-
term and long-term reservation requests were randomly
selected from the data in proportion. As shown in Figure 6,
there are 46 points and 66 links in the network. +e initial
stations of vehicles are node 15, node 16, node 19, node 24,
and node 27, which are located in the middle and sur-
roundings of the study area, and the vehicles are evenly
distributed at the five stations. According to the time of
travel data, the running time of the system is from 6 : 30 to
24 : 00, and the time step is 1minute. +e buffer time is
related to the link length. +e default value of the vehicle
relocation search limit is set to a large number to obtain a
larger search scope, and ridesharing allows no more than 2
passengers. Table 3 shows the parameter values.

+e effect of different parameter values on the system
scheduling results was tested. +e rolling horizon was varied
from 15 to 120 minutes, the considered horizon was varied
from 15 to 360 minutes, the test interval was 15 minutes, and
the considered horizon of each scene could not be less than
the rolling horizon. +e maximum rolling horizon was
considered to be 120 minutes since travel requests in the
SAV reservation request system had to be submitted at least
2 hours in advance. Moreover, the maximum value of the
considered horizon was 6 hours. MATLAB and a PC with
128GB memory and an Intel (R) Xeon (R) Gold 5220 CPU
@ 2.20GHz 2.19GHz processor were used.

5. Results and Discussion

5.1. Impact of the Optimization Horizon on the Costs. As
shown in Table 4, the parking cost of the SAV reservation
request system includes four components. +e results of

total parking cost and parking costs 1, 2, 3, and 4 are shown
in Figure 7. +e total parking cost with ridesharing is
influenced by both the rolling horizon and the considered
horizon; moreover, the total parking cost is greatly affected
by parking cost 4. Even though parking costs 1, 2, and 3 are
smaller when the rolling horizon is small, parking cost 4 is
larger, which makes the total parking cost have a similar
trend to that of parking cost 4: decreasing with an increase in
the rolling horizon. Furthermore, as the rolling horizon
increases further, the change in total parking cost becomes
less obvious. When the rolling horizon is equal to the
considered horizon, since the demand of the next optimi-
zation is not considered completely in each optimization, the
total parking cost is small and will change significantly when
the considered horizon begins to increase. +e total parking
cost decreases and tends to become stable as the considered
horizon increases. Parking costs 1 and 2 increase sharply
when the considered horizon begins to exceed the rolling
horizon because the link related to the subsequent request
suddenly increases, as does the parking cost. However, as the
considered horizon continues to increase, the optimization
results of parking costs 1 and 2 gradually stabilize. In ad-
dition to the influence of parking time, parking cost 4 is
determined mainly by the number of unscheduled vehicles,
that is, the number of repeated od nodes. Vehicles become
more likely to be used by subsequent requests as the con-
sidered horizon increases, which leads to a decrease in the
number of repeated od nodes and gradual flattening, and
parking cost 4 also decreases. As the rolling horizon in-
creases, parking cost 4 decreases, and the gap becomes less
obvious because od nodes are easier to repeat when the
optimization interval is small.

Figure 8 shows the fuel cost results, and meanings of fuel
cost 1–6 are shown in Table 4. +e total fuel cost is affected
by the considered horizon and rolling horizon. As the
considered horizon increases, the total fuel cost first surges
and then stabilizes, while the rolling horizon has a smaller
effect. +ese results are caused by the costs of different links.
+e sum of fuel costs 1 and 2 in different rolling horizons
and considered horizons is basically fixed because they
represent the fuel cost generated by serving the demand. So,
their images are symmetrical. Fuel cost 1 increases with
increasing rolling horizon, whereas fuel cost 2 decreases.
Because the optimization interval is large when the rolling
horizon is large, the request is more likely to be served in the
previous optimization. When the considered horizon is
small, requests for the next optimization period are not
considered or less considered, there are no or only a small
number of op nodes; thus, fuel cost 2 is small at the be-
ginning, and the subsequent optimization results are stable,
while fuel cost 1 shows the opposite trend. +e change in
fuel costs 3 and 4 with the considered horizon is also
related to the number of op nodes. It is easier to generate
the corresponding links of fuel costs 3 and 4 at the be-
ginning of considering the request of the subsequent
optimization period, and the optimization result is stable
when the considered horizon is approximately 60 minutes
larger than the rolling horizon. +e number of new de-
mands in each optimization decreases and the fuel cost 4 is
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smaller as the rolling horizon increases. +e particular
trend of the rolling horizon equal to 120 minutes is due to
a large number of unsatisfied requests, as detailed in the
next paragraph. +e rolling and considered horizon have
little influence on fuel cost 5, 6, and 7, so they are not
plotted.

+e fare is calculated based on the travel distance. As
shown in Figure 9, the fare is very small when the considered
horizon is equal to the rolling horizon. Because the pickup
time of some reservation requests is within a short time after
the optimization time, especially short-term reservation
requests, there is a high probability that no suitable vehicle is

Figure 6: Network of Delft, the Netherlands.

Table 3: Parameter values.

F� 1000 Cli � 100 euro/km
θ� 4min/km in peak hours Cfkl � 0.1 euro/km
θ� 2min/km in off-peak hours Cpkl � 0.01 euro/min
fsl � 0.5 Cv � 20 euro/vehicle/day
td � 10min ta � 10min

Table 4: Components of parking costs and fuel costs.

Components Description
Parking cost 1 +e vehicle on link (id, jp) arrives at the pickup node of the request in advance and waits for departure.
Parking cost 2 +e vehicle on link (od, jp) waits for the next demand to depart.
Parking cost 3 +e vehicle finishes the request and parks in place until the next optimization.
Parking cost 4 +e idle vehicle parks in place and is not dispatched.
Fuel cost 1 Fuel cost for vehicles traveling on link (ip, id).
Fuel cost 2 Fuel cost for vehicles traveling on link (op, jd).
Fuel cost 3 Fuel cost for vehicles traveling on link (id, jp).
Fuel cost 4 Fuel cost for vehicles traveling on link (od, jp).
Fuel cost 5 Fuel cost for vehicles traveling on link (o, ip).
Fuel cost 6 Fuel cost for vehicles traveling on link (id, d).
Fuel cost 7 Fuel cost for vehicles traveling on link (od, d).
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Figure 7: Continued.
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Figure 7: Results of parking costs.
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available for service. Fewer requests can be served, so the fare
is naturally less. When the rolling horizon is 120 minutes,
there are still many requests with a pickup time shortly after
the optimization that cannot be served, so the results are
much smaller than those of other rolling horizons. +e
reason is that the rolling horizon is the same as the shortest
reservation time, even if the considered horizon is increased.
In other rolling horizons, all the submitted requests can be
served when the considered horizon increases to a certain
value; therefore, the difference between the stable results is
very small.

+e total cost of system dispatching is the sum of the fuel
cost, parking cost, vehicle depreciation cost, and penalty
cost. As shown in Figure 10, the total cost decreases with
increasing rolling horizon and gradually stabilizes. +e total

cost increases due to the high penalty when the rolling
horizon is 120 minutes. With an increase in the considered
horizon, the penalty cost and parking cost decrease, and the
total cost also decreases.

5.2. Impacts of the Optimization Horizon on Ridesharing and
Service. As shown in Figure 11, a smaller rolling horizon
and larger considered horizon can decrease VMT. Because
more subsequent requests can be considered, the optimi-
zation scheme can be adjusted rapidly. In addition, as shown
in Figure 12, taking a rolling horizon of 60 minutes and a
considered horizon of 120minutes as an example, the system
scheduling cost is substantially reduced after considering
ridesharing.
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Figure 8: Results of fuel costs.
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+e proportion of short-term reservation requests af-
fects the quantity of unserved demand when the rolling
horizon is 120 minutes. As shown in Figure 13, with an
increase in short-term reservation requests, the amount of
unserved demand increases. When the considered horizon
is 120 minutes, some reservation requests with a pickup
time close to the optimization time cannot find suitable
vehicles, so the unserved demand is the same and not
affected by the proportion of short-term reservation re-
quests. With an increase in the considered horizon, the
long-term reservation requests between the considered
horizon and the rolling horizon in each optimization can be
serviced, resulting in a considerable difference in the

quantity of unserved demand between the considered
horizon of 120 and 135 minutes.

5.3. Impacts of Buffer Time and Vehicle Relocation Search
Limit. As shown in Figure 14, when the rolling horizon is 60
minutes, the network size increases with an increase in the
considered horizon because more requests and more pos-
sible links must be considered. Table 5 shows the specific
value of network change, where the network size is reduced
compared with when the buffer time is 4min/km during
peak hours. +is result indicates that increasing the buffer
time could greatly reduce the network size, thereby reducing
the system operation time. However, as shown in Figure 15,
this approach will increase the overall operation cost of the

50000

48000

46000

44000

42000

40000

38000

36000

To
ta

l f
ar

e (
eu

ro
)

34000
30 60 90 120 150 180

Th (min)

210 240 270 300 330 360

Tr=15
Tr=30
Tr=45
Tr=60

Tr=75
Tr=90
Tr=105
Tr=120

Figure 9: Results of fare.

5000

To
ta

l c
os

t (
eu

ro
)

3000

3500

4000

4500

30 60 90 120 150 180

Th (min)

210 240 270 300 330 360

Tr=15
Tr=30
Tr=45
Tr=60

Tr=75
Tr=90
Tr=105
Tr=120

Figure 10: Results of total cost.

40000

35000

30000

25000

20000

15000

10000

D
ist

an
ce

 re
du

ce
d 

by
 ri

de
sh

ar
in

g 
(k

m
)

5000

30 60 90 120 150 180

Th (min)

210 240 270 300 330 360

Tr=15
Tr=30
Tr=45
Tr=60

Tr=75
Tr=90
Tr=105
Tr=120

Figure 11: Results of distance reduced by ridesharing.

4000

C
os

t (
eu

ro
)

3000

2000

1000

0
Depreciation Fuel cost Parking cost

No ridesharing
Ridesharing

Figure 12: Cost comparison between ridesharing and no
ridesharing.

Journal of Advanced Transportation 15



system because a large buffer time makes it more difficult for
the vehicle to find an appropriate request when relocating.
+e fuel cost will decrease, but the vehicle will stop for a
longer period of time and the parking cost will increase. Part
of the requests also needs vehicles from the station because

vehicles that have completed service cannot satisfy them,
thereby increasing the fleet size and the total dispatching
cost. +erefore, if the increase in travel time caused by
congestion is not considered, a more optimistic cost will be
obtained, which deviates from reality.
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Table 5: +e influence of buffer time on network size when the rolling horizon is 60 minutes.

Tr � 60min
θ Th (min)
min 60 90 120 150 180 210 240 270 300 330 360
8 4913 4908 7066 5954 6559 5571 6013 7644 9108 7731 7407
12 8087 8122 12280 9592 12172 10206 12713 16161 21400 19760 19364
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+e relocation travel time limit and distance limit of the
basic scenario were set to 50000 minutes and 50000 meters,
respectively. A very large travel time limit does not affect the
network size, so the relocation was not limited by the travel
time or distance limit. Taking a rolling horizon of 60 minutes

as an example, as shown in Figures 16 and 17, setting smaller
limits for vehicle relocation can effectively reduce the net-
work size of the system, especially when the considered
horizon is large. However, as shown in Figures 18 and 19, the
same as when buffer time is considered, the price of reducing
the network size is an increase in the total system operation
cost. +e results of the travel time limit of 60 minutes and 70
minutes in Figure 18 coincide.
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6. Conclusion

Based on the integer linear programming model of SAV
reservation request scheduling and continuity consideration
of using a rolling horizon to optimize the request, the in-
fluence of different rolling horizons and considered horizons
on the system scheduling results was tested in this study.
When the considered horizon is just larger than the rolling
horizon, it has a considerable impact on the total system
costs, which then become essentially stable. A smaller rolling
horizon can better link requests, but the overall effect is not
satisfactory. A large rolling horizon can reduce the operation
cost of the system, and it should be controlled to be less than
the minimum reservation time; otherwise, it will cause a
large penalty cost. Ridesharing can substantially reduce the
operating cost of the system, and a smaller rolling horizon
and a larger considered horizon can better reduce VMT.
+erefore, compared with previous studies, a smaller rolling
horizon does not necessarily indicate a better performance.
+e goal that needs to be achieved must be considered. +e
proportion of short-term reservation requests affects the
service level when the rolling horizon exceeds the minimum
reservation time. Considering the large buffer time and
vehicle relocation search limits, the network size can be
reduced, and the operation cost increases. Possible matching
links can be fully searched to achieve a best scheduling
scheme when the number of SAV reservation requests is not
large. As the demand of the SAV reservation increases, the
search range of relocation can be reduced appropriately to
achieve better scheduling timeliness.

+is study has several limitations. First, this paper used
only the buffer time to express the congestion state of the
road network at peak hours and off-peak hours. Second, the
matching problem of SAV reservation request is considered
as a pickup and delivery problem, and specific vehicle
routing is not carried out. To make a more accurate con-
sideration of travel time, future studies can combine the

vehicle routing problem with the real traffic flow model on
the premise of calculation timeliness.
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