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High-speed trains powered by electricity have low-carbon emissions and are the important intercity travel conveyances conducive
to sustainable social development. The sustainable development of high-speed railway needs to improve the operating revenue
and the resource utilization. Joint optimization of dynamic pricing and ticket allocation are often used to improve high-speed
railway revenue and seat utilization in the literature. However, the uncertainty of demand makes joint decision-making difficult
to be accurate. The risk preference of decision-makers also deeply affects the effect of joint decision-making. To cope with the
uncertain demand and test the effect of operator risk preference on joint decision-making, this paper used chance constrained
programming theory to optimize dynamic pricing and ticket allocation simultaneously. The presale period is divided into
several stages. In each stage, ticket demand follows the normal distribution and changes with the price elasticity. Passengers
choose tickets according to the multinomial logit model. The chance constrains reflect operators’ risk preference. The chance
constrained stochastic nonlinear programming is proposed for joint decision of dynamic pricing and ticket allocation. Then,
the combination algorithm of particle swarm optimization algorithm and mixed-integer linear programming was designed to
solve the model. Finally, the numerical experiments according to actual operating scale were design to validate the model and
algorithm. The results indicate that under different confidence levels, the proposed model and algorithm increase the total
revenue by 11.84%-13.40% compared with the ticket allocation under the single fixed fare. The model can help the high-speed
railway operators understand the impact of risk preference on joint decision-making, and provide decision support for them.

1. Introduction

With the growth of social economy and breakthrough of
technological innovation, the high-speed railway (HSR) has
developed rapidly in China over the past more than 20 years.
By the end of 2020, the operating length of HSR has reached
38,000 kilometers. With the advantages of high safety, com-
fort, convenience, and environmental-friendly, the HSR has
become the important passengers’ travel mode. A statistical
communiqué from China State Railway Group Co., Ltd
(China Railway), shows that the national railway passenger
volume reached 2.167 billion in 2020. And the passenger
volume of HSR accounts for about 70% of the passenger vol-
ume of railway transportation. However, behind the rapid
development of HSR, China Railway has suffered losses year

after year. Because the revenue is far from covering the high
construction and operating costs, so, improving revenue is
crucial for the sustainable development of HSR and is con-
cerned by operators and researchers. Since 2016, China Rail-
way has obtained pricing rights for HSR from National
Development and Reform Commissions and met the condi-
tions to implement revenue management strategy.

Revenue management technologies, including seat
inventory control [1–4], dynamic pricing [5–8], and their
joint optimization [9–13], are used to improve the revenue
of railway operators. Seat inventory control is aimed at allo-
cating optimal seat volumes for each fare class. Reasonable
seat inventory control plays an important role in adjusting
supply. Dynamic pricing decides optimal fare for each time
to maximize the total revenue. Dynamic pricing strategy
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can adjust and stimulate passenger demand. Therefore,
dynamic pricing and ticket allocation are two significant
aspects to achieve the balance between supply and demand,
which is beneficial to reduce the waste of transportation
capacity and improve the income. Therefore, the joint opti-
mization of the two has been explored a little. However,
the uncertainty of demand makes joint decision-making dif-
ficult to be accurate. The existing literature often uses aver-
age demand or expected value according to a certain
distribution to deal with demand uncertainty. And the oper-
ator’s risk preference was not considered in the joint deci-
sion optimization.

To the best of our knowledge, the impact of operator’s
risk preference on joint decision of dynamic pricing and
ticket allocation is not considered in the existing literature.
Faced with unknown demands, the operators with different
risk appetites will make different decisions. Risk-taking
decision-makers tend to overestimate demand, while conser-
vative decision-makers tend to underestimate demand.
Therefore, this research tries to fill this gap by introducing
chance constrained programming (CCP) into a joint deci-

sion model. We consider the situation of multiple trains
operating on a line. The presale period is divided into several
stages according to the change law of price elasticity of
demand. Passenger demand obeys the normal distribution
and passengers select the ticket according to the passenger’s
choice behavior model. We use the confidence level to reflect
the risk preference of operators and propose a nonlinear
chance constrained programming model to optimize
dynamic pricing and ticket allocation simultaneously. The
particle swarm optimization (PSO) algorithm and integer
linear programming are combined to solve the model effi-
ciently in speed and quality. The model and algorithm can
provide decision support for railway operators in daily oper-
ation management.

2. Literature Review

Revenue management (RM) originated in the American avi-
ation industry in the late 1970s. With abolishing air traffic
control and opening of aviation market, airline company
could determine price and schedule flights. Single and
expensive ticket price cannot adapt to fierce market compe-
tition and rapid growth in passenger demand. To increase
revenue, RM theory was introduced into the field of aviation.
In 1972, Littlewood [14] proposed a discount cost criterion
for air ticket reservation and the second-order classification
model. This research prepared the ground for more mathe-
matical models applied to RM. Belobaba [15] described
application of the Expected Marginal Seat Revenue (EMSR)
decision model to make reservation limits regularly before
the date of flight departure. Then, a simple instance was
given to verify the effectiveness of the probability model.

1: Input: The maximum number of iterations tmax, learning factor c1 and c2, inertia weight ω.
2: Generate randomly N particles, position matrix sð0Þ, velocity matrix vð0Þ, pið0Þ⟵ sið0Þ,pgð0Þ =max fpið0Þg
3: fort = 0tot = tmaxdo
4: fori = 1 to i =Ndo
5: Calculate λh,w,k according to equation (1), (2), (3), (4);
6: Input piðtÞ, λh,w,k and σh,w,k into the joint model(8), (10)–(14), obtain the ticket allocation quantity xiðtÞ using CPLEX;
7: Compute f itnessiðtÞ;

Iff itnessiðtÞ > f itnessiðt − 1Þ
Update piðtÞ and pgðtÞ, record the price piðtÞ and the corresponding ticket allocation scheme xiðtÞ;
else
The optimal value still adopts the results obtained in generation t − 1.

8: Update vðtÞ and pðtÞ according to equation (15) and (16), meanwhile ensure pðtÞ within the allowable range of ticket price.
9: Output: The ticket price scheme p, the ticket allocation scheme x, the optimal fitness function value f itness.

Algorithm 1: The algorithm steps.

Station
1 2 3 4 5 6 7 8

Train A

Train B
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Train D

Figure 1: The train service network.

Table 1: Price elasticity coefficient ηk.

Time period ηk
1 3.5

2 3

3 2.5

4 2

5 1
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On the basis of previous studies, Kimes [16] put forward a
comprehensive and accurate definition of RM-4R theory,
that is, to provide the right products or services at the right
time and place with the right price to maximize the income
of enterprises under resource constraints. Mcgill and Ryzin
[17] did a survey to summarize the development of RM the-
ory. They subdivided revenue management into seat inven-
tory control, pricing, overbooking, and forecasting.
Following the successful application in aviation, the RM
has gradually formed a theoretical system. Then, RM theory
was quickly applied and promoted in service industry such
as hotels, banking, and transportation.

Ticket allocation is a specialization of inventory control
which belongs to an essential part of revenue management.
Scholars have done a lot of research and exploration. Cianci-
mino et al. [1] introduced revenue management into railway
passenger transport for the first time, and a linear program-
ming model and a probabilistic nonlinear programming
model of seat allocation are established. Chang and Yeh
[18] took an intercity rail line as research object; a two objec-
tive seat allocation model is constructed to maximize enter-

prise revenue and minimize passenger discomfort. The fuzzy
mathematical programming method is used to solve the
problem. A HSR to be built is used to verify the effectiveness
of the multiobjective planning model. Ongprasert [19]
adopted passenger choice behavior model to forecast the
demand and determine the number of discount tickets.
The discount tickets and seat allocation model are combined
on the single-line-multistop line, which improves the
income. You [2] considered the two-level fare system of full
price ticket and discount ticket and constructs a nonlinear
programming model. The PSO algorithm was designed to
solve booking limit problem, which generated initial parti-
cles based on a solution under the determined demand. A
numerical instance indicates that the heuristic algorithm is
efficient and accurate. Wang et al. [3] used the multinomial
logit (MNL) model to describe the probability of passengers
choosing different products and established a single-stage
and a multistage model to solve the problem of railway seat
allocation. Li [20] used CCP to deal with stochastic demands
and studies the optimization problem of ticket allocation
under the certain decision preference. Yan et al. [4]

Table 2: Utility parameter dh,w, th,w, pw, average demand λw, and variance of demand σ2.

OD
dh,w (yuan)/th,w (minute)

λw σ2w pw (yuan)
Train A Train B Train C Train D

1 0/0 0/0 31.6/73 32.8/75 455 42 144.5

2 37/82 40.4/106 0/0 40.9/101 249.7 44.1 184.5

3 0/0 0/0 62.9/159 62.9/153 241.9 46.3 284

4 0/0 67.7/171 0/0 68.5/173 387.2 48.6 309

5 0/0 0/0 98.3/256 98.3/250 175.5 51.1 443.5

6 0/0 114.7/312 0/0 116/312 368 53.6 523.5

7 110.6/268 121.2/346 122.5/342 122.5/342 411.5 56.3 553

8 0/0 0/0 0/0 8.9/26 168.6 42 40

9 0/0 0/0 30.9/86 30.9/78 282 44.1 139.5

10 0/0 0/0 0/0 36.4/98 162.7 46.3 164.5

11 0/0 0/0 66.2/183 66.2/175 199.8 48.6 299

12 0/0 0/0 0/0 84/237 144 51.1 379

13 0/0 0/0 90.5/269 90.5/267 297.5 53.6 408.5

14 0/0 0/0 0/0 22/52 181.4 42 99.5

15 0/0 27.3/65 0/0 27.6/72 208.4 44.1 124.5

16 0/0 0/0 0/0 57.4/149 159.7 46.3 259

17 0/0 74.3/206 0/0 75.1/211 202.6 48.6 339

18 73.7/186 80.8/240 0/0 81.6/189 172.2 51.1 368.5

19 0/0 0/0 0/0 5.5/20 254 42 25

20 0/0 0/0 35.3/97 35/97 181.6 44.1 159.5

21 0/0 0/0 0/0 52.5/159 299.5 46.3 239.5

22 0/0 0/0 59.6/183 59.6/189 406.3 48.6 269

23 0/0 0/0 0/0 29.5/77 455 42 134.5

24 0/0 42.9/141 0/0 47/139 249.7 44.1 214.5

25 0/0 48.8/175 0/0 53.5/169 241.9 46.3 244

26 0/0 0/0 0/0 17.5/62 387.2 42 80

27 0/0 0/0 24/86 24/92 175.5 44.1 109.5

28 0/0 5.9/34 0/0 6.5/30 368 42 29.5
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constructed a probabilistic nonlinear programming model
for HSR combing flexible train composition with seat inven-
tory control. Compared with fixed train composition, this
scheme improves the income of railway enterprises. It pro-
vides theoretical support for ticket allocation under flexible
train composition.

Dynamic price is an essential tool of adjusting and regu-
lating passenger flow. The study of dynamic pricing in rail-
way is relatively late. Vuuren [5] studied the differential
pricing of trains in peak hours and off-peak hours. This
paper points out that maximizing social welfare is mainly
considered in peak pricing. In the off-peak period, we should
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Figure 2: The convergence of total revenue.
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consider increasing the occupancy rate to improve the
income. Gallego and Wang [21] used nest logit model to
express passenger choice behavior and considered price sen-
sitivity and arbitrary nest coefficient to make differential
pricing for multiple trains. Yang et al. [6] introduced a
cumulative distribution function of the maximum allowable
price and discretized the whole presale time. A dynamic
pricing model for HSR is constructed to determine the ticket
price and selling time to satisfy the demand of different pas-
sengers. Given the seat inventory and presale range, Zhang

et al. [7] established a two-stage dynamic pricing model of
HSR considering individuals and groups, respectively. Qin
et al. [8] classified passengers according to their sensitivity
to time, price, and other relevant factors. Based on the
expected travel cost, this paper constructed the differential
pricing model of HSR by using the prospect theory. The sim-
ulated annealing algorithm is used to solve the model under
the conditions of peak passenger flow and off-peak passen-
ger flow. Zhan et al. [22] studied railway timetable from
the perspective of promoting social equity. They established
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Figure 4: Total revenue under different demand.
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a mixed-integer linear programming model considering
enterprise profit, general travel cost of passenger, and gov-
ernment decision-making. It involved using dynamic pricing
strategy to reduce the travel cost of low-income groups so
that they can enjoy the same services as high-income groups.
Chou et al. [23] constructed a bilevel model to explore opti-
mum ticket fares for HSR. The upper-level model is to min-
imize the generalized cost of users considering passenger
flow assignment. The lower-level model is to maximize oper-
ator’s revenue containing passenger flow and the range of
ticket fare transmitted by the upper-level model.

Pricing strategy and ticket allocation affect each other.
The research of optimizing income considering ticket price
and ticket assignment simultaneously has gradually rise in
recent years. Hetrakul and Cirillo [24] put forward MNL
model and latent class model to describe passenger choice
behavior and established a joint optimization model of pric-
ing and ticket allocation in railway for the first time. They
considered the demand as deterministic. Lin [9] raised a
bilevel programming HSR model for the joint optimization
ticket price and seat allocation. The upper model is a nonlin-
ear mathematical programming model aiming at maximiz-
ing the income of enterprises. The lower model is a two-
stage stochastic programming model. The goal of the first
part is to maximize the enterprise income, and the second
part is to minimize the enterprise cost. Zhao et al. [10] con-
structed a joint optimization model to maximize revenue
considering the choice behavior of passengers among differ-
ent transportation modes under competition among road,
air, and railway transport. They designed a hybrid heuristic
algorithm to solve it based on artificial bee colony algorithm.
Xu et al. and Qin et al. [11, 12] considered the price elasticity
of demand, divided the entire presale period into several
ticket selling stages, and built a joint optimization model
based on the passenger choice behavior. Xu et al. [13] con-
sidered that the demand is affected by the service price and
then established the joint optimization model of price and
ticket allocation in the railway. Because the model is non-
concave and nonlinear, they developed the linearization of
objective function and some constraints by taking logarithm.
Furthermore, the other nonlinear constraints are linearized
by relaxation. The final model is transformed into a
mixed-integer linear programming which is easy to solve.
In the joint decision optimization study of dynamic pricing
and ticket allocation, the influence of decision-maker’s pref-
erence has not been considered.
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This paper introduces CCP to build the joint decision
model of dynamic pricing and ticket allocation. The theoret-
ical contribution and practical value of this paper can be
summarized as follows:

(1) Considering stochastic demand and the risk appetite
of operators, this paper proposed the joint decision
model of dynamic pricing and ticket allocation with
CCP theory for HSR. By adjusting the confidence
level, the model can optimize the ticket price and
seat allocation scheme simultaneously under differ-
ent risk preferences. The model can help the HSR
operators understand the impact of risk preference
on joint decision-making and provide decision sup-
port for them

(2) This paper provides a new solution idea for the joint
decision-making stochastic nonlinear programming
model considering stochastic demand, elastic
demand, and passenger choice behavior. We use
CCP to transform the stochastic programming
model into a deterministic programming model.
Then, the nonlinear model is decomposed into two
layers using particle swarms. The upper layer uses
particle swarms to iteratively optimize ticket prices,
while the lower layer uses CPLEX to accurately solve
the ticket allocation optimization model. The hybrid
algorithm has satisfactory solution quality and solu-
tion speed

(3) Numerical experiments show that under different
levels of demand, demand fluctuations, and risk
preferences, joint decision-making can achieve
higher returns than ticket allocation under fixed

fares. As the confidence level increases, the total rev-
enue decreases. When the confidence level equals to
0.5, the operator is in a neutral state and uses the
average demand to make decision

The rest of the paper is organized as follows. The next
part reports the problem description and propose the joint
decision model. The principle of PSO algorithm and specific
procedures of hybrid algorithm to tackle the problem are
given in Section 4. Section 5 performs numerical experi-
ments to verify the feasibility of model and algorithm and
analyzed the experimental results in detail. The conclusions
are obtained in the last part.

3. Model

Suppose a HSR line with several stations, serving the travel
demand between origins and destinations. W denotes the
set of the OD pairs and H denotes the set of the trains.
The whole presale period is divided into K stages according
to the demand elasticity. Set the period when the presale
starts as the first stage, and the train departs at the end of
the Kth stage. The HSR operators need to decide the fare
and ticket allocation for each train and each OD in each
stage to maximize the total revenue. Passengers choose ticket
products according to the choice behavior. Demand is
dynamic influenced by price and changes randomly. The
operator has certain risk appetite. Under these conditions,
the collaborative model is proposed to optimize fares and
ticket allocations simultaneously. We introduce the symbol
<h,w, k > to uniquely identify ticket products, which means
train h serves OD pair w, and the corresponding ticket is
sold at stage k. In the following, a collaborative optimization
model is established based on describing the passenger
choice behavior, dynamic elastic demand, and decision-
maker preferences.

3.1. Passenger Choice Behavior. There is a competitive rela-
tionship between trains on the same OD in the same time
period. The mean passenger flow qw,k is allocated to the
available trains according to passenger choice behavior.
With reference for the results of previous studies [11, 25,
26], passengers mainly consider the factors of price, depar-
ture time, and travel time to make a choice. The utility of
the product <h,w, k > can be described by

Vh,w,k = −τth,w − ph,w,k − dh,w,∀h ∈H,w ∈W, k = 1,⋯, K ,
ð1Þ

where th,w is the travel time of train h for the OD pair w.
ph,w,k represents the fare of train h serving in OD w at the
kth time period. dh,w denotes passengers’ willingness to pay
for the preferred departure time and can be quantified using
SP surveys [23]. τ indicates passenger’s time value. The
MNL model can help us get the choice probability of each
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train, as shown in the following equation:

φh,w,k =
exp θVh,w,kð Þ

∑h′∈Hw
exp θVh′ ,w,k
À Á ,∀h ∈H,w ∈W, k = 1,⋯, K ,

ð2Þ

where Hw denotes the set of trains serving OD pair w. φh,w,k
is the probability when <h,w, k > is chosen by passengers. θ
indicates the familiarity of the passengers with each product,
and the parameters τ and θ can be estimated using the max-
imum likelihood method based on historical data or
questionnaires.

The mean demand of <h,w, k > is shown in the follow-
ing equation:

λh,w,k = qw,kφh,w,k,∀h ∈H,w ∈W, k = 1,⋯, K , ð3Þ

where λh,w,k denotes mean demand of <h,w, k > .

3.2. Dynamic Elastic Demand. The buying demand for
tickets is influenced by ticket prices. The price elasticity is

usually used to describe the relationship between the buying
demand for tickets and their prices. In the presale period, the
closer to the departure time, the less passengers are sensitive
to the price. Price sensitivity is expressed by elasticity param-
eter ηk and η1 > η2 >⋯>ηK . Different OD markets will have
different price elasticities. Different ticketing stages can be
divided for different OD pairs according to the law of price
elasticity. Here, for the convenience of model expression,
the ticketing stages of all OD pairs are divided uniformly.
The exponential function is used to describe the demand-
price relationship, as in

λh,w,k = λ0h,w,k exp −ηk
ph,w,k
p0h,w,k

− 1
 !" #

,∀h ∈H,w ∈W, k = 1,⋯, K ,

ð4Þ

where p0h,w,k is the initial price for <h,w, k > and the corre-

sponding mean demand is λ0h,w,k. ph,w,k is the changed price
for <h,w, k > , and λh,w,k is the corresponding mean

Table 3: Ticket price scheme for confidence level α = 0:9.

1-A 1-B 1-C 1-D 2-A 2-B 2-C 2-D 3-A 3-B 3-C 3-D 4-A 4-B 4-C 4-D 5-A 5-B 5-C 5-D

1 0 0 85 83 0 0 111 128 0 0 144 136 0 0 174 176 0 0 204 206

2 98 103 0 122 146 137 0 155 171 185 0 192 213 218 0 234 259 249 0 263

3 0 0 160 142 0 0 243 225 0 0 274 262 0 0 335 350 0 0 387 400

4 0 205 0 177 0 237 0 247 0 305 0 337 0 354 0 361 0 462 0 432

5 0 0 297 267 0 0 333 321 0 0 421 433 0 0 511 531 0 0 627 636

6 0 324 0 345 0 428 0 469 0 535 0 511 0 633 0 603 0 689 0 750

7 277 309 342 342 403 456 455 452 542 560 542 583 625 683 677 658 776 805 749 775

8 0 0 0 27 0 0 0 32 0 0 0 41 0 0 0 49 0 0 0 53

9 0 0 90 83 0 0 117 119 0 0 135 135 0 0 170 162 0 0 199 204

10 0 0 0 89 0 0 0 140 0 0 0 168 0 0 0 210 0 0 0 225

11 0 0 195 197 0 0 242 241 0 0 293 277 0 0 366 338 0 0 427 401

12 0 0 0 212 0 0 0 281 0 0 0 371 0 0 0 436 0 0 0 551

13 0 0 239 256 0 0 310 335 0 0 418 408 0 0 490 508 0 0 597 599

14 0 0 0 57 0 0 0 87 0 0 0 104 0 0 0 115 0 0 0 133

15 0 73 0 75 0 99 0 97 0 121 0 123 0 158 0 143 0 181 0 178

16 0 0 0 159 0 0 0 209 0 0 0 244 0 0 0 304 0 0 0 372

17 0 216 0 178 0 265 0 275 0 331 0 329 0 426 0 417 0 480 0 467

18 213 235 0 219 284 318 0 292 388 348 0 393 451 445 0 433 518 500 0 523

19 0 0 0 14 0 0 0 19 0 0 0 26 0 0 0 31 0 0 0 34

20 0 0 92 96 0 0 135 122 0 0 148 169 0 0 187 187 0 0 225 225

21 0 0 0 138 0 0 0 173 0 0 0 249 0 0 0 274 0 0 0 326

22 0 0 153 166 0 0 197 209 0 0 255 263 0 0 321 333 0 0 359 396

23 0 0 0 73 0 0 0 95 0 0 0 129 0 0 0 163 0 0 0 198

24 0 136 0 108 0 174 0 186 0 218 0 221 0 253 0 254 0 293 0 285

25 0 168 0 130 0 194 0 171 0 231 0 240 0 292 0 288 0 353 0 355

26 0 0 0 47 0 0 0 67 0 0 0 75 0 0 0 101 0 0 0 115

27 0 0 64 69 0 0 92 90 0 0 113 113 0 0 129 136 0 0 147 156

28 0 17 0 20 0 22 0 21 0 28 0 32 0 36 0 35 0 43 0 43
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demand. The initial price and demand are often obtained
according to the historical passenger flow data.

After the price adjustment, first, adjust the demand
according to Formula (4). Then, considering the influence
of passengers’ choice behavior, the adjusted demand of each
product is summed up and redistributed according to For-
mulas (2) and (3).

3.3. Description of Risk Preference. Charnes and Cooper [27]
put forward the concept of CCP theory to solve venture cap-
ital decision-making in 1959. To a certain extent, the theory
allows decision not to meet constraints. However, the deci-
sion should make the probability that the constraint condi-
tions are satisfied not less than a certain confidence level α.
The smaller the value of α, the greater the risk the
decision-maker is willing to take in the face of random
events. Equation (5) presents it here in its general form [28].

optimize f c, xð Þ,
Pr Ax ≤ bf g ≥ α,

ð5Þ

where Pr means probability. A, b, and c do not have to be
continuous, but at least one of them is a random variable
that obeys a certain distribution. Decision variables repre-
sent the deterministic factors in the decision-making pro-
cess. Random variables represent uncertain factors in
decision-making.

It is necessary for transportation enterprises to consider
the random characteristics of demand before pricing and

Table 4: Ticket allocation scheme for confidence level α = 0:9.

1-A 1-B 1-C 1-D 2-A 2-B 2-C 2-D 3-A 3-B 3-C 3-D 4-A 4-B 4-C 4-D 5-A 5-B 5-C 5-D

1 0 0 156 50 0 0 83 66 0 0 44 48 0 0 27 26 0 0 27 26

2 91 68 0 35 33 29 0 24 19 13 0 12 11 8 0 6 10 9 0 7

3 0 0 0 0 0 0 33 0 0 0 22 27 0 0 14 12 0 0 14 12

4 0 84 0 0 0 76 0 0 0 39 0 25 0 27 0 23 0 17 0 26

5 0 0 0 0 0 0 32 0 0 0 17 15 0 0 10 8 0 0 8 8

6 0 0 0 0 0 68 0 0 0 29 0 38 0 18 0 27 0 31 0 13

7 214 0 17 0 84 21 21 0 34 13 16 9 28 5 6 8 18 5 13 9

8 0 0 0 0 0 0 0 0 0 0 0 28 0 0 0 18 0 0 0 20

9 0 0 58 0 0 0 41 0 0 0 27 0 0 0 15 17 0 0 15 15

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 18

11 0 0 0 0 0 0 31 0 0 0 16 0 0 0 8 13 0 0 8 13

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 14

13 0 0 0 0 0 0 61 0 0 0 24 0 0 0 18 14 0 0 15 15

14 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 22 0 0 0 22

15 0 0 0 0 0 0 0 0 0 20 0 0 0 10 0 12 0 10 0 10

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0 16

17 0 0 0 0 0 20 0 0 0 19 0 0 0 9 0 10 0 9 0 11

18 66 0 0 0 29 11 0 0 9 10 0 5 6 4 0 5 7 5 0 3

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19

20 0 0 0 0 0 0 13 0 0 0 18 0 0 0 10 0 0 0 9 9

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 37

22 0 0 0 0 0 0 89 0 0 0 44 0 0 0 26 21 0 0 30 17

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 0 0 0 25

24 0 0 0 0 0 30 0 0 0 15 0 14 0 10 0 10 0 10 0 11

25 0 50 0 0 0 74 0 0 0 45 0 12 0 25 0 26 0 24 0 23

26 0 0 0 0 0 0 0 15 0 0 0 30 0 0 0 13 0 0 0 15

27 0 0 96 0 0 0 37 36 0 0 19 18 0 0 14 12 0 0 14 12

28 0 66 0 109 0 104 0 108 0 43 0 42 0 28 0 29 0 27 0 27

Table 5: Total revenue at different confidence levels.

α
Collaborative

optimization (yuan)
Single fixed fare

(yuan)
Optimized
proportion

0.1 1222884.83 1078352.5 13.40%

0.2 1196603.317 1069932.5 11.84%

0.3 1188489.005 1062035 11.91%

0.4 1183350.622 1055057.5 12.16%

0.5 1172751.496 1048107.5 11.89%

0.6 1170719.372 1041132.5 12.45%

0.7 1160459.997 1031720 12.48%

0.8 1152186.933 1022755 12.66%

0.9 1130381.824 1008787.5 12.05%
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ticket allocation. When faced with the influence of uncertain
factors, different operation decision-makers have different
risk appetites due to individual personality and cognition.

In our study, we assume that passenger demand qh,w,k obeys
normal distribution. λh,w,k and σ2h,w,k denote mean and vari-
ance of normal distribution, respectively, namely, qh,w,k ∼N
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Figure 9: Ticket price of train A in OD 2.
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Figure 10: Ticket price of train A in OD 7.
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Figure 11: Ticket quantity of train A in OD 2.
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Figure 12: Ticket quantity of train A in OD 7.
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ðλh,w,k, σ2h,w,kÞ. Comprehensively considering the uncertainty
of demand and the risk preference of operators, we construct
the relationship between ticket allocation and demand as
shown in the following:

Pr xh,w,k ≤ qh,w,k
È É

≥ α,∀h ∈H,w ∈W, k = 1,⋯, K , ð6Þ

where xh,w,k represents the amount of ticket allocated to <h
,w, k > . According to the CCP theory, Equation (6) means
the constraint xh,w,k ≤ qh,w,k is at least established at the prob-
ability α when passenger demand changes randomly.

To facilitate solution and calculation, CCP needs to be
transformed into deterministic programming. Many studies
prefer to analyze random variables from the perspective of
expectation and variance. Besides α, optimistic and pessimis-
tic values can also be used to analyze uncertain factors. In
this paper, we use α optimistic value of random variable, as
shown in the following equation:

ξsup αð Þ = sup r Pr ξ ≥ rf gj ≥ αf g, ð7Þ

where ξ is a random variable. α is within ð0, 1�. ξsupðαÞ is
called α optimistic value of random variable ξ. α optimistic
value is equal to the maximum value of r satisfying Prfξ ≥
rg ≥ α. ξsupðαÞ is a decreasing function of confidence level
α.

The following theorem exists for CCP.

Theorem 1. Suppose ξ is a continuous and random variable,
ϕðxÞ is distribution function of ξ. When 0 < FðxÞ < 1, hðx, ξ
Þ = gðxÞ − ξ, then Prfhðx, ξÞ ≤ 0g ≥ α if and only if gðxÞ ≤
ξsupðαÞ, where ξsupðαÞ = F−1ð1 − αÞ [29].

Based on Theorem 1, we can convert constraint (6) into
its deterministic equivalent as shown in Equation (8), where
F−1ðxÞ is the inverse distribution function of the random
variable qh,w,k.

xh,w,k ≤ F−1 1 − αð Þ,∀h ∈H,w ∈W, k = 1,⋯, K: ð8Þ

Specially, when confidence level α equals 0.5, the con-
straint (8) can be converted into Formula (9) [20]. This

means that neutral decision-makers make decisions based
on the average demand.

xh,w,k ≤ λh,w,k,∀h ∈H,w ∈W, k = 1,⋯, K: ð9Þ

3.4. Joint Decision Model. The operator decides the price
ph,w,k and the ticket allocation xh,w,k for every <h,w, k > to
maximize the total revenue. The joint decision model is pro-
posed as Formula (8) and (10)–(14).

R =〠
h

〠
w

〠
k

ph,w,kxh,w,k, ð10Þ

s.t. (8)

〠
k

〠
w

σsh,wxh,w,k ≤ Cs
h, h ∈H, s ∈ S, ð11Þ

1 − μh,w
À Á

xh,w,k = 0,∀h ∈H,w ∈W, k = 1,⋯, K , ð12Þ
p−h,w,k ≤ ph,w,k ≤ p+h,w,k,∀h ∈H,w ∈W, k = 1,⋯, K , ð13Þ
xh,w,k ∈ 0f g ∪ Z+,∀h ∈H,w ∈W, k = 1,⋯, K , ð14Þ

where R represents the total revenue. The objective function
(10) is to maximize the revenue of HSR network. Define S as
the set of all sections. Constraint (11) means that the ticket
amount of all OD pairs using section s cannot exceed the
seat capacity of the train h in the section. σs

h,w represents
the relationship among train, OD, and section and is a 0-1
variable. Train h serves OD w and occupies section s, σsh,w
= 1, otherwise σsh,w = 0. Constraint (12) shows that the rela-
tionship between train stop scheme and ticket allocation.
μh,w also is a 0-1 variable. If train h provides service for
OD w, μh,w = 1. In this case, xh,w,k ≥ 0. Otherwise, μh,w = 0
and xh,w,k = 0. Considering the interests of enterprises and
passengers, we set the price celling p+h,w,k and price floor
p−h,w,k. Constraint (13) is the upper and lower limits of the
fare floating, which can be set according to pricing policies
and operational needs. Constraint (14) makes sure the num-
ber of tickets is the positive integer.

4. Solution Algorithm

The proposed model in Section 3 is a nonlinear program-
ming model. This model is difficult to solve directly and pre-
cisely. Comprehensively considering the model
characteristics and solution efficiency, a hybrid algorithm
integrating PSO and an exact algorithm for integer linear
programming are designed in this paper. PSO [30] is a heu-
ristic algorithm derived from the foraging behavior of birds.
This algorithm possesses the advantages of fewer parame-
ters, fast convergence speed, and easy implementation.
Firstly, we use the PSO algorithm to generate particles ran-
domly as ticket prices and iteratively optimize the fare by
particle swarm. When the price ph,w,k is determined, the
model can be transformed into a linear programming model
which contains only one ticket allocation variable xh,w,k.
Then, we use CPLEX to solve the linear programming

Table 6: Comparison of the solutions under different algorithms.

Demand
times

The total revenue (yuan) Gap
Lingo Hybrid PSO HL PL

1 37160.62 35675.78 35069.47 -4.00% -5.63%

2 76475.97 72353.88 71895.46 -5.39% -5.99%

4 118954.8 115893.96 113181.82 -2.57% -4.85%

6 148854.9 140604.81 133887.88 -5.54% -10.05%

8 161845.2 157694.10 154744.22 -2.56% -4.39%

10 167719.8 167043.52 161826.28 -0.40% -3.51%

HL: hybrid-Lingo/Lingo; PL: PSO-Lingo/Lingo.
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exactly. The algorithm settings and steps are described
below.

4.1. Algorithm Settings

4.1.1. The Fitness Functions. The value of fitness function is an
important index to evaluate the position of particles. In this
article, the objective function is selected as the fitness function.
If the fitness value is large, it represents that the revenue is high
and the particle position is better.

4.1.2. Initial Particle Generation. The random numbers are
uniformly generated in each interval ½ah,w,k, bh,w,k� as the initial
particle position, that is, the price of the product <h,w, k > .
We set the values of ah,w,k and bh,w,k increase with the time
period k. The corresponding initial prices also increase as the
time period increases. Keeping the initial price consistent with
the law of dynamic elasticity helps the algorithm to obtain
higher quality solutions.

4.1.3. Learning Factor and InertiaWeight.There are two learn-
ing factors in the PSO algorithm. c1 is the flight step of the par-
ticle towards the individual best value. c2 is the flight step of
the particle towards the global best value. Let c1 = c2 = 0:5; ω
is inertia weight and set as ω = 0:5.

4.1.4. The Velocity Update Equation. The velocity is a key vec-
tor that determines the direction and distance of each particle.
Updating the velocity is to determine which direction and how
far the particle will fly in the next iteration. When a particle
evolves from the tth iteration to the t + 1th iteration, its veloc-
ity viðt + 1Þ can be updated according to Equation (15). It con-
sists of three parts, including maintaining the motion habit of
particles themselves, learning from individual experience, and
exchanging with other particles. Therefore, the PSO algorithm
makes full use of the information sharing of individuals in the
group to make the movement of particles from disorder to
order gradually.

vi t + 1ð Þ = ωvi tð Þ + c1r1 pi tð Þ − si tð Þð Þ + c2r2 pg tð Þ − si tð Þ
� �

,

ð15Þ

where viðtÞ denotes the velocity of particle i in the tth iteration.
piðtÞ is the optimal value of particle i after the tth iteration.
pgðtÞ is global optimal value after the tth iteration. siðtÞ is
the position of particle i in the tth iteration. r1 and r2 are ran-
dom numbers in interval ð0, 1Þ.
4.1.5. The Position Update Equation. According to the cur-
rent position of the particle and the updated velocity, we
can use Equation (16) to obtain the new position.

si t + 1ð Þ = si tð Þ + vi t + 1ð Þ: ð16Þ

4.1.6. The Termination Conditions. The termination condi-
tions commonly used in PSO include the prespecified gener-
ation number as their terminations or stop the iteration
when the fitness function value does not change. We adopt

the former and set the maximum number of iterations as
tmax.

4.2. Algorithm Steps. The specific steps of the algorithm are
shown in Algorithm 1.

5. Numerical Experiments

5.1. Data. A HSR line with 8 stations serves 28 OD pairs.
The train service network is shown in Figure 1. We take
the second-class seat as an example to conduct the experi-
ments. The capacity of each train is 560, and the trains are
not allowed to be overloaded.

The whole presale period is divided into 5 stages. The
specific price elasticity coefficient of each ticket selling stage
is shown in Table 1. The ticket demand of each OD pair fol-
lows normal distribution. The utility parameters dh,w, th,w
and the original ticket price pw [4], average demand λw,
and variance of demand σ2 are shown in Table 2. Assume
that demand is evenly distributed over 5 time periods. The
lower limits and upper limits of ticket prices in this paper
are 0.5 and 1.5 times of the original ticket prices, respec-
tively. The values of parameters θ and τ are 0.012 and 36,
respectively.

5.2. Result and Discussion. We performed the numerical
experiments on a laptop with Windows operating system,
Intel Core i5 processor, and 16G RAM. Set maximum num-
ber of iterations tmax = 30. The confidence level of α is set as
0.9. The whole process took about 3.205 minutes to get the
results. Figure 2 shows the convergence of total revenue
and cumulative optimization proportion with the increase
of iteration. The revenue growth rate is fast at the beginning
and then gradually slows down. After 22 iterations, it has
basically reached the optimal value. The total revenue under
the collaborative optimization scheme is 1130381.824 yuan.
Compared with the total revenue 1008787.5 yuan under
the single fixed fare scheme, it has increased by 12.05%.

From the properties of normal distribution, we know
that λh,w,k determines the position of distribution function
and the variance σ2 determines the concentration of the dis-
tribution function. The smaller the variance is, the more
concentrated the data distributes and the less the demand
fluctuates. Figure 3 shows the total revenue under different
variances when the confidence level is 0.9. A small variance
means that the demand is more stable. We can see that as
the variance increases, the total revenue decreases under
fixed fare scheme. With the small fluctuation of passenger
flow demand, operators tend to allocate more seats. In joint
optimization, with the increase of demand fluctuation, the
total revenue also shows a decreasing trend overall. But it
is not strictly descending due to the dynamic characteristics
of ticket prices. As the variance increases, the total revenue
of the joint optimization scheme is always higher than that
of the fixed fare scheme and the improved proportion is
about 11.83%-12.64%. Figure 4 shows the revenue under dif-
ferent demand levels. With the increase of demand, the total
revenue increase under both schemes. Compared with the
fixed price, the increase in revenue mainly comes from two
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aspects. On the one hand, it is to meet the high-priced
demand as much as possible, and on the other hand, it is
to reduce the price to attract more demand to fill the empty
seat. When the travel demand is high, the price increase is
the main aspect of increasing revenue, and when the
demand is small, the price reduction to attract demand is
the main aspect of increasing revenue. It can be seen from
Figure 4 that under different demand scales, joint optimiza-
tion can better match supply and demand to achieve
increased revenue. We also narrowed the price fluctuation
range to 0.8-1.2 times of the original price for testing. The
results show that the proportion of revenue increase
decreases in all demand states. Under the original demand,
the proportion of increase in revenue was reduced to
7.22%. A wider range of ticket price fluctuations can help
boost revenue.

To observe the price changes, we select OD pair 2 and OD
pair 7 to investigate the price of each train in each time period. It
can be clearly seen from Figures 5 and 6 that trains on the same
OD at the same time period have different prices. We find that
ticket price shows an upward tendency as the departure time of
train approaches. In the early stage of presale period, passengers
are highly sensitive to ticket price. If the price is given an appro-
priate reduction, more passengers will be encouraged to choose
HSR train. At the end of the presale period, passengers are less
sensitive to ticket price and the operators can raise the price
properly to increase income.

Figures 7 and 8 show the ticket allocation schemes of OD
pair 2 and OD pair 7, respectively. As the period increases,
the tickets allocated to each OD decreases. This is because
the experiment assumes that the initial demand is evenly
distributed in each period for the convenience of calculation.
Such a setting can show the effect of price elasticity on ticket
allocation. As the time period increases, the price elasticity
decreases, and the joint decision model adopts the method
of increasing the price to increase the revenue, so the ticket
volume decreases. Train A has a higher ticket allocation at
OD pair 7 than at OD pair 2. Most of the demand of OD
pair 7 is satisfied by train A, while the demand of OD pair
2 is allocated to other trains in a higher proportion. The joint
decision-making model can ensure that the big station
express trains meet the long-distance demand as soon as
possible, which conforms to the general rule of ticket alloca-
tion. Table 3 and Table 4, respectively, show the full version
of the ticket price and ticket allocation plan when the confi-
dence level is 0.9.

To explore the influence of decision-makers’ risk prefer-
ence, we keep other parameters unchanged and only change
the value of α to conduct experiments. On the one hand, the
confidence level can measure the degree to which constraint
xh,w,k ≤ qh,w,k is met. On the other hand, it indirectly reflects
the risk preference of the operator. We set different confidence
levels, α = 0:1, 0:2,⋯, 0:9, successively under single pricing and
joint optimization scheme, respectively. The results are shown
in Table 5.

According to the data in Table 5, we made the following
analysis.

When confidence level is less than 0.5, the HSR operator
will organizemore tickets to satisfy predictive passenger needs.
That means decision-makers are heavily weighted in predic-
tive demand, but actual passenger demand is uncertain. We
can infer that the decision-maker is radical in this situation.

When confidence level is equal to 0.5, the demand fluc-
tuation no longer exists according to the analysis in Section
3. The operator will use all the allocated tickets to meet the
determined passenger demand. Currently, the HSR operator
belongs to decision neutral type.

When confidence level is more than 0.5, the decision-
maker will allocate a small amount of ticket to meet antici-
pated demand. That means decision-makers are not totally
convinced anticipated passenger needs. Therefore, the HSR
operator is conservative in this situation.

As confidence level decreases, the overall income shows
an upward trend in Table 5. The total income is determined
by ticket price and ticket amount. Taking train A as an
example, Figures 9 and 10 show that the ticket prices
increase with time periods under different confidence levels.
Figures 11 and 12 show that the allocated tickets decrease
with time period under different confidence levels. No mat-
ter under different time periods or different risk appetite
levels, the number of tickets is lower when the price is high,
and the number of tickets is higher when the price is low.
The model optimizes the total expected revenue under the
combined action of pricing and ticket allocations. The lower
the confidence level, the more relaxed the capacity constraint
and the greater the total expected revenue.

We can see that under the same confidence level α, the
total income under the joint optimization scheme is always
higher than that under a single fixed ticket price scheme.
The specific value of the optimized proportion under each
confidence level can be seen in the last column of Table 5.
The percentage of revenue improvement is about 11.84%-
13.40%. Therefore, the collaborative optimization is a better
choice when formulating the ticket price and allocation
scheme.

To test the algorithm performance, we intercepted the
small network composed of stations 2-4 and trains C and
D and their data to conduct experiments. The fare range is
set to 0.8-1.2 times of the original fare. The confidence level
is taken as 0.9. We multiply the average demand by different
multiples and use Lingo, the particle swarm optimization
algorithm, and the algorithm in this paper to solve the prob-
lem, and the results are shown in Table 6. Lingo adopted
branch and bound algorithm to solve the model. A new par-
ticle swarm optimization algorithm in which two types of
variables were simultaneously optimized as particles was
designed to compare with the hybrid particle swarm optimi-
zation algorithm proposed in this paper. The results show
that the gap between the solution of the algorithm in this
paper and that of Lingo is about 0.4%~5.4% and the gap
between the solution of the ordinary particle swarm and that
of Lingo is about 3.5%~10.1%, indicating that the solution
quality of the proposed algorithm is good. We also imputed
the data in Section 5.1 into Lingo, and the calculation had
not been completed for 24 hours. We tried the new algo-
rithm with the data in Section 5.1 and found that the total
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revenue was about 2% less than the hybrid algorithm. In
summary, for large-scale problems in practical applications,
the hybrid algorithm proposed in this paper can provide a
satisfactory scheme to improve revenue within a feasible
time.

6. Conclusions

Considering the randomness of demand and the operator’s
risk preference, this paper introduces the CCP theory to
study the joint decision of pricing and ticket allocation.
Based on the changing law of price elasticity over time, this
paper divides the whole presale period into several stages.
After describing passenger choice behavior, elasticity of
demand, and operator’s decision preference, the joint opti-
mization model of dynamic pricing and ticket allocation is
established. Then, we design a hybrid algorithm, which com-
bines PSO algorithm and the exact solution of integer linear
programming algorithm. This algorithm has lower complex-
ity and acceptable speed. The numerical experiment results
show that introducing CCP theory, the total revenue under
the joint optimization scheme is always higher than that
under the single fixed fare scheme at the same confidence
level. The percentage of revenue improvement is about
11.84%-13.40%. Under different levels of demand, demand
fluctuations, and risk preferences, the joint decision-
making always achieves higher returns than ticket allocation
under fixed fares. In addition, a larger price range is more
conducive to increasing revenue. It is recommended that
the operator set a large fluctuation range as required. This
study can provide a reference for the operators to reasonably
deal with demand uncertainty and decision preferences to
make the joint decision of dynamic pricing and ticket alloca-
tion, which is of great significance to improve enterprise rev-
enue and alleviate losses. Future research can be expanded
by considering overbooking, no-show, refunds, etc.
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