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As a sustainable mode of transportation, subways bring great convenience to the society. Although there have been many studies
examining the relationship between the built environment and the station-level ridership, those studies focused mainly on the
ridership, which is defined as the number of trips for each station. While ridership is an important indicator for evaluating subway
demand, passenger-distance is another critical indicator that incorporates distance into demand evaluation, which has not yet
been fully explored. To fill this gap, this paper investigates the relationship between the built environment around stations and the
station-level passenger-distance (SLPD). As noted in previous studies, the relationship between the built environment and travel
demand can vary by space. .erefore, a geographically weighted regression (GWR) model and a mixed geographically weighted
regression (MGWR) model have been used to explore this spatially varying relationship using Chengdu, China, as an example
case. .e results were compared with that of an ordinary least squares (OLS) model. .e comparison shows that the MGWR
model that considers both global and local variables has the best goodness of fit. Results also show that 11 of the 25 potential
variables are significantly related to SLPD..e accessibility of the station, station type, such as transfer or terminal, number of bus
stops, number of restaurants, density of building area, density of the national road network, and density of the provincial road
network, all have a positive correlation with SLPD. Meanwhile, the variables, whether it is a newly opened subway station, density
of living points of interest (POIs), and density of railroad network, are all negatively correlated with SLPD. Ten of the eleven
significant variables (except accessibility) have spatially varying relationships with SLPD. .ese findings can serve a useful
reference for transportation planners for the demand evaluation.

1. Introduction

With urbanization, a growing number of cars are occupying
the roadways, which brings along a series of problems, such
as vehicular traffic congestion [1], air pollution [2, 3], and
fuel consumption [4]. Subway has been considered as a
sustainable public transportation mode to alleviate traffic
congestion [5]. As early as 1863, the world’s first subway
system opened in London, England, with a trunk line of

about 6.5 km, using a combination of underground and
ground lines (Railway Technology). Construction of China’s
subway began in 1965, and in May 2020, 47 cities in China
had urban rail transit (China Urban Rail Transit Associa-
tion). At the end of 2016, China’s urban rail transit con-
struction investment reached 384.7 billion yuan (6.6423
yuan equals one US dollar in 2016), and the total length of
urban rail transit lines under construction reached 5636.5
kilometers [6]. In recent years, transit-oriented development
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(TOD) has become an effective way to alleviate traffic
congestion and promote sustainable transportation modes
[7, 8], and urban rail transit has been an important part of
sustainable development both in developed and developing
countries in cities such as New York, Hong Kong, and
London [9].

.e built environment has been found to have a great
impact on travel behavior as well as subway ridership. .e
concept of built environment variables has been expanded
from the original “3D” (density, diversity, and design)
(Cervero and Kockelman [10]), to the “6D” (density, di-
versity, design, destinations accessibility, distance to transit,
and demand management) [11, 12]. .erefore, it is im-
portant for transportation planners to understand the re-
lationship between the built environment and the station-
level ridership. In the literature, previous studies mainly use
ridership as the response variable [8, 13–18]. However, this
variable does not take into consideration the travel distance.
.erefore, this may lead to the partial conclusion that when
two stations have the same ridership, the station with longer
passenger-distance can be regarded as the station with
higher demand. To address this problem, SLPD has been
taken as the dependent variable against the built environ-
ment. .is study addresses this issue by exploring the re-
lationship between the dependent variable SLPD and the
built environment.

Regarding modeling, since previous studies have found
that the built environment typically has a spatially varying
effect on travel behaviors [17], geographically weighted
regression (GWR) models are adopted in this study, which
allows the coefficients of variables to vary across space to
capture the spatially varying relationship. In addition, the
GWR model relies on a strong assumption that the coeffi-
cient of all independent variables varies across the space. As
the MGWR model allows variables to be either global or
local, this model has been used in this paper, to investigate
the relationship between the built environment and SLDP.
.e data from Chengdu, China, is used to perform the
analysis.

.e remainder of the paper is organized as follows:
Section 2 reviews the previous studies on the relationship
between the built environment and subway demand; Section
3 provides a description of the data; Section 4 explains the
ordinary least squares (OLS) models, the GWR models, and
the MGWR models; Section 5 presents model results with
interpretations; and Section 6 summarizes the main findings
of this paper.

2. Literature Review

.ere have been some studies exploring the impact of the
TOD on the behavior of residents around the stations. Some
studies have explored the principles of TOD by studying the
relationship between the ridership and the built environ-
ment around subway stations [13, 19, 20], such as population
and employment density. In addition, the concept of TOD
has also been applied in the field of logistics [21–23].

.e built environment is the man-made environment for
human activities [24], covering land-use patterns, urban

design, and transportation infrastructure. Built environment
can play an important role in influencing travel behaviors
[25–27]. For example, Ding et al. [28] explored the influence
of the “4D” built environment variables, which are density,
design, diversity, and distance to the Central Business
District (CBD), on subway ridership in Washington, D.C.,
and concluded that the built environment variables played a
significant role with a total contribution of 34% to subway
ridership estimation. A wealth of literature has also explored
the relationship between the built environment and subway
ridership in China. Zhao et al. [16] suggested the significant
effects of eleven built environment variables on subway
ridership such as business/office floor area and road length
by studying 55 metro stations in Nanjing, China. Liu et al.
[29] found that the type of land use around stations and the
accessibility of rail stations had a significant impact on
passenger flow by studying the trip data of Guangzhou
Subway from 2011 to 2016. Yang et al. [30] explored the
synergy between built environment variables such as land
use and the city attributes based on Shenzhen subway data,
and showed that the Baidu heat index (an indicator for
destination popularity) for restaurants and entertainment
around subway stations was higher at night than that during
the day, which triggered interests for exploring the urban
“night market economy.” Du and Zheng [31] studied the
characteristics of different types of commercial lease-type
built environment variables around the Beijing subway
network, linking concentrated businesses and dispersed
labor through the analysis of metrics such as subway ac-
cessibility. Li et al. [32] investigated the impact of the built
environment factors on urban rail transit in Guangzhou,
China, in a study that integrated multiple sources of spatial
big data such as points of interest (POI), high spatial res-
olution remote sensing images, social media, and building
footprint data. However, the above studies rarely compre-
hensively investigated various types of built environment
variables, such as POI class, road network class, density class,
etc.

When studying the effects of the built environment on
the subway demand, most studies use ridership as a response
variable. For example, Chen et al. [33] used daily ridership as
the dependent variable in their study of daytime patterns of
transit riders of the New York City subway system. However,
this response variable could not reflect passenger travel
distance. Based on previous reviews, there is only one study
using passenger trip miles as the response variable. Iseki et al.
[34] studied the determinants of passenger miles traveled
(PMT) for each origin-destination (OD) station pair in
Washington D.C, but the relationship between determinants
and the PMT was assumed to be constant across the study
area, which may be context-specific.

At present, studies on urban rail transit passengers
generally use two models: spatial models and nonspatial
models. Ordinary least squares (OLS) regression models are
nonspatial models and the most representative linear re-
gression models were used to initially explain the complex
relationship between the built environment and subway
capacity [15, 35, 36], which assumes that the relationship
between independent variables and the dependent variable is
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global and not spatially heterogeneous. In terms of spatial
models, among the most common are spatial error models
[37, 38], spatial lag models [39], geographically weighted
regression models [32, 40, 41], and derivative models related
to geographically weighted regression models, such as
geographic time-weighted regression (GTWR) models [42],
geographically weighted negative binomial regression
(GWNBR) models [43], geographically weighted Poisson
regression (GWPR) models [44], and mixed geographically
weighted regression (MGWR) models [13, 18, 45]. For ex-
ample, Li et al. [32] used a GWRmodel to refine the study of
Guangzhou Subway. Although the GWR models yield a
satisfactory fit for the study of spatial heterogeneity of
subway stations, they treat all variables as local variables,
assuming that all built environment variables vary across
space, which can lead to a biased result. To address this,
MGWRhas been developed. For example, Jun et al. [13] used
a stepwise regression model, and the MGWR model in their
study of Seoul Subway showed that the MGWR model fits
the data better, testifying for the superiority of the MGWR
models in handling spatial-temporal data. In sum, few
previous papers have analyzed the spatially varying rela-
tionships between the built environment and the SLPD.
.erefore, it would be worthwhile contribution to literature
to explore the spatially varying impact of the built envi-
ronment on the subway station demand.

3. Data Description

3.1. Study Area. Chengdu is located in Sichuan Province,
China, and has been known as the “Land of Heaven,” with a
total area of 14,335 square kilometers, a built-up area of
949.6 square kilometers, and a resident population of
16,330,000 (Chengdu Municipal People’s Government).
Chengdu had five subway lines under operation, which
were Line 1, Line 2, Line 3, Line 7, and Line 10 as in March
2018, with a total of 136 stations, as shown in Figure 1. In
March 2018 alone, the number of subway trips was more
than 60 million. .is study uses the automatic fare col-
lection data of the Chengdu subway from March 18 to 31,
2018. .e average number of trips per day during this
period was 2,061,853, the average passenger travel distance
was 14.5 km, and the average passenger travel time was 30
minutes.

When constructing the buffer zone, two types of dis-
tances are considered: Euclidean distance and network
distance. Many studies have used the Euclidean distance
[32, 46–49] while some other studies adopted the network
distance [50, 51]. Guo and Bhat [52] and Schirmer et al. [53]
showed that the modeling results based on the buffer zone
constructed by network distance and Euclidean distance are
similar. As a result, the Euclidean distance is used in this
paper. .e choice of the catchment area is an important
consideration in spatial modeling. Relevant studies
[32, 46, 47] found that rail stations generally had a catchment
area with a radius of 800m. .erefore, a circular buffer zone
with a radius of 800m is used as a catchment area in this
paper. Considering the fact that some buffer zones may have
overlapping areas, which could lead to double (or multiple)

counting of some variables, the Tyson polygons have been
used, as shown in Figure 2.

3.2. Data. Regarding explanatory variables, 25 built envi-
ronment variables are selected. One of the major types of
variables is the point of interest (POI) variables, which are
commonly used in transportation related studies to reflect
the land-use characteristics [36, 54, 55]. .e POI data of
Chengdu with longitude and latitude information have been
used in this paper, and ArcGIS is used for spatial processing
to retrieve POI building environment variables. .e data of
POI variables come from Amap (China’s Google Map
equivalent) (https://www.amap.com). In addition, Open-
StreetMap (https://www.openstreetmap.org/) is used to
obtain the variables related to the road network.

Since the automatic fare collection (AFC) system records
detailed trip information including card number, card type,
trip date, boarding station name, boarding time, alighting
station name, and alighting time, AFC data have been used
in this study to estimate passenger travel distances at each
station..e distance of each station pair along the metro line
has been measured using ArcGIS. Since there are 136 sta-
tions, a 136 by 136 distance matrix has been obtained
(Table 1). In the data, the origin station and the destination
station of each user has been recorded. .is information has
been used to calculate the value of the response variable
Passenger-distance and the value of the explanatory variable
Accessibility.

Further, the Passenger-distance of each station has been
obtained by the product of the OD distance and the
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Figure 1: Chengdu subway network.
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passenger flow of the station. Since the response variable,
passenger-distance, shows a highly left-skewed distribution,
the variable is log-transformed to meet the normality as-
sumption for the OLS models. .e variables have been
described in Table 2.

.e following equation has been used for the calculation
of accessibility of a station [56].

Ai �
1

n − 1
􏽘

n

j�1
j≠i

dij,
(1)

where Ai denotes the accessibility of the station i, dij denotes
the distance from station i to station j, and n denotes the
number of stations in the subway system.

3.3. Clustering Analysis. .e subway stations are clustered
using the K-means clustering algorithm based on the 25
explanatory variables. .e K-means clustering algorithm
is a classic clustering algorithm that was proposed by
MacQueen [57] in 1967. When using the K-means clus-
tering, the number of clusters, represented by K, needs to
be determined. .e commonly used methods are the Elbow
diagram and the contour coefficient method [58]. .e
result of the Elbow diagram and the contour coefficient
method are shown in Figure 3. From the Elbow diagram,
the elbow points occur when the number of clusters is 4 or
5. From the contour coefficient diagram, the contour factor
is the highest when the number of clusters is 5. As a result,
the value of K is set as 5.

.e results of the clustered stations are shown in Fig-
ure 4. Most stations in clusters 1 and 2 are located in areas far
away from the city center of Chengdu. Compared to the city
center, these areas have a lower density of population and
employment, which may result in lower passenger flows.
Cluster 3 shows the characteristics of stations in the city
center, where the density of population and employment is
high. Cluster 4 only has one subway station, Chunxi Road
subway station, which is located in a busy commercial
corridor. At the same time, this is a typical case of TOD
development. .rough close integration with commerce, it
also drives the traffic of the site. .us, this station may stand
out as a unique station type. Cluster 5 is mainly located
around the loop subway line of Line 7. .ese stations have
similar characteristics with high percentages of residential
areas.

3.4. Passenger Flow Characteristics. When describing the
passenger flow characteristics, generally more attention is
paid to the daily passenger flow and the distribution of
passengers’ travel time. Figure 5 (unit: person/day) shows
that the weekday passenger flow is higher than that on the
weekends. After calculation, the average number of trips on
weekdays is 2,184,722 per day, and the average number of
trips on weekends is 1,756,813 per day. Furthermore, the
passenger flow of Line 1 is significantly influenced by the day
of the week, indicating that Line 1 passengers are likely
mainly commuters. Line 10, on the other hand, is not af-
fected by the day of the week, as it is largely airport traffic.
According to the distribution of travel time of subway
passengers (Figure 6 (Note: Unit is number of people)), the
travel time is mostly within the range of 0–100 minutes
(99.65%). .e average travel time of passengers is 29.7
minutes. Among them, the highest passenger flow was
758,264 at about 19 minutes.

According to the heat map of hourly passenger flow
(Figure 7), the vertical axis represents date, which ranges
from the 18th to the 31st. .e horizontal axis represents
time of the day, which ranges from 6 to 23. Darker color
indicates higher passenger flow. .e differences in pas-
senger flow exist between weekdays and weekends. On
weekdays, there are two periods of peak ridership, one in
the morning (7 : 00-8 : 00) and the other one in the
evening (17 : 00-18 : 00). .e average passenger flow
during the morning peak hours (7 : 00-8 : 00) on week-
days is 247,808.7 per hour, and the average passenger
flow during the evening peak hours (17 : 00-18 : 00) is
217,769.3 per hour. .e ridership in the morning peak
hours is higher than that in the evening peak hours,
which is consistent with the findings of Ma et al. [36].
However, on weekends, the subway ridership does not
have a clear peak period, which is consistent with the
findings of [40, 59]. When analyzing the hourly subway
ridership, it has been found that the trips are mainly
concentrated between 6 : 00 and 23 : 00, consistent with
the operating hours of the Chengdu Subway.

.e spatial distribution of Chengdu subway passenger
flow shows that trips are concentrated around the city
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center, the terminal stations, and the southern high-tech
zone, which is a residential and employment center in
Chengdu. .e spatial distribution of the logarithm of the
subway ridership (Figure 8) and the passenger-distance
(Figure 9) in Chengdu show that the passenger-distance and
the ridership at subway stations have the same spatial re-
lationship overall, i.e., the more trips are made, the more
passenger miles are traveled. However, there are some
stations with inconsistent performance.

4. Models and Methods

4.1. OLS Model. .e ordinary least squares (OLS) model is
one of the most used models to determine the linear rela-
tionship between the explanatory variables and the response
variable [60]. Its function is given as

yi � 􏽘
k

j�0
βjxij + εi, (2)

Table 1: Example of the distance matrix (unit: meter).

Balizhuang
station

Baiguolin
station

Baicaolu
station

2nd beizhan road
west station

Caiqiao
station

Caotang road
north station

Chadianzi bus
terminal station

Balizhuang station 0 11714.936 18121.486 5301.106 19886.045 11549.778 12711.242
Baiguolin station 11714.936 0 10159.250 7164.942 10995.102 1553.493 4749.006
Baicaolu station 18121.486 10159.250 0 12820.380 17579.247 11712.744 5410.244
2nd beizhan road
west station 5301.106 7164.942 12820.380 0 14584.939 7699.487 7410.136

Caiqiao station 19886.045 10995.102 17579.247 14584.939 0 9441.608 12169.003
Caotang road
north station 11549.778 1553.493 11712.744 7699.487 9441.608 0 6302.500

Chadianzi bus
terminal station 12711.242 4749.006 5410.244 7410.136 12169.003 6302.500 0

Table 2: Descriptive statistics of the variables.

Variable name Description
Descriptive
statistics Data source

Mean S.D.
Response variable
Passenger-
distance

.e logarithmic transformation of actual line distance of cumulative passenger
flow at starting station (km) 14.457 0.862 AFC

Explanatory variable
New station Is it a new site? 1 means yes, 0 means no 0.096 0.295 ArcGIS
Terminal Is it a terminal station? 1 means yes, 0 means no 0.066 0.250 ArcGIS
Transfer Is it a transfer station? 1 means yes, 0 means no 0.103 0.305 ArcGIS
Accessibility Accessibility of the subway station (km) 16.851 5.408 ArcGIS
City center Straight line distance from the city center (km) 9.389 6.717 ArcGIS
Bus .e density of bus stops (/km2) 6.308 3.518 Amap
Hotel .e density of hotels (/km2) 2.343 4.111 Amap
Restaurant .e density of restaurants (/km2) 1.370 2.754 Amap
Shopping .e density of shopping POIs (/km2) 1.052 2.481 Amap
Parking .e density of parking structures(/km2) 0.132 0.651 Amap
Finance .e density of financial service POIs (/km2) 2.475 8.217 Amap
Scenery .e density of scenic spots (/km2) 1.280 3.030 Amap
Car .e density of automotive service POIs (/km2) 0.458 1.645 Amap

Life .e density of life service POIs, such as barber shops, pharmacies, skin care
shops, laundry shops, etc. (/km2) 0.582 1.738 Amap

Medical .e density of medical service POIs (/km2) 1.408 1.959 Amap
Recreation .e density of recreation POIs (/km2) 1.012 1.854 Amap
Buildings Density of building areas (m2/km2) 0.628 0.517 OpenStreetMap
Highway Density of main highways (m/km2) 73.989 334.845 OpenStreetMap
National
highway Density of national highways (m/km2) 176.961 528.822 OpenStreetMap

Sidewalk road Density of sidewalks (m/km2) 442.783 793.432 OpenStreetMap
Township road Density of township roads (m/km2) 5546.912 2366.141 OpenStreetMap
County road Density of county roads (m/km2) 1339.697 1222.087 OpenStreetMap
Railway Density of railroads (m/km2) 201.761 495.193 OpenStreetMap
Dart Density of provincial roads (m/km2) 931.768 1301.598 OpenStreetMap
Other road Density of other roads (m/km2) 4655.385 2559.938 OpenStreetMap
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where yi denotes the ith observation of the response vari-
able; βj denotes the coefficient of the jth predicting variable;
xij denotes the jth predicting variable of the ith observation;
and εi denotes the random error term.

4.2. GWRModel. .e OLS model assumes the relationship
between the explanatory variables and the response vari-
able to be consistent across the space. Yet, their relationship
could vary across space. To overcome this issue, Brunsdon
et al. [61] proposed the geographically weighted regression
(GWR) model, which is commonly used to study the
spatially varying relationships between the response and
explanatory variables [62]. .e function of the model is
shown as

yi � βi0 ui, vi( 􏼁 + 􏽘
k

j�1
βj ui, vi( 􏼁xij + εi , (3)

where yi denotes the ith observation of the response vari-
able; βj denotes the coefficient of the jth predicting variable;
xij denotes the jth predicting variable of the ith observation;
and (ui, vi) denotes the coordinates of the ith observation; εi

denotes the random error term.

4.3. MGWR Model. .e MGWR model integrates the OLS
model and theGWRmodel by allowing some variables to have a
constant coefficient and other variables to have spatially varying
coefficients [13]..e function of theMGWRmodel is shown as

yi � β0(i) + 􏽘

pa

a�1
βaxia + 􏽘

pb

b�1
βibxib + εi, (4)

where β0(i) denotes the intercept, which can be set as a global
intercept β0 or a local intercept β0i; xia is the ath global
variable; xib is the bth local variable; βa denotes the re-
gression coefficient of the ath global variable; and βib is the
regression coefficient of the bth local variable.

.ere are two main types of weighting functions to
determine the coefficients of the MGWR model, which are
(i) the Gaussian function and (ii) the double square function.
For searching the bandwidth, there are four main methods,
which are (i) Akaike Information Criterion (AICc) for small
samples, (ii) Akaike Information Criterion (AIC), (iii)
Bayesian Information Criterion (BIC), and (iv) cross-vali-
dation (CV). By exploring different weighting functions and
search methods, the best model was obtained based on the
CV search method and the Gaussian weighting function.

5. Results and Discussion

5.1. Model Results

5.1.1. OLS Model Results. Before constructing the OLS
model, potential multicollinearity between variables
needs to be eliminated. .e variance inflation factor (VIF)

140

120

100

80

60

2 4 6 8
Number of clusters

10 12 14

Su
m

 o
f s

qu
ar

ed
 d

ev
ia

tio
ns

 w
ith

in
 a 

clu
ste

r

(a)

2 4 6 8
Number of clusters

10 12 14

0.18

0.17

0.16

0.15

0.14

0.13

C
on

to
ur

 fa
ct

or

(b)

Figure 3: .e results of the elbow diagram method (a) and the contour coefficient method (b).

1
Clusters

Line

2
3
4
5
�e city of Chengdu

N

S

W E

0 2 4 8 12 16
Km

Figure 4: Clusters of subway stations.

6 Journal of Advanced Transportation



is used in the paper to measure the multicollinearity
among variables. According to Reference [63], when VIF
is less than 10, the variables do not have a multi-
collinearity issue. After calculating the VIF values, the VIF
values of the two variables City center and Township road
were higher than 10. .us, the Township road variable was
removed, as its VIF value was the highest. To explore the
correlation between the response variable and the ex-
planatory variables, the correlation matrix is obtained
based on the Pearson’s correlation coefficient, as shown in
Figure 10.

.e results of the OLS model are shown in Table 3. It can
be seen that 11 of the 25 explanatory variables are significant.
In terms of Passenger-distance, significant variables at the
0.01 level include New station, Transfer, Accessibility, Bus,
Building, and National highway. Among these variables,
Terminal, Transfer, Accessibility, Bus, Restaurants, Building,

National highway, and Dart are positively related to the
SLPD, while New station, Life, and Railway are negatively
related. .is result was compared with the result of the
ridership model. .ere are nine variables that significantly
affect the ridership at the 0.01 level, including New station,
Transfer, Restaurants, Bus, Building, National highway,
Railroads, and Dart.

From Table 3, it can be observed that the positive and
negative effects of the response variable Passenger-distance
and Ridership on the explanatory variables in the OLS model
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are comparable, except for the difference in the significance
level of the variables Lift and Accessibility. In addition, the
higher number of subway transit stations implies more
passenger-distance, which is consistent with the findings of
previous studies [35, 48].

Furthermore, it is necessary to consider the fact that
passengers choose to travel by subway for different purposes.
.e variable Accessibility has a positive correlation with
Passenger-distance. .e reason could be that higher acces-
sibility of subway lines is associated with a stronger will-
ingness of passengers to use the station, which increases the
number of trips. Consequently, it can have a positive effect
on Passenger-distance. Unlike most studies, the Life has a
negative effect on Passenger-distance, which may be because
the high number of life POIs around the city reduces the
need of passengers to travel by subway to reach these POIs.
In contrast, the restaurant POIs have a positive effect on
Passenger-distance, which may be explained as people in
Chengdu are willing to travel for long distances to access
different types of restaurants, resulting in more and longer
trips to restaurant POIs.

Transportation-related variables have different effects
on the travel distance of subway passengers. Generally, the
more roads around a subway station, the more convenient
it is for people to travel by subway [13]. For example, in
the OLS model, the variables National highway and Dart
both have a positive effect on Passenger-distance and
Ridership. However, the railroad network can play a
competing role against the subway, with nearby subway
stations around the railroad station more likely to serve as
an intermediate destination. .erefore, the more railway

stations there are, the fewer passenger-distance can be
expected.

In addition, the subway station attribute variables New
station, Terminal, and Transfer have different effects on
Passenger-distance. For the variable New station, it has a
negative relationship. .e reason can be that the newly
opened station is not as established as the older sites, which
may result in less passenger flow in the short run. Variables
Terminal and Transfer both show a positive relationship. In
general, the passenger flow at the start and transfer stations
of the subway is usually larger than that of other stations.
.ese stations also have a larger passenger flow in the
analysis. .erefore, more passenger distance is expected.

5.1.2. GWR and MGWR Model Results. When using the
conventional linear regression models, estimating the re-
lationship between variables through inefficient regression
coefficients without considering the spatial autocorrelation
of the data may cause a mismatch between the observation
and the reality [46]. .erefore, the spatial autocorrelation of
the explanatory variables needs to be measured using the
spatial Moran’s I index and Z score [64]. .e estimation of
Moran’s I index by the software Geoda suggests that the
variable New station does not have a strong spatial auto-
correlation and therefore it shall be considered as a global
variable. With the existence of spatial correlation of all other
variables involved in the calculation, it can be concluded that
the use of GWR and MGWR models is more reliable.

.e GWR 4.0 software has been used for the calculation
and fitting of the data using theMGWRmodel and the GWR
model. Five important indicators Mean, STD, Min, Median,
and Max for the data with the results have been presented in
Table 4. For the GWR and the MGWR models, the signs of
the coefficients for the global variables are similar to the
signs of the variables in the OLS model. Among them,
Accessibility is a global variable in the MGWR model and
will not vary spatially.

5.1.3. Result Comparison. To further study the spatially
varying relationship between the explanatory and the re-
sponse variables, and address the problem of spatial auto-
correlation, the GWR model and the MGWR model have
been used to fit the data. In measuring the model perfor-
mance, the results of the OLS model, GWR model, and
MGWR model have been compared and analyzed using
AIC, BIC, AICc, CV, R2, and the Adjusted R2. According to
Huang et al. [65], the smaller the value of AIC, the more
accurate the model is, and for different models, the differ-
ence of more than 3 in the value of AIC indicates a sig-
nificant difference among the models [62]. In GWR 4.0
software, it has been observed that the model calculated by
Gaussian fixed and CV is better. As shown in Table 5, the
MGWR model has smaller AIC and AICc values than the
OLS and GWR models, while the R2 increases to 0.671. By
comparison, it has been observed that the MGWR model,
which considers both global and local variables, has a better
fit compared to the OLS model and the GWR model.
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Figure 9: .e spatial distribution of the logarithm of passenger-
distance in Chengdu subway.
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5.2. Spatial Patterns. .e spatial patterns of subway stations
and their built environment, including distance, design,
diversity, density, and accessibility, can have an impact on
passenger travel behaviors [11, 40]. .e research results
show that the spatial distribution of the residuals of the

MGWR model has a more random distribution than the
GWR and OLS models, with the GWR and OLS models
showing patterns of spatial aggregation..erefore, the GWR
model and the OLS model fit the spatial data poorly.
According to Figure 11, the spatial distributions of residuals
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Figure 10: Pearson’s correlation coefficient matrix.

Table 3: OLS model results.

Passenger-distance Ridership
Coef. Std err t-value Coef Std err t-value

Constant 12.48 0.323 38.577∗∗∗ 11.8929 0.131 90.51∗∗∗
New station −1.191 0.229 −5.190∗∗∗ −1.6689 0.207 −8.074∗∗∗
Terminal 0.542 0.240 2.261∗∗ 0.4986 0.222 2.247∗∗
Transfer 0.527 0.195 2.700∗∗∗ 0.5788 0.19 3.048∗∗∗
Accessibility 0.065 0.015 4.368∗∗∗ — — —
Bus 0.074 0.017 4.233∗∗∗ 0.0628 0.016 3.863∗∗∗
Restaurant 0.036 0.022 1.620∗ 0.0362 0.022 1.681∗
Life −0.061 0.036 −1.713∗ — — —
Buildings 0.51 0.118 4.342∗∗∗ 0.4815 0.114 4.223∗∗∗
National highway 0.0004 0 3.318∗∗∗ 0.0003 0 3.174∗∗∗
Railway −0.0003 0 −2.559∗∗ −0.0003 0 −3.1∗∗∗
Dart 0.0001 0.0000519 2.186∗∗ 0.000099 0.0000462 2.145∗∗

Note. ∗indicates significance of 0.1; ∗∗indicates significance of 0.05; ∗∗∗indicates significance of 0.01.
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of the MGWR model, GWR model, and OLS model are
similar, but the range of residuals of the MGWR model is
smaller than that of the GWR and the OLS models.

From the spatial visualization of the local R2 of the
MGWR model and the GWR model (Figure 12), the spatial
distributions of the local R2 of the two models show dif-
ferences. However, the difference between the local R2 spatial
visualization of the MGWR model and the GWR model is
more obvious in the East side of Chengdu. .e higher local
R2 of the MGWR model is mainly distributed near subway
stations in the eastern and southern regions.

From the perspective of multimodal transportation,
subway trips are spatially significantly correlated with trips
at bus stop densities, which is consistent with the findings of
Zhao et al. [15]. Based on the results, it is observed that rail
and bus have different cooperative or competitive impacts
on Passenger-distance under different circumstances, which
is similar to the findings of Chen et al. [5]. .e Government
of Seoul, South Korea, provides free transfers between
subway and bus stations, which greatly encourage public
transportation trips [35]. .erefore, it is recommended that
Chengdu could develop a free or discount transfer policy
between subway and bus to encourage the use of public
transportation.

Moving onto station attributes, it is found that the
transfer stations are generally recorded with larger passenger
flows. .erefore, passenger-distance of transfer stations is
higher. Figure 13 shows the spatial distribution of the three
variables of station attributes New station, Terminal, and
Transfer. .e spatial distribution of the New station coef-
ficient indicates a high value in the west and south but a low
value in the north. .is is likely due to opening of the third

phase of Chengdu Subway Line 1 (mainly located in the
south) in mid-March 2018 (ChengduMetro). As a result, the
passenger-distance in the west and the surrounding areas
was impacted, while the impact in the north was yet to show
in the data.

As for roadway accessibility, by comparing the four
submaps (a)–(c) in Figure 14, it is found that there is
generally a greater demand in the southern zone of
Chengdu. Since there are more job opportunities in the
high-tech zone of Chengdu, this is likely generating the
traffic of commuters. For the variable National Highway, it
shows that in the eastern and southern regions, it has a
strong positive correlation with passenger mileage, while for
some stations in the north, it has a negative correlation. .e
reason for this situation can be that Chengdu’s national
highways are denser in the northwest; therefore, passengers
in these areas are more likely to choose car-based modes
such as private or ride-hailing cars. .e variable Railway has
a strong positive correlation with the southern subway
station, while the northwest station has a negative corre-
lation with the passenger-distance..e reason for this can be
that the railway line is spread out in the northwest part, while
in the south and east the stations are more sparsely dis-
tributed. .e relationship between passenger-distance and
the variable Dart is different from that of the previous two
variables. It has a higher positive correlation in the western
and southern regions. .e reason can be that the provincial
roadway network in the southern and the western districts is
denser, while that in the northern and the eastern districts is
sparser.

On the discussion of POIs, most POI class built envi-
ronment variables seem to replace the equivalent types of

Table 4: Results of GWR and MGWR model.

Variable
GWR MGWR

Mean STD Min Median Max Mean STD Min Median Max
Intercept 14.461 0.004 14.451 14.461 14.474 14.438 0.131 13.722 14.469 14.532
New station −0.416 0.004 −0.428 −0.415 −0.410 −0.396 0.092 −0.639 −0.392 −0.008
Terminal 0.174 0.023 0.097 0.178 0.212 0.197 0.080 0.034 0.189 0.397
Transfer 0.206 0.006 0.187 0.206 0.224 0.201 0.057 −0.015 0.201 0.389
Accessibility 0.257 0.007 0.251 0.255 0.287 — — — — —
Bus 0.175 0.008 0.163 0.173 0.203 0.187 0.078 0.121 0.154 0.593
Restaurant 0.112 0.002 0.105 0.112 0.117 0.130 0.035 0.019 0.138 0.274
Life −0.049 0.007 −0.061 −0.050 −0.030 −0.018 0.045 −0.204 −0.023 0.123
Buildings 0.225 0.018 0.202 0.220 0.296 0.239 0.210 0.137 0.167 1.359
National highway 0.228 0.008 0.209 0.227 0.245 0.187 0.082 0.039 0.177 0.343
Railway −0.076 0.010 −0.093 −0.078 −0.042 −0.050 0.137 −0.155 −0.090 0.720
Dart 0.131 0.003 0.126 0.131 0.140 0.129 0.060 −0.345 0.131 0.217

Table 5: Comparison of the results of the three models.

OLS GWR MGWR
AIC 273.091 271.319 249.021
AICc 276.075 275.538 263.989
BIC 310.956 316.149 330.067
CV 0.461 0.459 0.436
R2 0.511 0.534 0.671
Adj.R2 0.464 0.471 0.567
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land use, such as commercial POIs can replace commercial
land use, and living class POIs can replace population
density [5]. According to Figures 15(c) and 15(d), the

variable Bus expresses a positive correlation with the Pas-
senger-distance. .e variable Life has a negative correlation
effect on most subway stations, but it has a positive
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Figure 11: (a–c) Spatial distribution of the residuals of the MGWR, GWR, and OLS models.
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Figure 13: (a–c) Spatial distribution of three variables, new station, terminal, transfer, etc. in the MGWR model.
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Figure 14: (a–c) Spatial distribution of the coefficients of the three variables: national highway, railway, and dart in the MGWR model,
respectively.
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correlation relationship with most subway stations in the
High-tech Zone (southern region of Chengdu) and the
Shuangliu District (southwest of Chengdu). .e variable
Restaurant shows a different spatial representation from the
first two variables. .e coefficients are higher in the eastern
region, indicating that the passenger mileage and the res-
taurant in these regions have a strong positive correlation. In
addition, the variables Buildings and Passenger-distance are
both positively correlated..e difference in space is that they
have a greater impact on the western and southern regions,
compared to the central and eastern regions.

6. Conclusion

6.1. Summary. .is paper focuses on the spatial heteroge-
neity between the built environment and subway passenger
flow. Taking subway passenger-distance as an example, the
spatial relationship between Passenger-distance and other
key built environment factors has been investigated. To
study the spatial heterogeneity of ridership at the subway
station level, three models were developed for analysis and
comparison, namely, the OLS model, the GWR model, and
the MGWRmodel. Our results show that MGWRmodel has
smaller AIC, AICc, and CV values than OLS and GWR
models, while the goodness-of-fit (i.e., R2) is greater.
.erefore, the MGWR model, which considers both global
and local variables, has a better fit to explore spatial het-
erogeneity through our data. .eMGWRmodel also reveals
that the relationship between the built environment vari-
ables and SLPD exhibits spatial heterogeneity.

According to the OLS model, among the eleven sig-
nificant variables at the 0.1 significance level, Terminal,
Transfer, Accessibility, Bus, Restaurant, Building, National
Highway, and Dart are positively associated with subway
SLPD, indicating that as the values of these built environ-
ment variables increase, the Passenger-distance of subway
stations increases. In the GWR model, these 11 significant
variables are all treated as local variables. .rough analysis,
the MGWR model considers Terminal, Transfer, Bus, Res-
taurant, Building, Life, National Highway, Dart and Railway
as local variables, and Accessibility as a global variable. .ese
findings show that the MGWR model fits the data better.

In addition, some policy suggestions can be proposed
based on the results of the MGWR model. First, for the
subway stations located on the south side of Chengdu,
government agencies could increase the density of the
buildings around the subway station, build denser national
highways, and more bus stations to increase the accessibility
and the attractiveness of the subway stations. Second, for
those stations located in the southwest of Chengdu, as the
number of life-related POIs is positively related to the
passenger distance, the government agencies are advised to
invest more life-related POIs near the stations, in consis-
tence with the TOD strategy. .ird, for the stations on the
east side of Chengdu, since the passenger distance is posi-
tively related to the number of restaurants, more efforts
should be spent on enriching the number and diversity of the
restaurants to encourage longer travel distance on subway by
the passengers. Finally, since the density of provincial
highways has a significantly positive impact on the passenger
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Figure 15: (a–d) Spatial distribution of the coefficients of the four variables of buildings, restaurant, bus, and life in the MGWR model,
respectively.
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distance of subway stations in western Chengdu, govern-
ment agencies could consider expanding these provincial
links to increase the demand for public transportation.
Although this study mainly focuses on Chengdu, China, the
research framework and methodology of this paper are
applicable to other cities as well. Specifically, other studies
should consider the passenger-distance as the dependent
variable and the use of MGWR to explore the spatially
varying relationship between the station level passenger-
distance and determinants.

6.2. Limitations and Future Research. We acknowledge
several limitations of this study. First, due to the lack of data
on population density and regional economy, these data
were omitted from the model, which may cause some biases
in the results. Second, regarding the buffer selection of
subway station catchment area, a circular buffer zone with an
800m radius and the Tyson polygons are used..is selection
may result in some biases especially in the city center where
many stations are densely distributed with smaller coverage
areas. Despite these limitations, this study systematically
explores the spatial variation patterns of subway SLPD and
investigates the influence of the built environment on their
spatial heterogeneity. Meanwhile, we provide some sug-
gestions on ridership growth and management. However,
although the MGWR model could be used to explore the
spatially varying relationship between explanatory variables
and the response variable, it cannot take into consideration
the temporal dimension of the data. .is is a potential di-
rection that future work can lean towards. Models that
consider both spatial and temporal scales of the relationship
between the built environment and the station-level pas-
senger distance may yield more accurate results. Another
limitation of this study is that the circular buffer is used as an
approximation of the actual access and egress distance. In
reality, the territorial discontinuity and barriers could in-
fluence the access and egress distance, which will further
influence travelers’ behaviors [66]. In the future, researchers
should consider the territorial discontinuity and barriers
around stations to obtain more accurate estimation of the
actual access and egress distance.
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[54] S. Jäppinen, T. Toivonen, and M. Salonen, “Modelling the
potential effect of shared bicycles on public transport travel
times in Greater Helsinki: an open data approach,” Applied
Geography, vol. 43, pp. 13–24, 2013.

[55] S. Jiang, A. Alves, F. Rodrigues, J. Ferreira, and F. C. Pereira,
“Mining point-of-interest data from social networks for urban
land use classification and disaggregation,” Computers, En-
vironment and Urban Systems, vol. 53, pp. 36–46, 2015.

[56] J. A. Pooler, “.e use of spatial separation in the measurement
of transportation accessibility,” Transportation Research Part
A: Policy and Practice, vol. 29, no. 6, pp. 421–427, 1995.

[57] J. MacQueen, “Somemethods for classification and analysis of
multivariate observations,” in Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability,
pp. 281–297, Oakland, CA, USA, January 1967.

[58] R. P. J. Silhouettes, “A graphical aid to the interpretation and
validation of cluster analysis,” Journal of Computational and
Applied Mathematics, vol. 20, pp. 53–65, 1987.

[59] M. Munizaga, F. Devillaine, C. Navarrete, and D. Silva,
“Validating travel behavior estimated from smartcard data,”
Transportation Research Part C: Emerging Technologies,
vol. 44, pp. 70–79, 2014.

[60] H. Yang, G. Zhai, X. Liu, L. Yang, Y. Liu, and Q. Yuan,
“Determinants of city-level private car ownership: effect of
vehicle regulation policies and the relative price,” Transport
Policy, vol. 115, pp. 40–48, 2022.

[61] C. Brunsdon, A. S. Fotheringham, and M. E. Charlton,
“Geographically weighted regression: a method for exploring
spatial nonstationarity,” Geographical Analysis, vol. 28, no. 4,
pp. 281–298, 1996.

[62] A. S. Fotheringham, C. Brunsdon, and M. Charlton, Geo-
graphically Weighted Regression: Be Analysis of Spatially
Varying Relationships, John Wiley & Sons, Hoboken, NJ,
USA, 2003.

[63] J. Neter, W. Wasserman, and M. H. Kutner, Applied Linear
Regression Models, Technometrics, Ahmedabad, India, 1989.

[64] P. A. P.Moran, “Notes on continuous stochastic phenomena,”
Biometrika, vol. 37, no. 1/2, pp. 17–23, 1950.

[65] B. Huang, B. Wu, and M. Barry, “Geographically and tem-
porally weighted regression for modeling spatio-temporal
variation in house prices,” International Journal of

Geographical Information Science, vol. 24, no. 3, pp. 383–401,
2010.

[66] G. Birgillito, C. Rindone, and A. Vitetta, “Passenger mobility
in a discontinuous space: modelling access/egress to maritime
barrier in a case study,” Journal of Advanced Transportation,
vol. 2018, Article ID 6518329, 13 pages, 2018.

18 Journal of Advanced Transportation


