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)is work presents a new method for sleeper crack identification based on cascade convolutional neural network (CNN) to
address the problem of low efficiency and poor accuracy in the traditional detection method of sleeper crack identification. )e
proposed algorithm mainly includes improved You Only Look Once version 3 (YOLOv3) and the crack recognition network,
where the crack recognition network includes two modules, the crack encoder-decoder network (CEDNet) and the crack residual
refinement network (CRRNet). )e improved YOLOv3 network is used to identify and locate cracks on sleepers and segment
them after the sleeper on the ballast bed is extracted by using the gray projection method. )e sleeper is inputted into CEDNet for
crack feature extraction to predict the coarse crack saliencymap.)e prediction graph is inputted into CRRNet to improve its edge
information and local region to achieve optimization.)e accuracy of the crack identificationmodel is improved by using a mixed
loss function of binary cross-entropy (BCE), structural similarity index measure (SSIM), and intersection over union (IOU).
Results show that this method can accurately detect the sleeper crack image. During object detection, the proposed method is
compared with YOLOv3 in terms of directly locating sleeper cracks. It has an accuracy of 96.3%, a recall rate of 91.2%, a mean
average precision (mAP) of 91.5%, and frames per second (FPS) of 76.6/s. In the crack extraction part, the F-weighted is 0.831,
mean absolute error (MAE) is 0.0157, and area under the curve (AUC) is 0.9453. )e proposed method has better recognition,
higher efficiency, and robustness compared with the other network models.

1. Introduction

China’s total railroad mileage is expected to exceed
128,000 km by the end of 2020, prompting researchers to
improve maintenance techniques for railroad infrastructure
[1]. In Figure 1, the sleeper is used to support the rail and
transfer the huge impact brought by the train to the roadbed.
Accordingly, the sleeper needs to have a certain degree of
flexibility and can be slightly deformed to cushion the
pressure. However, the cracks and other damage generated
within it will undermine the integrity of the sleeper and
diminish the support force provided by the sleeper to the
train above when the load bending moment is greater than
the cracking strength. )is situation poses a safety hazard to

trains passing at a high speed. In recent years, nondestructive
testing techniques, such as those in the literature [2], have
been widely used in the maintenance of track facilities. )is
method of sleeper cracking can be quick and efficient in
preventing accidents.

At present, the main method of sleeper crack detection
has shifted from manual identification to a series of physical
detection means, such as ultrasonic, eddy current detection,
and ray detection. Although this method has been devel-
oped, it still has the limitations of the use methods and the
common problem of poor crack detection. )e efficiency
and accuracy of crack detection have been enhanced with the
development of the computer vision technology. )e main
methods applied to this field are as follows: image
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processing-based methods [3], machine learning-based
methods [4], and deep convolutional neural network
(DCNN)-based methods [5]. )e methods represented by
DCNNs are subdivided into methods based on image
classification [5], object detection [6], and pixel-level seg-
mentation [7], depending on the way the crack detection
problem is handled. )e network used to detect cracks in
sleepers in this cascade is based on the latter two types of
methods.

)e main crack detection methods based on object
detection include Faster R-CNN [8], single-shot multibox
detector (SSD) [9], and YouOnly Look Once (YOLO) [10] to
determine the location of cracks in the input image and
localize them with bounding boxes. Cha et al. [11] proposed
a concrete crack detection method based on Faster R-CNN.
)e network is improved to quickly detect and locate
multiple types of cracks in real time, allowing for more
accurate detection results. Mandal et al. [12] proposed an
automated detection method based on DCNNs for road
concrete cracks. However, the achieved detection accuracy is
low. Li et al. [13] proposed an improved YOLO network to
improve the detection accuracy of track plate cracks.
However, the method is less versatile due to the single
background information of the track plate. Bao et al. [14]
proposed a triplet graph reasoning network for the problem
of insufficient samples of metal surface defects.

Crack detection methods based on pixel-level segmen-
tation mainly include fully convolutional networks (FCNs)
[15], U-Net [16], and Seg-Net [17]. Labels can be assigned to
crack pixel points to determine the presence of cracks and to
obtain important features, such as the location, size, and
shape of cracks. Cheng et al. [18] proposed an automatic
U-Net-based road crack detection method and tested it in a
crack dataset to obtain a high pixel-level segmentation ac-
curacy. Islam and Kim [19] proposed a full CNN-based
concrete crack detection method. )is network consisting of
encoder and decoder patterns is tested and exhibits good
detection results on publicly available crack datasets. Dung
[20] designed a full CNN with Visual Geometry Group-16
(VGG-16) based on a codec framework. )is network
further improves the accuracy of crack detection. Literature
[21] compared three U-Net algorithms of different depths
for automatic pavement crack detection systems. )e ob-
jective is to verify whether a model architecture with greater

depth necessarily results in better detection accuracy. Ex-
periments prove that choosing a network architecture with
the right depth can guarantee the detection accuracy and
improve the detection speed.

Although great progress has been made in the field of
crack detection based on DCNNs, how to obtain more
detailed crack features still needs to be explored. For the
sleeper crack detection, the crack is small, similar to the
background of the sleeper, the boundary is unclear, and the
regional information is incomplete. )is paper proposes a
new cascade network for crack detection. YOLOv3 is used as
one of the mainstream frameworks for object detection. )e
YOLO series is improved on the basis of YOLOv3. Given
that YOLOv3 uses a residual network in the feature ex-
traction part, three feature layers of different depths are
simultaneously extracted, and a stacked stitching approach is
used to obtain the prediction results [22]. )e aforemen-
tioned method can be used to detect cracks of different sizes.
However, the crack detection effect is unsatisfactory for the
complex background of the rail sleeper. Accordingly, we add
the squeeze and excitation (SE) module at the end of the
YOLOv3 backbone network to improve the crack region
extraction accuracy. Further quantitative parameter detec-
tion of cracks is needed to complete high-precision crack
identification and provide more scientific detection data.
Crack encoder-decoder network (CEDNet) and crack re-
sidual refinement network (CRRNet) are used to extract and
optimize the features of rail sleeper cracks. )e shallow
information of the crack image can be passed to the cor-
responding decoding process after the feature extraction of
the input rail cracks by the coding part of CEDNet. Con-
sequently, the low-level detail features are fused with the
high-level complex semantics to improve the network fea-
ture extraction performance. CRRNet is added because the
coarse saliency map obtained in the previous step has de-
ficiencies, such as blurred crack boundaries and missing
important regions. CRRNet can be optimized by learning the
residuals between the coarse saliency map and the ground
truth.

)e main contributions of this paper are summarized as
follows:

(1) A two-level cascade network based on DCNN is
proposed. )is network fuses CEDNet and CRRNet,
which can play the role of crack feature extraction
and optimization in one step. Its F-weighted is 0.831,
mean absolute error (MAE) is 0.0157, and area under
the curve (AUC) is 0.9453.

(2) An improved YOLOv3 network is proposed to lo-
calize the cracks, and the attention mechanism, SE
module, is added at the end of the backbone network.
)e mean average precision (mAP) is improved by
6.9% compared with YOLOv3.

(3) )e optimization effects of loss functions binary
cross-entropy (BCE), intersection over union (IOU),
and structural similarity index measure (SSIM) on
crack recognition are superimposed to propose a
new hybrid loss function for the crack recognition.
Particularly, our method improves Fweighted by

Sleeper Railway Fastener

Figure 1: Railway track line.
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68.4%, 74.8%, 84.1%, and 99.0% on lbce + liou, lbce,
liou, and lssim, respectively.

)e rest of this paper is organized as follows: Section 2
introduces the method overview, including the overall steps
and the specific theory for each step. Section 3 shows some
experimental results of our method and compares them with
other methods. Section 4 gives the conclusion and outlook.

2. Method Overview

In the acquired image of rail sleeper cracks, the edge of
ballast can interfere with the recognition of rail sleeper
cracks because the imaging of ballast and concrete rail
sleeper is similar. Given that the edge of the rail sleeper has
obvious features, a strict size regulation, and differs from the
grayscale of the ballast, the rail sleeper area can be first
segmented.)e cracks on the rail sleeper can then be located
and identified by using the network. )e proposed crack
detection algorithm is divided into two parts: crack locali-
zation and crack identification. )e crack recognition part
incorporates a feature extraction network and a boundary
refinement network. )e overall methodological flow is
shown in Figure 2. In the first step, we choose the gray
projection method to extract the sleeper area first because
the large amount of ballast in the background of the sleeper
affects the crack detection. In the second step, a modified
YOLOv3 is used to locate and segment the cracks on the
basis of the extraction of the rail sleeper area. In the third
step, further quantitative parameter detection of cracks is
needed to complete high-precision crack identification and
provide more scientific detection data; hence, CEDNet is
used for feature extraction. A boundary refinement network
is designed for further optimization because the extracted
cracks have partial boundary and region information
incompleteness:

(1) )e location of the sleeper is extracted by using the
gray projection method [23] combined with the
empirical value of the sleeper pixels, and then, SE
[24] and spatial pyramid pooling (SPP) [25] are
added at the end of the YOLOv3 backbone network
to locate the sleeper cracks

(2) CEDNet, a crack coarse saliency feature extraction
network, is used to obtain more detailed saliency
information by fusing low-level features and high-
level features of crack images through the network
structure of codec patterns

(3) CRRNet, a crack boundary refinement network, is
used to learn the residuals between the original and
ground truth maps of the crack for optimization
purposes by fusing the outputs of the network feature
layers

2.1. Crack Location Module. )e dimensions are strictly
defined, and they differ from the ballast grayscale because
the sleeper edge features are obvious. )e gray projection
method combined with the empirical values of the sleeper

pixels can be used to locate the position of the sleeper. )e
gray projection method has better results for object edge
detection with complex backgrounds, relying mainly on the
peaks and valleys in the gray projection curve to determine
the coordinates of the object edge position. Assuming that
the image is represented as f(x, y), the gray projection
function in the x-direction is fx(x), the coordinates of the
pixel points in the image are (x, y), and the value of the gray
projection function in the horizontal direction is

fx(x) � 􏽘
x

f(x, y). (1)

)e edge coordinates of the horizontal direction of the
sleeper can be obtained in accordance with the gray pro-
jection method. )e pixel width of the edge of the sleeper is
relatively fixed in the captured roadbed images. Figure 3(a)
shows the original drawing of the ballasted roadbed. )e
valley of the horizontal projection in Figure 3(b) depicts the
contact edge between the sleeper and the ballast. Figure 3(c)
presents the segmentation results.

)e prediction results are obtained by stacking and
splicing after simultaneously extracting three feature layers
with different depths because YOLOv3 uses a residual net-
work in the feature extraction part. )erefore, this network
can be used to detect cracks of different sizes. However, in the
complex background of the sleeper, the crack detection effect
is poor. Inspired by the literature [24–26], the SE module

(a)

(b)(c)(d)

CEDNetCRRNet

Crack Recognition Net

Figure 2: Process of the proposed method. (a) Gray projection.
(b) Improved YOLOv3. (c) Feature extraction. (d) Edge refinement.
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suppresses the interference of background and other noises,
and the SPP module can improve the operation efficiency by
relieving the network of the size requirement for input images
while ensuring that the images are not distorted. )e end-to-
end semisupervised object detection method, the object de-
tection head with unified awareness from the attention
perspective, and Composite Backbone Network Version2
(CBNetV2), which eliminates the pretraining process, can
avoid the more complex multistage training approach in the
literature [27–29]. However, the algorithms in the above
documents still have some shortcomings, such as slow de-
tection speed, large consumption of network resources, low
accuracy and recall rate, and poor detection accuracy.
)erefore, we choose to add SE and SPPmodules at the end of
the backbone network to make the model simpler in the
training process and to improve the accuracy of crack region
extraction while minimizing additional overhead. An im-
proved algorithm based on YOLOv3 is designed in this paper,
and its overall structure is shown in Figure 4.

)e SE module belongs to one of the more classical
algorithms of the attention mechanism. )e accuracy of
crack detection can be significantly improved by designing
special parameters capable of removing the invalid infor-
mation extracted by the YOLOv3 network [25]. )is module
compresses the sleeper crack image to a size of 1∗ 1∗ 1024
after a global averaging pooling layer. )e activation is
performed by two modules in fully connected layers and
activation functions. )e crack feature channels are
weighted uniformly. )e designed residual module ensures

effective training so that the network extracts more accurate
information about crack features and suppresses interfer-
ence from other noises in the sleeper images.

When performing prediction of the a priori frame on
three scales of the crack image, YOLOv3 requires consistent
size of the crack feature maps outputted by the backbone
feature extraction network. )e cropping or shape change of
the image tends to cause partial loss of information, resulting
in biased crack detection results. Accordingly, the SPP
module is added after the SE module to remove the limi-
tation of the fixed size of the input image [26]. )e sleeper
crack images outputted from the backbone network of this
module are simultaneously pooled at three scales after one
convolution operation. )e output crack features are fused
and inputted to the fully connected layer. We can obtain a
fixed size crack image output without losing the original
information for any size and scale of the crack image input.

2.2. Crack Recognition Module. After locating and seg-
menting the cracked area of the rail sleeper, this paper
proposes a crack identification module to obtain more
detailed crack characteristics. )e module uses a crack
boundary refinement network to optimize the predicted
saliency map because the extracted crack information is
incomplete. )e final crack saliency map is obtained by
fusing the crack boundary refinement network with the
feature extraction network, and the general block diagram of
this module is shown in Figure 5.

2.2.1. Feature Extraction Module. )e backbone network
used for feature extraction is the crack coarse saliency feature
extraction networkCEDNet, which is a codec network focusing
on crack regions and boundaries. )e network is built on the
basis of ResNet-34 (Residual Network with 34 parameter
layers) [30] using a codec form. After feature extraction of the
input sleeper cracks in the encoding part, the resulting image
features are further optimized and processed by the decoding
part.)e shallow information of the cracked image is passed to
the corresponding decoding process, which enables the fusion
of low-level detailed features with high-level complex semantics
as a method to improve the network feature extraction per-
formance. )e structure is shown in Figure 6.

)e specific structure and operational steps of the net-
work are as follows:

(1) )e coding part consists of an input convolutional
layer and six stages consisting of basic residual blocks,
with a modified ResNet-34 structure for the input
convolutional layer and the first four convolutional
stages. )e improvements mainly include the use of a
3∗ 3 convolution filter and a convolution kernel with a
stride of 1.)e pooling operation is removed after the
input convolutional layer to guarantee that the feature
map in the first stage has the same spatial resolution as
the input image. By contrast, the first feature map in
the original ResNet has only one-quarter of the res-
olution of the input map. )is change allows the
network to obtain higher resolution feature maps in

(a)

(b)

(c)
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Figure 3: Gray projection experimental results. (a) Original image.
(b) Horizontal projection. (c) Segmentation results.
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previous layers although reducing the overall recep-
tive field. Consequently, Conv5 and Conv6, which are
two convolutional stages consisting of 512 filters and
three basic residual blocks, are added to obtain a
greater extent of the object detection region on the
original map and achieve the same receptive field as
the original ResNet.

(2) A bridge connection structure is used to further
obtain the global information of cracks. )e bridge
connection structure contains three modules

consisting of a Conv layer, a batch normalization
(BN) layer [31], and a rectified linear unit (ReLU)
activation function [32], where each convolutional
layer consists of 512 3∗ 3 dilated convolutions [33].

(3) )e input of each level of the decoding section is
cascaded from the previous level and the pooled output
of the corresponding level in the encoding section. A
sigmoid function is added to each layer after using
bilinear up-sampling for mapping the predicted values
to [0, 1]. Seven saliency mappings are generated in this
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Figure 5: Crack recognition module.
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module, containing six postcascade feature mappings
and the final output feature mapping. However, only
the last feature map with the highest accuracy can be
inputted into the CRRNet. )e supervision of the
ground truth map is supervised at the last layer of each
decoding stage to reduce overfitting, as in holistically
nested edge detection [34].

2.2.2. Edge Refinement Module. After the object detection
and feature extraction, the predicted crack coarse saliency
map can be obtained for the sleeper cracks. Figure 7 shows
the original map of cracks, the ground truth map, and the
coarse saliency map after the CEDNet extraction.

In the coarse saliency map, the crack boundary is
blurred, some salient regions are missing, and the back-
ground is incorrectly marked as the object and inaccurately
located. )erefore, the boundary information and local
details of the extracted crack feature map are incomplete.
)erefore, the extracted feature map is fed into CRRNet for
further optimization.

)e network is built in codec form and achieves opti-
mization by learning the residuals between the original and
the ground truth maps, using two 1D filters (i.e., 3∗1 and
1∗ 3 convolutional layers) rather than of 3∗ 3 in size, which
can improve the network optimization performance while
avoiding a large computational effort [35]. Coarse feature
maps of the input and stacked outputs are fused by using
residual module propagation with identity mapping
branches to facilitate training, and iterations are conducted
to optimize coarse saliency map accuracy. )e boundary
refinement map under the sigmoid functionmapping is used
as the final output of the network, as shown in Figure 8.

)e network structure consists of three parts: encoder,
decoder, and bridge connection.

)e coding section consists of four stages with two 1D
filters and a maximum pooling layer for down-sampling and
reduced computational effort. )e order of the built con-
volutional layers is 3∗1 in front and 1∗ 3 convolution in the
back. Only one ReLU layer is added after the former, and a BN
layer and a ReLU layer are placed after the convolutional layer

of the latter [36].)is design allows the network to be built to a
deeper level with less degradation in performance andmitigates
to a certain extent the effect of gradient diffusion on network
training, balancing network optimization performance and
computational efficiency.

)e decoding part is composed of a bilinear interpola-
tion unit for up-sampling to match the feature dimensions
and two 1D filters identical to the encoding part. )e 1D
filter is built in the reverse order of the coding part. )is part
also consists of four stages, and the codec pattern is reflected
in the decoding part, where the 1∗ 3 convolution in each
stage is cascaded with the 3∗1 convolution in the corre-
sponding stage of the coding part.

)e bridge connection part contains a Conv layer, a BN
layer, and a ReLU layer. )e convolutional layer in the
structure has 64 filters and a convolutional size of 3∗ 3.

2.3. Hybrid Loss Function. )e training loss function in this
paper is defined as the sum of the outputs of all saliency
feature mappings:

L � 􏽘
k

k�1
αkl

(k)
, (2)

where l(k) is the loss of the kth lateral output and αk is the
weight of each loss. k is taken as 8, indicating the presence of
8 outputs of the supervised sleeper crack detection network,
7 of which are from CEDNet and the rest from CRRNet. A
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Figure 6: CEDNet.
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hybrid loss function l(k) that mixes three losses of BCE,
SSIM, and IOU is used to obtain a high-quality detection
object with complete information:

l
(k)

� l
(k)
bce + l

(k)
ssim + l

(k)
iou , (3)

where l
(k)
bce, l

(k)
ssim, and l

(k)
iou denote the BCE [37], SSIM [38], and

IOU losses [39], respectively.
BCE is used as a loss function in this network to su-

pervise the training accuracy of object detection from the
pixel level, which can be performed pixel by pixel. )e pixel
points of foreground and background pixel points are
considered equally important and ignore the labeling of the
neighboring regions. Accordingly, all pixel points can be
converged. BCE is mainly applied to binary classification
and segmentation tasks. )e definitions are as follows:

lbce � −􏽘
(r,c)

[G(r, c)log(S(r, c)) +(1 − G(r, c))

· log(1 − S(r, c))],

(4)

where G(r, c) ∈ 0, 1{ } is the ground truth label of the pixel
(r, c) and S(r, c) is the predicted probability of the saliency
object.

SSIM is used as a loss function for supervised object
detection from the local domain level to evaluate the image
quality. )is loss function assigns a higher weight to the
boundary making the loss near the boundary higher, that is,
focusing on the attention to the foreground and background
boundaries. Progressively more important background losses
come into play as the prediction of background pixel points
approaches the ground truth, making the boundaries of
cracks in the background prediction clearer. SSIM captures
structural information in the image; therefore, it is integrated
into the blend function to learn the structural information of
the saliency object. )e definition is as follows:

lssim � 1 −
2μxμy + C1􏼐 􏼑 2σxy + C2􏼐 􏼑

μ2x + μ2y + C1􏼐 􏼑 σ2x + σ2y + C2􏼐 􏼑
, (5)

where x ∈ xj: j � 1, . . . , N2􏽮 􏽯 and y ∈ yj: j � 1, . . . , N2􏽮 􏽯

are the pixel values of two corresponding patches cropped

from the predicted probability map S and the binary ground
truth mask G, respectively, μx, μy and σx, σy are the mean
and standard deviations of x and y, respectively, and σxy is
their covariance. C1 � 0.012 and C2 � 0.032 to avoid di-
viding by zero.

IOU is originally used to calculate the similarity between
two sets and extended to a standardmethod for evaluating the
effectiveness of object detection and segmentation. After the
foreground loss is reduced to zero combined with the three
loss functions, the BCE can be used to maintain all pixel point
gradients and make the IOU focus more on the foreground as
the prediction confidence of the foreground network grad-
ually increases. At the featuremap level, the following formula
is used to oversee the training of object detection and ensure
its differentiability in the training loss function.

liou � 1 −
􏽐

H
r�1 􏽐

W
c�1 S(r, c)G(r, c)

􏽐
H
r�1 􏽐

W
c�1[S(r, c) + G(r, c) + S(r, c)G(r, c)]

, (6)

where G(r, c) ∈ 0, 1{ } is the ground truth label of the pixel
(r, c) and S(r, c) is the predicted probability of the saliency
object.

3. Experiment and Results

3.1. Dataset. )e image acquisition device used in the paper
is mainly composed of industrial high-speed line matrix
camera and camera lens used in accordance with the field
design requirements. As shown in Figure 9, the image ac-
quisition system consists of an industrial computer and the
LQ-H3X module, where the LQ-H3X module mainly con-
sists of a laser light source and a line array camera. )e main
parameters of the LQ-H3X module are shown in Table 1.

3.2. Experimental Setup. )emodel in this paper runs under
a Win10 operating system, with dual CPU Intel Xeon Silver
4214 2.2GHz and NVIDIA RTX 2080Ti 11GB graphics
card. )e three networks of object localization, coarse sa-
liency feature extraction, and boundary refinement are built
and run under the integrated development environment of
PyTorch framework and PyCharm.

Conv 3∗1 ReLU BN+ReLu BN+ReLu Bilinear upsampleMaxpool

224∗224∗64

112∗112∗64 28∗28∗64 28∗28∗64 112∗112∗64

56∗56∗64 14∗14∗64 56∗56∗64 224∗224∗64
Sigm

oid

Conv 1∗3 Conv 3∗3

Figure 8: CRRNet.
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3.3. Hyperparameter Configuration. For the saliency de-
tection part, several parameters with deeper influence, such
as initial learning rate, batch size, and epochs, are adjusted
during model training. )e initial learning rate is closely
related to the update of the weight parameters. If it is ex-
tremely large, the loss value increases, and the network
model is infinitely divergent. If it is extremely small, the loss
value decreases extremely slowly, and the parameters are
updated extremely slowly. Choosing minibatch stochastic
gradient descent and appropriate epochs can improve the
running speed of neural network, and let the model converge
properly. )e actual situation with different combinations of
important parameters is compared through several experi-
ments to improve the model training speed, and the results
are shown in Table 2.

Initially, with the batch size and epochs unchanged, the
loss value decreases faster and faster with the downward
adjustment of lr. On the basis of determining the lr of 0.001,
the batch size of 4 is selected first in accordance with the
performance of the device graphics card and GPU memory
size. )e epochs are chosen to be adjusted downward from
300 to 100 for the case that the rail crack dataset does not
have data diversity.)e parameter combination of the lowest
loss of 0.046 is established. In consideration of improving the
running speed of the neural network, the epochs are in-
creased from 200 to 300 to achieve the same accuracy when
the batch size was adjusted to 5. )e loss value does not drop
as fast as the former in the whole process.

In summary, the optimal combination of parameters
selected for the crack recognition module in this paper is as

follows: initial learning rate, batch size, and epochs are set to
0.001, 4, and 200, respectively, and the results are shown in
Table 3.

3.4.EvaluationMetric. )e selected evaluationmetrics include
F-measure, mAP, F-weighted [40], MAE [41], and AUC [42].
)e F-measure is a comprehensive index for the evaluation of
the final obtained crack detection results. mAP is used as the
average accuracy rate to measure the recognition accuracy, with
larger values indicating higher accuracy rates. F-weighted is
calculated from the corresponding PR value. )e weight of the
PR value is the percentage of samples in the total number of
samples. )e larger the value, the stronger the network per-
formance. MAE is used to measure the error of the test results.
)e AUC value indicates the high or low performance of the
network in classifying the crack and rail background.)e closer
to 1, the better the network classification.

Its calculation formula is as follows:

LQ-H3X Module

Industrial
Computer

Figure 9: Image acquisition. (a) Special rail inspection vehicle. (b) Picture of image acquisition in high-speed railway line.

Table1: LQ-H3X module parameters.

Characteristics Parameters
Camera resolution 2048/4096 pixels
Scanning frequency 2000 kHz (CL)
Laser power 15W/25W
Laser center wavelength 808/915 nm

Table 2: Hyperparameter configuration.

Initial learning rate Batch size Epochs Loss
0.001 4 200 0.046
0.001 4 100 0.054
0.001 4 300 0.050
0.001 5 200 0.052
0.001 5 300 0.049
0.002 4 200 0.053
0.002 5 300 0.051
0.005 4 200 0.057
0.005 5 300 0.055

Table 3: Combination of parameters.

Parameters Value
Input size 224× 224
Initial learning rate 0.001
Batch size 4
Epochs 200
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Fλ �
1 + λ2􏼐 􏼑P∗R

λ2 ∗P + R
, (7)
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TP0
+ FP0

∗ω0

+
TP1

TP1
+ FP1

∗ω1,
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1

W × H
􏽘

W

x�1
􏽘

H

y�1
|S(x, y) − G(x, y)|,

(8)

where P denotes the precision, R denotes the recall, and λ2 is
0.3, similar to those in reference [40]; ω−1, ω0, and ω1 are the
weight ratios of each precision. After the recall is calculated,
the F-weighted is obtained from Equation (7). W and H are
used to represent the length and width of the input sleeper
crack image to be processed.

3.5. Hybrid Loss Function. )is work compares and verifies
the performance of the proposed hybrid loss function l with
single andmultiple forms of loss function combined with the
network model. As shown in Figure 10, the saliency map
predicted by the proposed algorithm is the closest to the
ground truth. )e integrity of the cracked part of the region
with the clarity of the boundary is shown to be the best
situation compared with the others.

)e quantitative analysis is shown in Table 1. After the
comparison experiments for individual loss functions, the
more effective lbce and liou are then selected for the combined
analysis. Table 4 shows that the network performance can be
optimized only when all three loss functions are simulta-
neously used. Particularly, our method improves Fweighted by
68.4%, 74.8%, 84.1%, and 99.0% on lbce + liou, lbce, liou, and
lssim , respectively.

3.6.ObjectDetection. In this experiment, for the comparison
of YOLOv3, YOLOv4, and YOLOv5, we conduct the cor-
responding experiments. )e settings of our experimental
parameters are shown in Table 5. )e initial parameter
values for input size, initial learning rate, class, batch size,
and epochs for the training of rail crack images are provided.

On the basis of this experimental condition, tests are
performed for Tiny YOLOv3, YOLOv3, YOLOv4, and
YOLOv5.)emodel accuracy is verified in terms of the three
metrics: precision, recall, and MAP, and the model speed is
verified in terms of frames per second (FPS), as shown in
Table 6.

YOLOv3 has a higher recognition accuracy than Tiny
YOLOv3 and a faster recognition speed than YOLOv4 and
YOLOv5. )e recognition accuracy can be optimized with
the help of SE module and SPP module. In accordance with
the experimental results, YOLOv3 can reach the same or
even exceed the level of YOLOv4 and YOLOv5.

)erefore, a preliminary conclusion is that YOLOv3 is a
more ideal target for optimization. )is conclusion can be
verified in the final optimized test results.

)e prediction frame when the network locates cracks is
more accurate compared with the original YOLOv3 by using
the improved YOLOv3 network to complete the detection of
cracks in the sleeper due to the added attention mechanism
to improve the ability to capture the location of cracks. )e
detection effect is shown in Figure 11.

YOLOv3 and the proposed algorithm are used to detect
cracks of the overall roadbed image and the segmented
sleeper image by using gray projection method. )e com-
parison of experimental results is shown in Table 7. )e
comparison of the two inputs of the overall roadbed and
sleeper areas shows that the mAP of crack detection is
improved by 35.4% and 38.8% on YOLOv3 and improved
YOLOv3 after rail sleeper area extraction, respectively,
proving the necessity of sleeper area extraction for crack
detection. )e data entered in the sleeper region column
show that the improved YOLOv3 improves the mAP by
6.9% compared with the original network, proving the
significant superiority of the present algorithm for sleeper
crack detection.

3.7. Feature Extraction. With regard to the sleeper crack
dataset constructed in this work, the results of sleeper crack
saliency detection obtained using the method of this work
are compared with those of several other network models.
)e models include BAS [43], R2Net [44], SOD100k [45],
EDR [46], PFA [47], HED [34], and POOLNet [48]. Fig-
ure 12 shows that the proposed algorithm has a good de-
tection of cracks in a variety of situations, including low
contrast (1st, 4th, and 6th columns), small target (4th and 6th
columns), and complex background (2nd, 3rd, 5th, and 7th
columns).

)e above evaluation metrics are applied to make a
quantitative analysis of all network performance, as shown
in Figures 13 and 14. In terms of AUC, the proposed al-
gorithm improves by 6.0%, 0.2%, 1.2%, 2.8%, 3.8%, 10.4%,
15.5%, and 50.9% compared with CEDNet, EDR, BAS,
POOLNet, R2Net, PFA, SOD 100 k, and HED, respectively.
)is result indicates that the proposed algorithm has better
classification prediction performance. )e MAE value of
this work is 0.015, verifying that the algorithm has a small
error and high accuracy rate compared with the other
networks. )e closer the curve composed of precision and
recall to the upper-right corner, the better the network
classification, and the larger the area enclosed by the F
curve and the horizontal axis, the stronger the performance
of the network.

)e proposed algorithm has better crack integrity and
clarity than other algorithms and depends on the form of
cascade network used herein. A more complete crack
feature can be obtained after cascading the residual net-
works of codec modes (i.e., CEDNet and CRRNet). In
comparison with EDR, the pooling operation after the
input convolutional layer is removed in the feature ex-
traction stage to improve the image resolution in this work,
and Conv5 and Conv6 are designed to restore the network
receptive field. )e crack information obtained in this stage
is more detailed. By contrast with BAS, a 1D filter is used in
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the optimization part to balance the refinement perfor-
mance and computational efficiency. In FPN-based U-Net
structures, such as POOLNet and R2Net, the high-level
semantic features are continuously diluted because of their

structural limitations when fusing with low-level image
features, and the different receptive fields in each layer of
the network lead to the loss of local information in the
crack saliency map.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 10: Saliency maps under different loss functions. (a) Image. (b) Ground truth. (c) l. (d) lbce + liou. (e) lbce. (f ) liou. (g) lssim.

Table 4: Performance comparison of different loss functions.

Evaluation metrics F-weighted ↑ MAE ↓
CEDNet +CRRNet + l 0.805 0.015
CEDNet +CRRNet + lbce + liou 0.254 0.038
CEDNet +CRRNet + lbce 0.203 0.039
CEDNet +CRRNet + liou 0.128 0.040
CEDNet +CRRNet + lssim 0.008 0.043

Table 5: Setting of initial parameter values.

Parameters Value
Input size 128× 608
Initial learning rate 0.1
Class 1
Batch size 6
Epochs 200

Table 6: Comparisons of experimental results.

Models Precision Recall MAP FPS
Tiny YOLOv3 0.361 0.452 0.392 146.35
YOLOv3 0.794 0.877 0.856 81.7
YOLOv4 0.866 0.924 0.884 26.23
YOLOv5x 0.932 0.905 0.911 32.52
Ours 0.963 0.912 0.915 76.6
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(c)

(d)

(e)

(f)

(g)

(h)

(b)

(i)

(a)

(j)

(k)

Figure 12: Comparison of saliency maps. (a) Image. (b) Ground truth. (c) Ours. (d) CEDNet. (e) EDR. (f ) BAS. (g) POOLNet. (h) R2Net.
(i) PFA. (j) SOD 100k. (k) HED.

Table 7: Comparison of crack detection results.

Algorithm model
Enter the overall roadbed area Input sleeper area

Precision Recall mAP Precision Recall mAP
YOLOv3 0.444 0.736 0.632 0.794 0.877 0.856
Ours 0.469 0.792 0.659 0.963 0.912 0.915

Figure 11: Sleeper crack location.
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Figure 13: Performance comparison of each algorithm. (a) AUC. (b) F-weighted. (c) MAE.
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4. Conclusion and Expectations

We propose a method for detecting cracks in rail sleepers
based on DCNN to address the lack of accuracy in crack
detection in crack recognition. )e CNN used consists of a
modified YOLOv3 network for localization and CEDNet
and CRRNet for extracting and optimizing the rail sleeper
crack features, respectively. In locating the rail sleeper crack
region, the crack on the concrete rail sleeper has some
similarity with the ballast edge in the captured images due to
the lighting and other causes. However, a grayscale differ-
ence can be observed between the rail sleeper and the ballast.
Hence, the rail sleeper area is first segmented for the next
step. )e attention module SE is added at the end of the
original YOLOv3 network to extract the cracked areas,
thereby improving the accuracy of the rail sleeper crack
detection while preserving the network computation speed.
CEDNet is constructed to extract more crack information by
fusing the high- and low-level features of crack images. )e
crack boundary refinement network CRRNet is added to
optimize the cracks, and the stacked output of the crack
coarse saliency feature map and the network can be opti-
mized by learning the residuals from the ground truth. A
cascade approach is adopted for the above two networks to
obtain a crack saliency map with more complete boundary
and region information. )e conclusions of this work are as
follows:

(1) A new crack detection method is designed. A cascade
network combining CEDNet and CRRNet is used to
improve the integrity of crack detection. Its
F-weighted is 0.831, MAE is 0.0157, and AUC is
0.9453.

(2) An improved YOLOv3 network is proposed to lo-
calize the cracks, and the attention mechanism SE

module is added at the end of the backbone network.
)emAP is improved by 6.9% compared with that of
YOLOv3.

(3) )e optimization effects of loss functions BCE, IOU,
and SSIM on crack recognition are superimposed to
propose a new hybrid loss function for the crack
recognition. Particularly, our method improves
Fweighted by 68.4%, 74.8%, 84.1%, and 99.0% on
lbce + liou, lbce, liou, and lssim, respectively.

(4) A comprehensive evaluation of the proposed
methodology is conducted. Our method has strong
robustness and high level of crack detection effi-
ciency compared with the seven state-of-the-art
methods.

)e proposed crack recognition module consists of two
parts. In the optimization stage, we perform the crack
boundary refinement process directly on the basis of the first
output. Compared with end-to-end learning, this approach
requiring secondary adjustment of model parameters in-
creases the time cost and requires more manual processing.
)erefore, if the optimization part can be encapsulated into a
plug-and-play module, it will greatly improve the efficiency
of model operation, which is the next optimization intention
of this paper. )is paper effectively improves the accuracy of
the identification of cracks in the rail sleeper but does not
measure the geometric parameters. How to calculate the
actual size of the cracks on the basis of existing data is a
direction for our future efforts, which is extremely helpful
for practical engineering applications.

Data Availability

)e data used to support the findings of this study are
available from the corresponding author upon request.
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Figure 14: Performance comparison diagram of each algorithm. (a) Precision-recall curves. (b) F-measure curves.
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