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Understanding the factors contributing to crash severity, along with their influence degrees across different times of day, can assist
in better highway design and in developing effective countermeasures for ameliorating highway safety (especially during
nighttime). *is study examines the influences of risk factors on crash severity, based on comparisons of nighttime and daytime
crashes. By using a random parameter approach to account for unobserved heterogeneity, multivariate logit (RPML) models are
proposed to analyze the crash severity based on the explanatory factors in terms of the crash, traffic, speed, road geometry, and
sight characteristics.*e goodness-of-fit and predictivemeasures highlight the better performance of the proposedmodels relative
to standard models, as the proposed models reduce the unobserved heterogeneity and yield higher precision. In addition, the
elasticity effects of the factors are calculated to investigate and compare their impact degrees in daytime and nighttime crashes.*e
findings could potentially be utilized to guide highway design and policies and to develop specific safety countermeasures.

1. Introduction

In 2015, the World Health Organization reported 217711
deaths in traffic crashes in China, with a death rate per
100000 vehicles 1.7 times that in the US [1]. According to the
Traffic Management Bureau of the Public Security Ministry
[2] in China, highway crashes account for only 5% of all
roadway crashes, but the fatalities involved in highway
crashes account for almost 10% of all fatalities. Moreover,
approximately one-third of the very severe roadway crashes
in 2015 (involving 10 or more fatalities) occurred on
highways. To mitigate the damage caused by highway
crashes and ensure efficient safety countermeasures in
China, a wide range of research efforts have been devoted to
reducing the occurrence of crashes and the severity of their
outcomes [3–5].

Nighttime crashes are a serious problem for the safe
operation of highways, owing to the reduction in visibility

[6]. According to the National Highway Traffic Safety Ad-
ministration (NHTSA), the nighttime traffic death rate
(deaths per 100 million vehicle miles) is 4.4 times higher
than that of the day [6]. In 2017, approximately 47% of fatal
crashes in the US occurred during the night [7]. In April
2018, 36% of all fatalities in the EU member states occurred
during the night. Moreover, this percentage increased to
greater than 50% between November and January, owing to
the longer nights during winter [8]. Driving during the
nighttime with poor visibility increases the frequency and
severity of crashes on highways [9]. Despite the substantially
smaller traffic volumes, the crash frequency increases at
night [6]. Several crash databases and reports have shown
that the crash severity during nighttime is over two times
higher than that in the daytime [10, 11]. In particular, the
average number of fatalities per 100 nighttime crashes in
Italy is 3.5, compared to 1.7 during the daytime [12]. *ese
findings underscore the requirement for and importance of
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research efforts on the time-of-day variation effects of
contributing factors. For example, drivers have less time to
compensate for the reduced sight distance in the nighttime,
leading to more frequent crashes and more severe outcomes.
Several previous pieces of evidence illustrated significant
variations in the influences of factors affecting injury se-
verities during different periods of the day in the large truck
crashes (morning vs. afternoon) [13] and multivehicle
crashes (daytime vs. nighttime) [14]. Overall, more efforts
should be undertaken to investigate the differences in the
effects of the contributing factors influencing daytime and
nighttime crashes, with possible different generation
mechanisms.

Sight distance is an essential element for identifying risks
and ensuring safe driving. Drivers at night can monitor and
detect the road environment and driving behaviors of the
surrounding vehicles ahead with illuminating headlights at an
average distance of 50m [15]. Driving at night may be riskier
because of the shorter available sight distance. As a basis of
highways, roadway alignments have significant impacts on
highway safety. In particular, horizontal curves greatly ag-
gravate safety issues because the sight distances of most drivers
at night vary from those during daytime [16]. In the evening,
drivers may be unable to accurately identify the curvature to
correct the direction and speed of their vehicles [17] butmay be
capable of accomplishing effective operations during the
daytime. Considering the horizontal alignment during night
driving, it is critical to consider a nighttime impact difference
evaluation from both policy and engineering perspectives.

Identifying the significant factors and impact levels
thereof affecting the injury severity for daytime and
nighttime crashes is critical for policymakers and roadway
engineers in China. *is study intends to use the findings of
past research as a basis for understanding the potential
influence mechanisms of variables (i.e., stopping sight dis-
tance) on the crash severity.

We are particularly interested in the following questions.

(1) What are the contributing determinants to crash
severity on highways? What differences exist be-
tween daytime and nighttime crashes?

(2) To what extent do the key variables affect the crash
severity, respectively?

(3) Do any differences exist in the influence trends and
degrees of the significant variables? Do these factors
show time-of-day variations?

*is study lays a foundation for a total evaluation of
crash injury outcomes during certain time-of-day periods,
e.g., by presenting the magnitude of the problem and
providing guidance for future research.

1.1. Related Work. In previous traffic safety studies, many
statistical models have been developed for examining the
attributes affecting crash consequences. A comprehensive
literature review of the modeling methodologies for crash
severity is presented as follows. In addition, related studies
on the time-of-day variations and temporal instabilities are
discussed.

1.2. Related Work of Modeling Methodology for Crash
Frequency. Based on crash datasets, the statistical analyses
in previous studies on crash data have typically addressed
the resulting injury severity of crashes. *e application of
count data involves determining the number of crashes
occurring over segments of a specified length. Various
multivariate count models have been developed for jointly
analyzing crash frequencies with different degrees of injury,
including negative binomial models [18], Poisson model
[19], Bayesian models [20, 21], and so on.

1.3.RelatedWorkofModelingMethodology forCrashSeverity.
A growing body of research efforts (Table 1) has analyzed the
crash severity based on the multinomial logit model, ordered
probit model, Markov-switching model, Bayesian random
parameters models, grouped random parameters models,
correlated random parameters models, latent class models,
random parameter multinomial logit models (mixed logit
models), and other models, and a wide range of factors have
been found to potentially influence the injury severities.

As given in Table 1, among all of the contributing factors,
a wide range of roadway, traffic, and environmental char-
acteristics influence both the likelihood and injury severity
of crashes [37]. By accommodating heterogeneity in the
means and variances, the random parameter’s approaches
can provide much more flexibility in tracking the unob-
served heterogeneity and indicate the statistical superiority
in terms of accuracy [35, 36, 38, 39], which is utilized in this
study.

1.4. Related Works of Time-of-Day Variation and Temporal
Instability. *e time-of-day variation and temporal stability
of the factors affecting crash severity have become inno-
vation issues and major concerns. Wei et al. [40] suggested a
significant time-of-day effect in truck crashes, as crashes
occurring in the afternoons and at night were more severe.
Evans et al. [41] found that drivers perform worse regarding
perceptions of risk and difficulty in the nighttime. Das and
Abdel-Aty [42] found that the average daily traffic signifi-
cantly influenced urban rear-end crash occurrences. Jung
et al. [43] revealed that rainfall conditions lead to higher
injury severity levels in crashes. Ackaah et al. [44] found that
nighttime traffic crashes resulted in more severe injury
outcomes and that most collisions occurred in the early
hours of the night. Musunuru et al. [45] verified the hy-
pothesis that horizontal curves with higher proportions of
traffic at night experience more crashes. Malyshkina et al.
[26] indicated that the crash frequency changes between
states over time by adopting a Markov-switching model.
Malyshkina and Mannering [26] and Xiong et al. [27] also
found that crash severity is unstable over short periods,
along with unobserved heterogeneity. Behnood and Man-
nering [13] analyzed the time-of-day variations and tem-
poral instability of factors affecting injury severity in large
truck crashes over eight years. Moreover, the present re-
search suggests that certain factors among roadway geo-
metrics, pavement, weather, and traffic characteristics show
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temporal instability over time-of-day or year periods
[38, 46–51].

However, the previous studies have mainly separately
examined crash frequency or crash severity, such that several
potential risk factors might be ignored owing to their in-
significance in single modeling work. Additional efforts
should be devoted to investigating both the frequency of
crashes and their resulting severity and to revealing the
remarkable differences and similarities in the significant
factors and their influences. *is study intends to identify
the crash contributors causing more frequent crashes and
more serious injuries by separating daytime and nighttime
crashes. *e findings of this study could be utilized to de-
termine the implementation of specific safety countermea-
sures aimed at daytime and nighttime crashes. A
comprehensive understanding of the above issues can be
obtained by establishing explicit relationships between the
crash frequency and severity and the characteristics of
drivers, vehicles, roadway alignments, traffic, and weather
conditions.

2. Methodology

2.1. Random Parameter Logit Approach. To analyze the
significant factors resulting in the crash injury severity, we
propose random parameter multivariate logit (RPML)
models with heterogeneity in means and variances and
define the injury severity function as

Tsk � βsXsk + εsk, (1)

where Tsk denotes the injury severity function determining
the probability of crash severity s in crash k, Xsk is a vector of
explanatory variables (roadway, traffic, and environment
characteristics variables), βs is the estimate parameters for
category s, and εsk is a stochastic error term assumed to
follow the generalized extreme value distribution [52].

With the assumption of the extreme value distributed εsk,
a standard multinomial logit model is proposed to allow for
parameter variances varying across observations, specified as
[53]

Psk � 
e
βkXsk

 e
βkXsk

f(β|φ)dβ, (2)

where f(β|φ) denotes the probability density function of the
random vector β, and φ is a vector of parameters of the
probability density function (mean and variance).

According to Seraneeprakarn et al. [35], heterogeneity in
the mean and variance is specified as

βs � β + δsMs + σse
ωsDs]s, (3)

where Ms, Ds denote the vectors capturing heterogeneity in
means for crash severity s and standard deviation σs with
corresponding parameter vector ωs, respectively, and ]s is a
disturbance term.

*e attributes relating to the roadway, traffic, and en-
vironment characteristics of heterogeneity are contained in
Ms, Ds. If the random parameter logit model shows

significance in the vector of Ms, Ds, the model characterizes
the unobserved heterogeneity in means and variances. If the
model shows only significance in the vector Ms, the model
only characterizes heterogeneity in means.

2.2. Elasticity Effect on Crash Severity. Elasticity effects in
random parameter multivariate logit (RPML) models are
also calculated to measure the magnitude of the impact of
specific variables on the probability of crash severity s in
crash k.

E
Psk

xsl
�

zPsk

zxsl

×
xsl

Psk

, (4)

where Psk denotes the probability of crash severity s in crash
k and xsl is the value of variable l of crash severity s.

2.3. Model Estimation. Model estimation like log-likelihood
function (LL) is conducted in this study. *e log-likelihood
function is

LL � 
N

n�1

M

m�1
σmn βmXmn − LN 

∀M
e
βMXMn⎡⎣ ⎤⎦⎛⎝ ⎞⎠, (5)

where Xmn, σmn denote the vector and standard deviation of
explanatory variables (roadway, traffic, and environment
characteristics variables), respectively, and βm is the esti-
mated parameter.

Bayesian information criterion (BIC) is also used for
model comparison, which is a generalized version of the
Akaike information criterion (AIC) considering the
Bayesian equivalent.

BIC � nPln(n) − 2ln(LL),

AIC � 2k − 2ln(LL),
(6)

where nP, LL denote the number of model parameters and
the likelihood function, respectively.

*en, the log-likelihood ratio was used to examine the
model goodness-of-fitness.

R
2

�
LL(β)

LL(0)
, (7)

where LL(β), LL(0) denote the log-likelihood at the con-
vergence of the “full model” and “constant model only,”
respectively.

2.4. Data Description. We used three-year (2015–2017)
crash data from Beijing-Shanghai highway, as collected by
the traffic management department. Beijing-Shanghai
highway (G2) from Xinyi to Jiangdu in Jiangsu Province is a
region of rolling terrains with a total length of 259.5 km and
a design speed of 120 km/h. *e average annual daily traffic
volume (AADT) ranges from 31158 to 68836, and the
proportion of cars and trucks is 59.0% and 12.9%, respec-
tively. *e data contained a total of 3159 crashes, including
data on the vehicle type, time, location, climate, road surface
condition, and casualty condition. Among the datasets, rear-
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end crashes, scrub crashes, and other types of crashes were
included. In addition, roadway geometric features were
collected from road design and construction drawings, in-
cluding those concerning horizontal alignment, vertical
alignment, and interchanges. In addition, the definitions of
daytime and nighttime crashes were extracted from the
detailed descriptions in the dataset.

We divided the road into 426 different sections
according to the horizontal alignment, vertical alignment,
and interchange [18]. We obtained the average annual daily
traffic (AADT) of 426 sections as reported by roadway
management agencies.

We adopted the crash severity levels from theMinistry of
Public Security in China [54] as follows:

(1) Light crash: a crash causing minor injuries to one to
two persons or causing property damage less than
1000 CNY (approximately $154.19 USD)

(2) Minor crash: a crash causing serious injuries to one
to two persons, minor injuries to more than two, or
property damage of more than 1000 CNY but less
than 30000 CNY

(3) Severe crash: a crash causing one to two deaths,
serious injuries to three to ten persons, or property
damage of more than 30000 CNY but less than 60000
CNY

(4) Very severe crash: a crash causing more than two
deaths, serious injuries to more than 10 persons, or
property damage of more than 60000 CNY. No very
severe crashes were identified in this dataset. Both
the crash frequency and outcomes regarding the
three severity levels (light injury, minor injury, and
severe injury) were calibrated and analyzed based on
multivariate models.

Table 2 provides the crash statistics for different injury
severities during daytime and nighttime, including both
two-vehicle and multivehicle crashes. Additionally, all ca-
sualties and property losses involved in a two-vehicle or
multivehicle crash were considered to evaluate the injury
severity outcomes.

*e operating speeds of cars and trucks were calculated
by segments according to different geometric features, based
on the models in Specifications for Highway Safety Audit
[54] published in 2016 (Appendix A).

In general, the stopping sight distance is the shortest
distance required for an ordinary driver to react and to slow
down or stop when encountering obstacles while driving at a
certain speed. Based on the Guidelines for Design of
Highway Grade-Separated Intersections [55], the stopping
sight distances of cars and trucks were calculated based on
(8) and (9), respectively.

Scar �
v85t

3.6
+

v85/3.6( 
2

2gf
. (8)

Truck drivers can see the vertical planes of obstacles at a
considerable distance from their perspective at a low speed,
but it is also difficult to control the vehicle owing to the poor

braking performance. Despite the high viewpoint, truck
drivers also lose sight in places with limited lateral line-of-
sight vision.

Struck �
v85t

3.6
+

v85/3.6( 
2

2g(f + i)
. (9)

In the above equations, Scar, Struck denote the stopping
sight distance of the car and truck, respectively, v85 is the
operating speed (km/h), t is the reaction time, set as 2.5 s
generally (judging time as 1.5 s, running time as 1.0 s), g is
the gravitational acceleration, i.e., 9.8m/s2, i is the longi-
tudinal grade, and f is the longitudinal friction coefficient
between the truck tires and road surface and generally takes
a value of 0.17.

Corrugated beam guardrails are commonly set in the
middle and beside a road across all sections, and the inside
(outside) guardrails along the left-turn (right-turn) hori-
zontal curves will affect the drivers’ sight. We consider the
largest transverse clear distance for confirming sight safety,
i.e., the distance between the curve of sight and the track.
When the plane curve is sharp, the transverse clear distance
should be determined on the inside lane. We calculated the
required stopping sight distance of each section for safety as
follows:

H � Rs 1 − cos
c

2
 , (10)

where H denotes the largest transverse clear distance, Rs is
the radius of the inside lane, and c is the central angle of the
line of sight.

*e crash, traffic, speed, geometric, and sight charac-
teristics of the independent variables are given in Table 3.

3. Results

3.1. Model Specification and Overall Measure of Fit for
Crash Severity

3.1.1. Model Specification and Overall Measure of Fit.
Concerning the crash severity, we take a detailed discussion
of the contributing determinants during different periods
based on random parameter logit approaches. As given in
Table 4, both the AIC and BIC values of the approaches
indicate the superiority of the random parameter logit model
with heterogeneity in the means and variances. In addition,
R2 of the random parameter logit model with heterogeneity
in the means and variances is 0.23, indicating that the model
is more appropriate than the other two models.

Accordingly, this model is adopted to research the crash
severity, and the results for all crashes, daytime crashes, and
nighttime crashes are given in Tables 5–7. *e elasticity
effects of all significant variables are given in Tables 5–7.

3.1.2. Model Estimation Result or Crash Severity. Model
results of the random parameter logit model with hetero-
geneity in means and variance for all crashes, for daytime
crashes, and for nighttime crashes are given in Tables 5–7.
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3.2. Discussion for Crash Severity

3.2.1. Crash Characteristics. Regarding the crash character-
istics, the pavement indicator has significantly positive effects
on the minor injury outcomes of all crashes and daytime
crashes, but a negative effect on the nighttime crashes.
Overall, icy pavement tends to increase the light injury
likelihood and decrease the severe injury likelihood for all the
periods. *is counterintuitive finding might be explained by
the risk-compensation psychology of drivers being more
cautious and conservative when faced with icy surfaces [56].

*e positive elasticity effects in Table 7 reveal that the
season is significant for nighttime crashes only, suggesting
higher probabilities of light and severe injury crashes in
autumn or winter (light injury: 0.0019; severe injury: 0.0008).
*is finding is consistent with the research of Wang et al.
[57], in which the authors argued that the low temperature
during winter could potentially lead to slippery surface
conditions with the effects of snow and ice.

3.2.2. Traffic Characteristics. As noted for the traffic
characteristics, AADT shows significance in the daytime
and for all crashes. *e elasticity effects in Table 5 for all

crashes indicate that a greater traffic volume increases the
possibility of light injury crashes and decreases the prob-
ability of minor and severe injury crashes (light injury:
0.0227; minor injury: −0.0062; severe injury: −0.0165). A
high traffic volume may lead to congestion or poor op-
eration conditions, whereas higher travel speeds are as-
sociated with low traffic volumes [9, 58]. *is finding is
consistent with that of Zeng et al. [4], who noted that a
vehicle traveling at high speed with low traffic volumes will
significantly increase the severity level of any crash in-
volving it.

3.2.3. Speed Characteristics. Regarding the speed charac-
teristics, the value of ΔVO−truck is found to significantly affect
the severity level in all three models, with higher possibility
of severe injury outcomes. *is result is expected because of
the poor brake performance of trucks at high speeds, which
imposes greater hazards due to the stronger crash tendency
of trucks [59].

However, ΔVO−car shows significance for all crashes and
daytime crashes. Positive values indicate higher probabilities
of light and minor injury crashes with a greater speed
difference between cars.

Table 2: Descriptive statistics of crash frequency.

Code Variables name
Day Night

Total
Frequency Percentage (%) Frequency Percentage (%)

1 Light injury 2083 65.94 869 27.52 2952
2 Minor injury 124 3.93 57 1.80 181
3 Severe injury 17 0.53 9 0.28 26
Total 2224 70.40 935 29.60 3159

Table 1: Summary of approaches in the analysis of crash severity.

Methodological approach Significant variables Previous research

Multinomial logit model
Time of day; driver gender; usage of alcohol/drugs; seat belt
usage; horizontal curve; weather condition; number of vehicles

involved
Harb et al. [22]; Chen et al. [23]

Ordered probit model
Driver gender; driver age; fatigue driving; peak time; sharp
curve; vertical grade; weather condition; icy pavement; speed;

crash type; light condition

Chen and Chen [24];
Ghasemzadeh and Ahmed [25]

Markov switching model
Driver gender; driver age; usage of alcohol; AADT; fatigue
driving; weekday; weather condition; visibility distance; lane

number; speed limit

Malyshkina and Mannering
[26]; Xiong et al. [27]

Bayesian random parameters models Daily vehicle miles traveled; segments length; number of
populations; median annual household income Huang et al. [28]

Grouped random parameters models
Freeway; arterial; collector; AADT; median barrier;

intersection; population; number of tracks/lanes; road/train
speed

Cai et al. [29]; Heydari et al.
[30]

Correlated random parameters models
Interstate; local road; speed limit; number of lanes; road
geometry; road location; lighting condition; road surface;

weather condition; time of day; time of year
Ahmed et al. [31]

Multilevel models Ratio of older drivers; region; driver behavior; alcohol use;
speeding; vehicle age; nighttime; nonclear weather Park et al. [32]; Park et al. [33]

Latent class models Cyclist/pedestrian counts; AADT; lane use; number of schools/
subway stations; number of lanes; speed limit; arterial/ramp Heydari et al. [34]

Random parameters logit model with
heterogeneity in means and variances

Occupant/driver age; fatigue driving; physical impairment;
speeding; collision angle; lane number; weather condition; wet

road surface

Seraneeprakarn et al. [35]; Kim
et al. [36]
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3.2.4. Geometric Characteristics. Concerning geometric
characteristics, Lback and Lsmax show significance affecting
the injury severity of the three types of crashes. Rfront and
Lpresent only show the significance of daytime crashes. *e
positive estimated parameter of Rfront (−1.96×10−3) indi-
cates a decreased possibility of severe injury crashes with a
greater Rfront during daytime. *is finding was as expected
for greater Rfront could provide greater stopping sight dis-
tance (SSD) [54], which suggests a low risk of severe out-
comes in previous research evidence [58]. *e negative
elasticity effects show that a greater Lpresent results in de-
creased probabilities of minor injury and severe injury crash
during the daytime. *is result is as expected because the
drivers can operate more smoothly when adapted to the

curvature of the sections, enabling them to take proper
reactions in time to potential hazards.

3.2.5. Elasticity Effects. To evaluate the differences in the
effects of significant variables across different periods, the
elasticity effects were also determined for each injury se-
verity level. As shown in Figures 1(a)–1(d), the elasticity
effects of the pavement, ΔVO−truck, Lback, and Lsmax, indicate
different influences on crash severity across the different
times of day.

An evident decrease in injury severity is observed re-
lating to the pavement indicator, as the icy pavement may
result in increased light injury and decreased severe injury

Table 3: Descriptive statistics of key variables.

Variables names Definition Min. Max. Mean SD
Crash characteristics
Weather 1, rainy or snowy day (6.1%); 0, otherwise (93.9%) 0 1 0.06 0.2
Pavement
condition 1, ice pavement (2.1%); 0, otherwise (97.9%) 0 1 0.02 0.1

Season 1, occurred from February to April; 2, occurred from May to July; 3, occurred
from August to October; 4, occurred in November, December, or January. 1 4 2.5 1.4

Traffic characteristics
Interchange 1, occurred near an interchange (25.8%); 0, otherwise (74.2%) 0 1 0.1 0.3
Bridge 1, occurred on bridge (12.4%); 0, otherwise (87.6%) 0 1 0.3 0.5
AADT Average annual daily traffic volume 31158 68836 52850.9 10581.5

Speed characteristics
VO−car (km/h) Operating speed of cars 95.1 193.8 119.6 21.5
ΔVO−car (km/h) Speed difference of cars with adjacent segment −78.0 85.9 −0.2 34.9
VO−truck (km/h) Operating speed of trucks 61.3 104.8 79.3 12.1
ΔVO−truck
(km/h) Speed difference of trucks with adjacent segment −25.7 34.0 −1.4 21.3

ΔVO (km/h) Speed difference between cars and trucks 12.6 104.7 40.3 16.0
Geometric characteristics

Rfront (m) Radius of the plane curve of front section 5597 1000000 429300.6 490879.2
Lfront (m) Length of the plane curve of front section 450 3267 1224.2 711.3
Rpresent (m) Radius of the horizontal curve (plane curve of present section) 5597 1000000 380669.6 481087.0
Lpresent (m) Length of the horizontal curve (plane curve of present section) 680 3676 1638.4 639.0
Rback (m) Radius of the plane curve of back section 5597 1000000 438578.3 492254.3
Lback (m) Length of the plane curve of back section 450 3676 1233.8 759.3
imin (%) Minimum longitudinal grade of current section −1.6 1.6 0.0 0.4
Lsmin (m) Length of the longitudinal slope corresponding to the minimum grade 240.0 1740.0 773.3 296.0
imax (%) Maximum longitudinal grade of current section -2.50 2.50 0.00 0.97
Lsmax (m) Length of the longitudinal slope corresponding to the maximum grade 362.0 1740.0 652.6 248.0

Sight characteristics
Scar (m) Stopping sight distance of cars 244.0 1004.8 423.6 139.6
Struck (m) Stopping sight distance of trucks 52.0 279.4 82.7 24.3
Hcar (m) Horizontal clearance of cars 0.02 6.5 1.4 1.5
Htruck (m) Horizontal clearance of trucks 0 0.2 0.05 0.04

Car denotes vehicles with a wheelbase less than 7m and power greater than 15 kW/t, and truck denotes vehicles with a wheelbase more than 7m or powerless
than 15 kW/t [54].

Table 4: Goodness-of-fit measure of random parameter logit approaches for all-time.

Model Log-likelihood AIC BIC R2

Random parameter logit model only −277.31 670.63 1018.87 0.16
With heterogeneity in means −263.45 652.18 994.58 0.19
With heterogeneity in means and variances −256.24 641.84 947.48 0.23
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Table 5: Model results of the random parameter logit model with heterogeneity in means and variance for all crashes.

Variables Parameter estimate t-stat
Elasticity effect

Light injury Minor injury Severe injury
[MI] constant −3.65 −3.37
Crash characteristics
[MI] pavement 1.25 2.65 0.0015 0.0011 −0.0026

Traffic characteristics
[SI] AADT −5.25×10−5 -2.81 0.0227 −0.0062 −0.0165

Speed characteristics
[SI] ΔVO−car −0.024 −3.23 5.83×10−5 2.51× 10−5 −8.34×10−5

[SI] ΔVO−truck 0.048 2.59 −5.42×10−5 −3.13×10−5 8.55×10−5

Geometric characteristics
[LI] Lback 2.91× 10−4 2.31 1.87×10−3 −2.33×10−3 0.46×10−3

[LI] Lsmax 3.06×10−3 2.19 1.06×10−3 0.68×10−3 −1.74×10−3

Random parameters
[MI] constant −4.65 −4.17
Standard deviation 4.63 3.97

Heterogeneity in the means of random parameter
[MI] constant Lpresent −3.42×10−3 −4.51

Heterogeneity in the variances of random parameter
[MI] constant ΔVO−car 0.068 4.41
Number of observations 3159
Number of estimated parameters 60
Log-likelihood −256.24
AIC 641.84
BIC 947.48
R2 0.23

Table 6: Model results of the random parameter logit model with heterogeneity in means and variance for daytime crashes.

Variables Parameter estimate t-stat
Elasticity effect

Light injury Minor injury Severe injury
[MI] constant −2.21 −2.88
Crash characteristics
[MI] pavement 1.66 2.42 0.0017 0.0008 −0.0025

Traffic characteristics
[Li] AADT −5.71× 10−5 −3.22 0.0193 −0.0045 −0.0148

Speed characteristics
[SI] ΔVO−car −0.033 −2.43 4.85×10−5 3.36×10−5 8.21× 10−5

[SI] ΔVO−truck 0.049 4.52 0.41× 10−5 −3.77×10−5 3.36×10−5

Geometric characteristics
[Mi] Rfront 1.01× 10−6 2.87 −1.26×10−3 3.23×10−3 −1.96×10−3

[Mi] Lpresent −6.60×10−3 −2.51 2.93×10−3 −2.35×10−3 −0.58×10−3

[Mi] Lback −7.35×10−4 −3.12 −0.96×10−3 −0.69×10−3 1.65×10−3

[SI] Lsmax −4.05×10−3 −2.64 1.32×10−3 0.34×10−3 −1.66×10−3

Random parameters
[LI] constant −3.35 −7.43
Standard deviation 2.73 4.36

Heterogeneity in the means of random parameter
[MI] constant AADT −6.78×10−6 −7.84
[SI] constant Lpresent −1.12×10−3 −3.97

Heterogeneity in the variances of random parameter
[MI] constant ΔVO−car 0.097 3.82
Number of observations 2224
Number of estimated parameters 26
Log-likelihood −136.17
AIC 388.34
BIC 703.73
R2 0.25
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Table 7: Model results of the random parameter logit model with heterogeneity in means and variance for nighttime crashes.

Variables Parameter estimate t-stat
Elasticity effect

Light injury Minor injury Severe injury
Crash characteristics
[MI] season −0.56 −2.91 0.0019 −0.0027 0.0008
[MI] pavement −2.11 −2.58 0.0009 −0.0004 −0.0005

Speed characteristics
[SI] VO−truck 0.037 3.21 −6.48×10−5 −0.16×10−5 6.64×10−5

Geometric characteristics
[Mi] Lback 8.86×10−4 4.63 −1.19×10−3 1.72×10−3 −0.53×10−3

[Mi] Lsmax 3.00×10−3 2.27 1.47×10−3 0.34×10−3 −1.81× 10−3

Random parameters
[MI] constant −9.26 −4.30
Standard deviation 3.68 3.15

Heterogeneity in the means of random parameter
[LI] constant Lpresent 8.19×10−3 4.67
[MI] constant Lpresent −5.16×10−3 −3.51

Heterogeneity in the variances of random parameter
[LI] constant Lback −3.86×10−4 −2.38
Number of observations 935
Number of estimated parameters 24
Log-likelihood −100.13
AIC 316.27
BIC 615.87
R2 0.26
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Figure 1: 95% confidence interval of the elasticity effects of contributing factors on crash severity. (a) Pavement (10−2), (b) speed difference
of trucks with adjacent segment (ΔVO−truck) (10−5), (c) length of the plane curve of back section (Lback) (10−3), and (d) length of the
longitudinal slope corresponding to the maximum grade (LSmax) (10

−3).
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outcomes. *is finding is in line with Fountas et al. [60] who
argued that under poor weather conditions, crashes are more
likely to result in slight injuries. Moreover, drivers tend to
drive slowly and cautiously when faced with slippery
pavement surfaces [61], and they may compensate for the
high crash risk by exhibiting greater driving caution [56]. In
addition, the effects of pavement show different impact
trends on minor injury crashes during daytime and night-
time (0.0008 and −0.0004, respectively).

Regarding the speed characteristics, it is observed that a
higher ΔVO−truck tends to consistently result in an increased
probability of severe injury outcomes, but the elasticity effect
in nighttime is approximately twice that in daytime crashes
(6.64×10−5 to 3.36×10−5). A similar phenomenon was
reported by Fors and Lundkvist [11], and a comprehensive
comparison of the substantial differences indicates a higher
risk level for trucks with greater speed differences at night.
*is finding is as expected, as drivers have more time to

perceive and react properly to hazards and prevent crashes
[4], as they have better vision in the daytime [9].

*e negative signs for the elasticity effects of Lback in-
dicate that light crashes are less likely to occur in segments
with greater Lback values during daytime and nighttime.
However, the greater Lback decreases and increases the
probability of minor and severe crashes in the daytime,
respectively. Interestingly, the nighttime crashes show the
opposite trend.*is findingmay be attributed to the fact that
the greater length of the back section allows for careless and
fatigue driving, with higher speeds in the daytime. In ad-
dition, the dark conditions during nighttime might en-
courage drivers to exercise greater driving caution as a type
of compensation for the shorter vision [60].

As for Lsmax, the elasticity effects show a consistent
impact tendency during daytime and nighttime, with little
variation in the degree of influence. Specifically, the prob-
abilities of minor crashes and severe crashes increase and

Table 8: Operating speed prediction model for plane curve section.

Connection type Vehicle type Prediction model

Entrance: SC Car vmiddle � −24.212 + 0.834vin + 5.729 lnRnow
Truck vmiddle � −9.432 + 0.963vin + 1.522 lnRnow

Entrance: CC Car vmiddle � 1.277 + 0.942vin + 6.19 lnRnow − 5.959 lnRback
Truck vmiddle � −24.472 + 0.990vin + 3.629 lnRnow

Exist: CS Car vout � 11.946 + 0.908vmiddle
Truck vout � 5.217 + 0.926vmiddle

Exist: CC Car vout � −11.299 + 0.936vmiddle − 2.060 lnRnow + 5.203 lnRfront
Truck vout � 5.899 + 0.925vmiddle − 1.005 lnRnow + 0.329 lnRfront

vin, vmiddle, and vout denote the operating speed at the entrance, midpoint, and exist of the plane curve, respectively (km/h) and Rback, Rnow, and Rfront denote
the radius of the plane curve of the back, present, and back section, respectively (m).

Table 9: Operating speed conversion model for longitudinal slope section.

Longitudinal slope Adjustment values of operating speed
Car Truck

Upslope 3% ≤ slope≤ 4% Decline by 5 km/h every 1000m Decline by 10 km/h every 1000m
Slope> 4% Decline by 8 km/h every 1000m Decline by 20 km/h every 1000m

Downslope 3% ≤ slope≤ 4% Increase by 10 km/h every 500m Increase by 7.5 km/h every 500m
Slope> 4% Increase by 20 km/h every 500m Increase by 15 km/h every 500m

Table 10: Operating speed conversion model for curved slope section.

Connection type Vehicle type Prediction model

Entrance: SC Car vmiddle � −31.67 + 0.547vin + 11.71 ln Rnow − 0.176Inow1
Truck vmiddle � 1.782 + 0.859vin + 1.196 ln Rnow − 0.51Inow1

Entrance: CC Car vmiddle � 0.75 + 0.802vin + 2.717 ln Rnow − 0.281Inow1
Truck vmiddle � 1.798 + 0.977vin + 0.248 ln Rnow − 0.133Inow1 + 0.23 ln Rback

Exist: CS Car vout � 27.294 + 0.72vmiddle − 1.444Inow2
Truck vout � 13.49 + 0.797vmiddle − 0.6971Inow2

Exist: CC Car vout � 1.819 + 0.839vmiddle + 1.427 ln Rnow + 0.782 ln Rfront − 0.48Inow2
Truck vout � 26.837 + 0.83vmiddle − 3.039 ln Rnow + 0.109 ln Rfront − 0.594Inow2

vin, vmiddle, and vout denote the operating speed at the entrance, midpoint, and exist of the plane curve, respectively (km/h), Rback, Rnow, and Rfront denote the
radius of the plane curve of back, present, and back section, respectively (m), and Inow1, Inow2 denote the different slopes at the front and back ends of the curve
(%).
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decrease by 0.034% (0.034%) and 0.166% (0.181%) during
daytime (nighttime), respectively, with a 1% increase in
Lsmax. *is finding can be counterintuitive, as a steeper
grade limits the driver’s vision with less time for the driver to
react to potential hazards [9, 62]. However, the maximum
grade of segments on this highway is nomore than 2.5%, and
they are mainly located in bridge segments; accordingly, the
results may be attributed to the lower posted speed limits on
bridges [4].

4. Conclusion and Future Direction

Using crash data from the Beijing-Shanghai highways col-
lected by the traffic management department (2015–2017),
this study examined the effects of the contributing factors on
the crash injury severity on highways for all, daytime, and
nighttime crashes. With three possible crash injury severity
outcomes (light injury, minor injury, and severe injury), a
wide range of explanatory factors including the crash type,
traffic, speed, geometric, and sight characteristics affecting
the crash frequency and severity were considered.

*e random parameter logit model with heterogeneity in
means and variance is adopted, owing to the best good-of-fit
with lower AIC and BIC values and higher R2 (641.84,
947.48, and 0.23, respectively). Based on the proposed
models, several explanatory variables are found to produce
different effects in terms of their influences on the crash
frequency and resulting injury severity.*e estimated results
reveal that several variables produce temporally different
effects in their impacts with different injury severity out-
comes, indicating injury severity transferability across the
time of day.

*e findings of the results for crash severity underscore
the importance of accounting for the time variation effects of
significant variables on the crash frequency and the resulting
injury severity outcomes on highways. *e findings of this
study should be of particular value for roadway designers
and traffic management departments in promoting highway
safety targeted at daytime and nighttime crashes, respec-
tively. For example, during evening, active light-emitting
warning messages, speed limit signs, and other reasonable
measures should be set up to prevent drivers from speeding
or fatigue; education programs or other measures should be
implemented to ensure the safe driving of professional
drivers. It is also important for traffic management agencies
to strengthen the enforcement against risky driving be-
haviors; the lane distribution measures for different vehicle
types should be suggested to reduce the interference between
cars and trucks; and during the design stage, the alignments
of curve-grade sections should be optimized to provide
continuous and coordinated roadway three-dimensional
conditions.

Notably, this study is not free of limitations, such as the
small percentage of severe injury crashes in the dataset (26
total, accounting for 0.85%). Future research can benefit
from crash data across a wider range of years and/or con-
sidering the sociodemographic characteristics of drivers,
owing to the high contribution of driving behaviors to
roadway crashes [47]. *en, advanced statistical models

accounting for the unobserved heterogeneity can be adopted
to provide more accurate results [63, 64].

Appendix

A. The Operating Speed Prediction Models

*e operating speed prediction models are shown in
Specifications for Highway Safety Audit [54] for the plane
curve section, longitudinal slope section, and curved slope
section. *e connection of the plane curve is classified as
three types: straight line to curved section (SC), curved
section to curved section (CC), and curved section to
straight line (CS). As for the vehicle type, car denotes ve-
hicles with a wheelbase less than 7m and power greater than
15 kW/t, and truck denotes vehicles with a wheelbase more
than 7m or powerless than 15 kW/t [54] (Table 8).

A.1. *e operating speed prediction model for plane
curve section
A.2. *e operating speed conversion model for the
longitudinal slope section is given in Table 9
A.3. *e operating speed prediction model for curved
slope section is given in Table 10
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