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Traffic safety plays a crucial role in the development of autonomous vehicles which attracts significant attention in the community.
It is a challenge task to ensure autonomous vehicle safety under varied traffic environment interference, especially for airport-like
closed-loop conditions. To that aim, we analyze autonomous vehicle safety at typical roadway conditions and traffic state
constraints (e.g., car-following state at different speed distributions) by simulating the airport-like traffic conditions. +e ex-
perimental results suggest that traffic collision risk is in a positive relationship with the speed difference and distance among
adjacent vehicles. More specifically, the autonomous vehicle may collide with neighbors when the time to collision (TTC)
indicator is lower than 4 s, and vice versa. +e research findings can help both research community and practioners obtain
additional information for improving traffic safety for autonomous vehicles.

1. Introduction

+e development of autonomous vehicle is considered as the
future tendency due to advantages of safety, low carbon
emission, higher commuting efficiency, etc. It is found that
automated vehicles can be easily deployed at closed-loop
environments (such as airport, terminal, etc.) for the pur-
pose of goods transmission, but the autonomous vehicle
encounters various problems whichmay lead to severe traffic
accidents [1]. Previous studies suggested that performance
evaluation and verification for autonomous vehicle is sig-
nificantly different from those of the conventional vehicles
[2–4]. More specifically, previous vehicle movement simu-
lations were mainly implemented targeting on specific traffic
scenes, and thus the modelling results may fail to obtain
satisfied results under different roadway scenes. For in-
stance, autonomous vehicles travel in airport will suffer less
interference of traffic violation. In that manner, additional
typical traffic scenes are required to better verify the model
performance, and thus support autonomous vehicle
development.

It is noted that autonomous vehicle driving test phase
can be roughly divided into virtual simulation test, private
field test, and the roadway travelling test [5, 6]. Currently,
many studies were implemented to verify the autonomous
vehicle performance without triggering life loss, roadway
intermittence, and property damage [7]. Xing et al. proposed
a novel framework to model the car-following vehicle be-
havior with a comprehensive joint time-series approach [8].
Zhang et al. proposed a connect-and-merge residual net-
work to extract simplified but robust vehicle features under
complex roadway scene interference [9]. Ma et al. proposed
an efficient lane detection model under varied weather
conditions via the help of image classification and hybrid
isomeric operator [10]. Similar researches can be found in
[11, 12].

Previous car-following model verification is mainly
implemented on the virtual platform due to strict restric-
tions to maneuver autonomous vehicle on roadways (traffic
regulations, etc.) [13, 14]. Moreover, it is not easy to im-
plement car-following models in real world considering that
we cannot enumerate each traffic scenario. Significant
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attentions were paid to generate virtual transportation
sensory data (i.e., typical yet not-easy-accessible traffic
dataset). +e study aims to develop a novel traffic risk
evaluation module for enclosed traffic environments (e.g.,
airport-like surroundings). More specifically, the study
analyzes potential traffic risk under typical airport traffic
situations in a simulation manner, and the car-following
model performance for different traffic scenarios in the
airport-like enclosed loop environment is further visualized
in our study.

Our contributions can be summarized as follows: (1) we
analyze the pros and cons for traffic collision simulation
models on different traffic simulation platforms; (2) we
simulate varied traffic scenarios under typical enclosed
traffic environment (e.g., airport-like condition); (3) we
quantify the traffic simulation module performance under
typical traffic scenarios (i.e., different speeds and headway
distributions). +e remainder of the paper is organized as
follows. Section 2 presents the literature survey on the topics
of traffic collision simulations, traffic scene establishment,
and the simulation platform establishment. Section 3
demonstrates the evaluation criterion for the purpose of
model quantitative analysis and Section 4 illustrates the
experimental setups. Section 5 analyzes the simulation re-
sults and Section 6 briefly concludes the study.

2. Literature Survey

2.1. Traffic Collision Simulation Models. Traffic collision
simulations provide quantitative results for the purpose of
verifying accident prevention model performance. Suh
et al. developed a vehicle trajectory planning model, which
integrated the lane change probability and deterministic
prediction algorithms [15]. +e simulation results showed
that autonomous vehicle can successfully handle lane
change challenges without triggering traffic accident. Li
et al. proposed a game-theoretic traffic model for the
purpose of evaluating various decision-making and
control systems of autonomous vehicles [16]. Quddus
et al. proposed a data-driven approach with the help of
VISSIM platform to estimate the traffic collision proba-
bility [17]. Pan et al. extracted vehicle trajectory infor-
mation by scanning street scenes with the help of Lidar
and camera data [18]. Huang et al. proposed a force-based
heterogeneous traffic simulation model to identify dan-
gerous behaviors of various roadway user, which may
trigger traffic accident in real world [19]. Similar studies
can be found in [20, 21].

2.2. Traffic Scene Establishment. It is crucial to collect
comprehensive traffic scenes when implementing autono-
mous vehicle simulation studies. To that aim, Zhu et al.
proposed a road scenery prediction model by recognizing
roadway boundary points with a convolutional neural
network [22]. Cui et al. proposed a multi-modal traffic scene
simulation framework by integrating both roadway images
and geographic data, which was verified on public-available
dataset [23]. Yuan et al. developed a three-dimensional

traffic scene construction model, which consists of the scene
analysis and scene model construction [24]. Garzón et al.
introduced an open source tool to generate varied yet typical
traffic scenes for autonomous vehicle under different traffic
state conditions, with the support of microscopic, multi-
modal traffic simulator and a complex 3D simulator [25].
Huo et al. established a three-dimensional traffic scene
framework based on semantic segmentation logic [26].
Berumen et al. proposed an abstract simulation scenario
generation framework considering both autonomous vehicle
safety and computational cost [27]. Similar researches can
also be found in [28, 29].

2.3. Traffic Simulation Platforms. Simulation platform is
crucial for implementing autonomous vehicle traffic
safety analysis, and thus significant focuses are paid to
develop an efficient traffic simulation platform. Zhao et al.
proposed an automatic simulation test evaluation system
based on highway autonomous driving algorithms [30].
Sarat et al. designed a simulation platform to verify the
vehicle routing model performance, which can be used to
tackle vehicle fleet route optimization problem [31].
Saraoglu et al. proposed a novel fault-chain analysis
framework to evaluate safety level of autonomous driving
system under different magnitudes (i.e., component level,
vehicle maneuvering level, and transportation manage-
ment level) [32]. Cao et al. constructed virtual and visual
simulation display platform with the support of web
graphics library [33]. Similar researches can be found in
[34–36]. Currently, autonomous vehicle test can be
implemented at limited locations due to technical and
legal restrictions. We cannot implement fatal yet im-
portant autonomous vehicle experiments on real-world
roadways. +e SCANeR studio platform provides suffi-
cient tools and mathematical models, which helps
transportation practitioners and scholars easily build
virtual traffic scenarios [37]. +us, the SCANeR studio
tool is used to establish traffic safety platform in our study.

In sum, previous studies indicated that traffic collision
avoidance relevant studies focused on urban traffic situa-
tions. In such condition, the roadway traffic interference
randomly originated from pedestrians and aggressive yet
unpredictable driving behaviors that cannot be easily
modeled. In addition, previous studies may simplify traffic
participant behaviors for establishing risky traffic scenes in
the traffic simulation platforms. Our study focused on
transportation risk evaluation under enclosed traffic con-
ditions, whilst traffic interference was different from the
conventional roadways. Moreover, we comprehensively
evaluate driving behaviors by analyzing varied car-following
states in the enclosed environment such as airport-like
roadway condition.

3. Evaluation Metrics

3.1. Distance-Based Traffic Risk Evaluation Measurement.
For the purpose of avoiding traffic collision, the rear vehicle
is supposed to keep a safety distance against the front
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vehicle. Both of the front and rear vehicles keep sufficient
braking distance and time to avoid potential accidents under
emergency conditions (e.g., sudden acceleration/decelera-
tion). It is noted that minimum safety distance and time can
be different according to vehicle speed. We can estimate
roadway traffic accident probability by quantifying the re-
lationship between vehicle headway distance and vehicle
speed. More specifically, it is quite possible to have a traffic
accident when equation (1) is not satisfied, and vice versa.
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where d is the headway distance between two neighboring
vehicles and vi and vj are speeds for the front and rear
vehicles, respectively. +e parameter τ is the overall time
overhead consisting of dangerous traffic situation awareness
and brake operation implementation. We set default value
for τ to 2 s in our study. +e symbol fz is the longitudinal
adhesion coefficient for the road, and the parameter ranges
from 0.45 to 0.7. Sl is the longitudinal roadway slope, and Lvb

is the vehicle length (which is usually shorter than 6m). +e
parameter D is the safe parking distance, and the default
value is set to 2m in our study.

3.2. Time-Based Traffic Risk Evaluation Measurement.
Time to collision (TTC) is another typical yet efficient in-
dicator to measure traffic safety level, which presents car-
following status between two neighboring vehicles (i.e., the
front and rear vehicles). +e TTC indicator is defined as the
duration of the vehicle collision process when the speed
difference remains constant under certain time span t (i.e.,
the rear vehicle speed is larger than the counterpart of the
front vehicle). Generally speaking, we consider that traffic
accident is likely to happen when the TTC is shorter than the
overhead of driver perception and reaction time. More
specifically, the rear vehicle speed at timestamp t1 is higher
than that of the front vehicle, and thus a traffic collision
event is anticipated at time t2 without taking further mea-
surements. +e time difference between timestamp t1 and t2
is named as the TTC, which is calculated in equation (2).
Previous studies suggested that roadway traffic is safe when
the TTC value is larger than 2 s [38, 39]. Moreover, we
considered the traffic situation is safe when the TTC ranges
from 2 s to 6 s, and we set TTC threshold into 4 s in our
study. More specifically, the traffic condition was considered
safe (not safe) when the TTC value was larger than 4 s
(smaller than 2 s):

TTC �
Xi−1(t) − Xi(t) − li−1

vi(t) − vi−1(t)
,

vi(t)＞vi−1(t),

(2)

where parameter Xi−1(t) and Xi(t) are the front (i.e., the
(i − 1)th) and rear (i.e., the i th) vehicle positions at time-
stamp t, respectively. +e symbols vi−1(t) and vi(t) are the
front and rear vehicle speeds at the timestamp t, and li−1 is
the front vehicle length.

4. Experiment Setups

4.1. Platform. We employ the SCANeR studio software to
implement traffic simulation scenarios in our study though
many software and platforms are available. +e main ad-
vantage is that the software provides various but complete
components to simulate real-world traffic (especially for the
enclosed airport-like environment). Typical models and
tools for the SCANeR studio include road environment,
vehicle moving state, varied traffic conditions, inductive
loop detectors, drivers, traffic lights, various weather con-
ditions, etc. +e traffic platform provides different modules
to help both researchers and engineers easily customize their
simulation scenarios.

4.2. Roadway Design. We integrate both roadway design
manual and simulation demand to design potential roadway
conditions for autonomous vehicles. For a given intersec-
tion, we define the arterial lane in the north-south direction
as the first roadway segment with speed limit at 60 km/h.+e
lane width is set to 3.5m, the marginal strip is set to 0.5m,
and the outer separator is set to 1.5m. Note that the width of
the non-motorized road surface is 2.5m, and the sidewalk is
set to 3m. +e separation zone is surrounded by vertical
curbs with height around 15 cm. +e width of the double
white line in the center of the road is configured as 20 cm.
+e second roadway segment is defined as a branch corridor
with speed limit at 40 km/h, with each lane width at 3.25m.
+e marginal strip for the second roadway segment is
0.25m, and the roadway is separated by the central double
yellow line with width of 20 cm. +e third roadway segment
is a secondary trunk road, which locates east-west bound at
the intersection. +e separation zone is similar to those of
the counterparts of the first and second roadway segments.
Note that the maximum speed is 50 km/h for the third
highway segment, and lane width is 3.5m.+e arterial of the
east-west bound is set as the fourth roadway segment, and
the road geometry is similar to that of the first road (i.e.,
design speed is 60 km/h, lane width at 3.5m, non-motorized
road width of 2.5m). +e roadway layout overview is shown
in Figure 1.

4.3. Car-Following Scenario. +e car-following scene aims to
test the safety performance of autonomous vehicle under
different car-following states (e.g., stop-and-go, emergency
braking function). For a given car-following state, both the
front and rear vehicles travel in the same lane, and the two
vehicles are initialized with same kinematic information
(i.e., speed, travelling direction). We consider the front
vehicle as the interference vehicle, and thus the vehicle
travelling status variation affects the rear vehicle travelling
state. +e specific simulation plan is shown as follows: we
select the first arterial road in the north-south direction, and
the design speed is set to 60 km/h. +e width of the motor
vehicle lane is assigned to 3.5m, the marginal strip is 0.5m,
the outer separator is 1.5m, the width of the non-motorized
road surface is 2.5m and the sidewalk is 3m.+e speed limit
on roads is 60 km/h. +e start acceleration and stop
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deceleration of the interference vehicle refer to the typical
start acceleration and emergency stop deceleration, which
are 2.5m/s2 and −2m/s2, respectively.

It is believed that driver will not collide with the obstacle
in any form from the moment the obstacle ahead the vehicle
is discovered till the end of the vehicle braking procedure.
+e distance in this process is called the minimum safety
distance. From the perspective of vehicle braking process,
the relationship between vehicle braking distance and ve-
hicle braking initial speed can be exploited with the least
square method. Following the vehicle safety distance
manual, the safety distance should not be smaller than 50
meters when vehicle speed is around 50 km/h. In automated
vehicle era, a large amount of sensors (such as millimeter
wave radar, multi-threaded LiDAR, etc.) are deployed to
vehicles to enhance capability of accurate vehicle environ-
ment perception. Currently, many studies indicate that the
newly emerging communication techniques (such as 5G
technique) are capable of transmitting data with low time
delay [40, 41].

It is similar to implement the experimental scenarios
when we set speeds for both the front and rear vehicles to the
maximum values. In practice, the autonomous vehicle
combines the road speed limit and traffic conditions to select
the speed. We set the maximum speed of the main vehicle
and the interference vehicle to be the same to maintain the
car-following state. +e speed and initial distance of the
main vehicle and the interference vehicle are shown in
Table 1. +e specific verification scenarios are as follows: (1)
the initial distance between the main vehicle and the in-
terference vehicle is 40m, and the main vehicle and inter-
ference vehicle are set at different maximum speeds; (2) the

maximum speed of the main vehicle and the interference
vehicle are both 60 km/h, and the car-following with initial
distance is set to 30m, 40m, and 50m. Table 2 demonstrates
speed and initial distance distributions of the two vehicles.
+e experimental setting considers the factors of simulation
experiment, and factors of vehicle speed, acceleration, dis-
tance between main vehicle, and interference vehicle are
considered in the study.

5. Results

5.1. Traffic Analysis via Various Maximum Speed
Distributions

5.1.1. Car-Following Analysis at Different Maximum Speed
Constraints. In the car-following scenario, the initial dis-
tance between the main vehicle and the interference vehicle
is the same.+e simulation results of the car-following scene
at different maximum speeds are analyzed as follows. (1) In
the car-following scene, the initial distance is set to 40m and
the maximum speeds of both vehicles are set to 40 km/h.+e
main vehicle accelerates from 0 km/h to the maximum speed
(i.e., 40 km/h). When the interference vehicle decelerates,
the main vehicle intends to overtake the vehicle by change its
travelling lane to the left side. But, the vehicle decelerates and
continues to follow the front vehicle by accelerating to the
maximum speed of 40 km/h when the interference vehicle
accelerates its moving speed. (2) In the car-following scene
with an initial distance of 40m and the maximum speed of
both vehicles travelling at 50 km/h, the simulation results are
illustrated as follows. +e main vehicle accelerates from
0 km/h to the maximum speed of 50 km/h. When the

second roadway segment

fourth roadway segment

third roadway segment
first roadway segment

Figure 1: Roadway layout overview.
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interference vehicle decelerates, the main vehicle has the
intention of overtaking behavior.+e vehicle decelerates and
continues to follow in the manner of accelerating to the
maximum speed of 50 km/h when the interference vehicle
accelerates its speed. (3) In the third car-following scene, the
initial distance is set to 40m and the maximum speeds of
both vehicles are setting at 60 km/h. +e main vehicle ac-
celerates from 0 km/h to a maximum speed of 60 km/h,
which is similar to those of the previous two traffic scenarios.
Moreover, the main vehicle wants to overtake the inter-
ference vehicle when it travels at a constant speed. Besides,
the main vehicle decelerates its speed when the interference
vehicle accelerates. In that way, the main vehicle decelerates
and continues to follow the interference counterpart by
accelerating to the maximum speed of 60 km/h.

+e speed curve distributions of the main vehicle and
interference in the three cases are shown in Figures 2 and 3,
respectively. Note that the maximum speeds for the main
and interference vehicles are same without further specifi-
cations in the study. +e overall perception, planning and
control response of the main vehicle are supposed to be the
same for different speeds during the car-following proce-
dure.+e acceleration curves of the main vehicle in the three
cases are shown in Figure 4. It can be seen from the ac-
celeration curves that after the interference vehicle decel-
erates, the main vehicle first has a short deceleration process.
+en, themain vehicle is ready to accelerate and overtake the
interference vehicle. After the interference vehicle acceler-
ates, the main vehicle decelerates and continues to follow the
front vehicle.

+e distance difference curves in the three cases are
shown in Figure 5. When the initial distance is set to 40m,
the distance between the main vehicle and the interference
vehicle shows an increasing tendency when the vehicle
accelerates in the simulation procedure. We further analyze
the car-following procedure from the perspective of traffic
environment perception. +e initial distance and maximum
speed are set to same values in the three car-following
procedures. Besides, the main vehicle recognizes the be-
havior of the front vehicle by identifying the vehicle kine-
matic information (i.e., speed, acceleration, deceleration),
and further vehicle maneuvering decisions are made to
enhance traffic safety by following or overtaking the inter-
ference vehicle.

5.1.2. Traffic Risk Analysis at Different Maximum Speed
Constraints. In the car-following scene with the same initial
distance, the indicators for evaluating the safety of the au-
tonomous vehicle are used for evaluation. +e initial dis-
tance is selected as 40m, and the maximum speed of the
main vehicle and the interference vehicle is 40 km/h, 50 km/
h, and 60 km/h. +e evaluation results of the two indicators
are demonstrated as follows. We employ the distance-based
risk evaluation indicator to evaluate the risk of autonomous
vehicles. According to the requirements of the scene, the risk
analysis of the main vehicle and the interference vehicle with
the same initial distance and different speed is carried out,
and the three groups of traffic situations are analyzed in
detail as follows: (1) vi is set to 40 km/h and vj set to 40 km/h;
the factors fz and fz are set to 0.7 and 0.06 (i.e., maximum
values). Besides, the parameter values for d, τ, D and Lvb are
set to 45m, 2.5 s, 2m and 5m; (2) both of vi and vj are set to
50 km/h, and fz, Sl, d, τ, D and Lvb are assigned with 0.7,
0.06, 45m, 2.5 s, 2m and 5m; (3) the parameters for vi, vj,
fz, Sl, d, τ, D and Lvb are set to 60 km/h, 60 km/h, 0.7, 0.06,
45m, 2.5 s, 2m and 5m. +e simulation results indicate that
there is no traffic collision risk between the main vehicle and
the interference vehicle under the three traffic scenarios. +e
distance-based risk evaluation indicators suggest that ve-
hicles can safely travel in the current traffic situations. In
other words, there is no collision risk between the main and
the interference vehicles with the provided vehicle speed and
distance values.

We employ the time-based risk evaluation indicator
TTC to evaluate the risk of autonomous vehicles. According
to the simulation experiment results, the maximum speeds
of the main vehicle and the interference vehicle are 40 km/h,
50 km/h, and 60 km/h and the initial distance to the in-
terference vehicle is 40m. +e two-vehicle distance diagram
between the main vehicle and the interference vehicle is
shown in Figure 6. It is observed that the two vehicles were
quite close to each other (approximately 5m) when the
maximum speed was set to 40 km/h and the time duration
for car-following state lasts over 60 s. It is observed that the
TTC value may show unrealistic oscillations when the
maximum speed is 40 km/h. +e main reason was that re-
action time for drivers is lower than those counterparts with
speeds at 50 and 60 km/h, respectively. In another word, the
aggressive drivers may keep smaller distance away from the

Table 1: Varied speeds and same initial distance of main vehicle and interference vehicle.

Vehicle Speed Initial distance (m)
Main vehicle Interference vehicle 40 km/h 40
Main vehicle Interference vehicle 50 km/h 40
Main vehicle Interference vehicle 60 km/h 40

Table 2: Same speed and different initial distances for main vehicle and interference vehicle.

Vehicle Speed Initial distance (m)
Main vehicle Interference vehicle 60 km/h 30
Main vehicle Interference vehicle 60 km/h 20
Main vehicle Interference vehicle 60 km/h 10
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front vehicle, and the mild drivers may travel with a larger
headway distance.

Based on the above-mentioned simulation results, we
select the situation where the speed of the rear vehicle is
greater than the speed of the front vehicle during the car-
following process. +e TTC of the main vehicle is measured
as shown in Figure 7. +e time-based autonomous driving

risk judgment condition is that if the TTC of the main
vehicle relative to the interference vehicle is greater than 4 s,
the main vehicle is considered in a safety state. More spe-
cifically, the minimum TTC value in real world is ap-
proximately 3.22 s when the maximum speed for the main
vehicle is set to 50 km/h. +e car-following simulation re-
sults indicated that TTC was larger than 3 s when the
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maximum speed reached 50 km/h. Besides, the TTC value
was smaller than 4 s under the traffic state (i.e., the maximum
speed was set to 50 km/h). It can be inferred that TTC setting
can be narrowed down with varied speed limitations and
roadway conditions. In sum, when the initial distance of the
main vehicle and the interference vehicle is 40m and the
maximum speed is 40 km/h, 50 km/h, and 60 km/h, re-
spectively, the risk assessment indicators based on distance
and time were introduced to evaluate the risk of autonomous
vehicle for the car-following state. +e distance-based risk
evaluation indicator can successfully simulate the trans-
portation risk in the real-world applications. Moreover, the
time-based risk assessment indicator may fail to compre-
hensively evaluate the model performance when the relative
speed of the two vehicles is too small and the relative dis-
tance is too large.

5.2. Traffic Analysis via Various Space Headway Distributions

5.2.1. Car-Following Analysis at Different Space Headways.
In the car-following scene on roads, the simulation results of
the car-following scene with the same maximum speed and
different initial distance between the main vehicle and the
interference vehicle are provided as follows. (1) In the

scenario with an initial distance of 30m, the main vehicle
accelerates from 0 km/h to a maximum speed of 60 km/h.
When the interference vehicle decelerates, there is a brake
operation implemented by the main vehicle. After the in-
terference vehicle accelerates, it decelerates and continues to
follow, and then accelerates to themaximum speed of 60 km/
h. (2) In the scenario with an initial distance of 20m, the
main vehicle accelerates from 0 to a maximum speed of
60 km/h. When the interference vehicle decelerates, there is
a brake operation and then there is an intention to overtake
the interference vehicle. After the interference vehicle ac-
celerates its speed, the main vehicle decelerates and con-
tinues to follow the front vehicle by accelerating to the
maximum speed (i.e., 60 km/h). (3) In the scenario with an
initial distance of 10m, the main vehicle changes lanes to the
left lane at the beginning of car-following stage. Moreover,
the main vehicle accelerates from 0 km/h to the maximum
speed of 60 km/h by following the interference vehicle in the
adjacent lanes and achieves overtaking behavior under the
condition of interference vehicle decelerating its speed. +e
distance difference curves between the main vehicle and the
interference vehicle under the three conditions are shown in
Figure 8. From the distance difference curves between the
main vehicle and the interference vehicle, it can be seen that
different initial distances make the main vehicle’s decision
different. +e main vehicle makes the decision of car-fol-
lowing when the initial distances are set to 30m and 20m,
but, when the initial distance is set to 10m, the main vehicle
conducts lane-change behavior when the interference ve-
hicle slows down.

5.2.2. Traffic Risk Analysis at Different Space Headway
Constraints. +e car-following scene parameters of the
main vehicle and the interference vehicle share with the
same maximum speed and different initial distances. More
specifically, the speeds of the main vehicle and the inter-
ference vehicle are both 60 km/h, and the initial distance is
30m, 20m, and 10m. In the car-following scene where the
maximum speed of the main vehicle and the interference
vehicle are both 60 km/h, two evaluation indicators are used
to evaluate the car-following safety for the main vehicle.
More detailed explanations are illustrated as follows: (1) the
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distance-based risk evaluation indicator reveals that the
main vehicle safety is not relied with the initial distance. +e
simulation results for traffic safety situation of the two ve-
hicles are similar to those we have analyzed in the above
sections. (2) +e risk evaluation of main vehicle based on
time indicator TTC is demonstrated as follows (see TTC
curve distributions in Figure 9). +e time-based risk as-
sessment indicator and evaluation models indicated that the
traffic state was in safety status when the TTC value was

larger than 4 s. We observed that the TTC may be tempo-
rarily lower than 2 s when the maximum vehicle speed
reached 60 km/h.+e situation indicated that the overall car-
following procedure was still quite safe, and reaction time
left for drivers under emergency traffic events may be shorter
than that of the maximum speed lower than 60 km/h.
+rough the risk evaluation indicators based on distance and
time, the car-following scenes with different initial distance
and same maximum speed are evaluated. +e experimental
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results indicated that the evaluation indicators can obtain
accurate traffic safety analysis results.

6. Conclusions

Autonomous vehicle safety attracts many focuses from
varied transportation safety community (airport, maritime
field, etc.), and we analyzed vehicle safety under car-fol-
lowing situations at various speed and space headway
constraints. More specifically, we designed and modeled the
typical car-following scenarios at autonomous vehicle era for
an enclosed traffic environment (e.g., airport-like condi-
tion). We analyzed the traffic collision risk for the auton-
omous vehicle in detail, which suggested that the
autonomous vehicle is quite safe when the TTC indicator
was larger than 4 s. +e following directions can be further
expanded to enhance our study. First, we focused on au-
tonomous vehicle safety analysis under car-following state,
and thus testifying and verifying model performance at more
comprehensive traffic states deserve our further endeavor.
Second, we can integrate both simulation and real-world
traffic data for the purpose of identifying intrinsic traffic
factors which impose obvious negative effect on the traffic
safety. Last but not least, we can analyze traffic safety under
mixed traffic conditions involved with various traffic par-
ticipants (e.g., autonomous vehicle, trucks, and pedestrians).
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