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Due to the nonlinearity and dynamics of transportation systems, traffic signal control (TSC) in urban traffic networks has always
been an important challenge. In recent years, model predictive control (MPC) has shown extraordinary potential in TSC due to its
outstanding ability to model dynamic systems. However, the relatively complex online computing, lack of reasonable setpoints for
target solving, and uncertainty of traffic network hinderMPC from being further applied. To address these problems, we propose a
hierarchical, distributed, and robust model predictive control (HD-RMPC) framework for urban TSC. At the slow-update layer,
the road network is dynamically divided into several subareas according to regional attributes and real-time traffic demand.
Meanwhile, the volume is coordinated in a robust way for the purpose of traffic equilibrium and overflow prevention. 'en, the
set-point matrix of each subarea is calculated to equalize the flow in the subarea. 'is distributed framework guarantees the real-
time performance of MPC in urban traffic networks. At the fast-update layer, we adopt an improved prediction model by explicit
modeling of the disturbance and reduce the prediction error. Finally, the objective function is reconstructed and solved at the
control layer to obtain the optimal control law. 'rough continuous and asynchronous optimization of the set point and
prediction model, the framework significantly improves the control effect. Simulation evaluation based on a real-world road
network demonstrates that the proposed HD-RMPC method outperforms all baselines and maintains excellent real-
time performance.

1. Introduction

As a consequence of the rapid growth of the urban pop-
ulation and vehicle ownership, existing infrastructure has
difficulty meeting increasing travel demand, resulting in
serious traffic congestion [1–3]. It is generally recognized
that enhancing traffic efficiency with advanced signal control
strategies is the main means to alleviate urban traffic con-
gestion [4–6].

Many efforts have been devoted to developing appropriate
traffic signal control (TSC) strategies for urban traffic net-
works. In general, existing TSCmethods can be classified into
three categories: fixed-time control, real-time traffic-re-
sponsive control, and computational intelligence-based

control [3, 7]. Traditional fixed-time approaches periodically
cycle established phase settings. One of the most typical tools
is the traffic network study tool (TRANSYT), which can
compile a series of fixed-time signal plans for different times
of the day. In the face of a time-varying urban environment
and dynamic traffic flow, suchmethods inevitably lead to time
loss. To overcome this drawback, real-time traffic-responsive
control methods have been proposed. 'e split-cycle offset
optimization technique (SCOOT), Sydney coordinated
adaptive traffic system (SCATS), and traffic-responsive urban
control (TUC) are the leading examples and have been widely
used in urban traffic networks. Unfortunately, the control
performances of the SCOOT and SCATS may deteriorate
under saturated traffic conditions, and TUC usually needs to
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be redesigned when the real traffic condition dramatically
changes. With the penetration of intelligent transportation
systems (ITSs), researchers have tried to regulate TSC systems
in a “smart” way. More factors, such as infrastructure and
human and wireless communication, are taken into con-
sideration in the implementation of traffic control. In this
context, TSC methods based on computational intelligence,
including but not limited to fuzzy logic [8], swarm intelligence
algorithms [9], and artificial neural networks [10], have been
widely adopted by researchers. Among them, the most re-
markable are reinforcement learning (RL) methods. Over the
past ten years, numerous RL models, such as Q-learning [11],
deep Q networks (DQNs) [12–14], actor-critic method
[15, 16], and deep deterministic policy gradients (DDPGs)
[17, 18], have been used to improve the efficiency of TSC
systems. Faced with large-scale road networks, researchers
further extend single-agent RL methods to multiagent RL
(MARL) methods and introduce them to address multiple
interacting intersections [19–21]. However, stability and
learning efficiency are always the shackles that restrict RL
methods from moving toward practical application
[3, 5, 9, 22]. Besides, augmenting the TSC system with
connected vehicles [23, 24], autonomous vehicles [25], or
other emerging technologies [26–28] is also an effective
methodology. For example, in [24], the authors incorporate
trajectories of connected vehicles into signal timing optimi-
zation, formulate the TSC problem as a mixed-integer
nonlinear program, and proposed a multistage method to
solve it. Simulation results show that the proposed method
has the best fuel economy. In such kinds of strategies, con-
nected autonomous vehicles provide the TSC system with a
greater variety and accuracy of available data, which is more
conducive for the system to make better decisions. Unfor-
tunately, the relevant basic technologies have not been widely
popularized in the actual road environment, resulting in the
lack of universality of such methods at this stage [22].

Unlike the randomness of reward generated by RL
methods, model predictive control (MPC) derives a time
serious optimal signal plan by predicting future traffic states
and executing rolling optimization and feedback correction,
which is stable and reliable [29–31]. In addition, MPC can
correct the uncertainty issues based on a model-based pre-
diction output using the actual measured system output in-
formation at the next sampling moment to perform the next
optimization. In this way, MPC can be applied to nonlinear
time-varying systems that are difficult to accurately model,
and it can still obtain high-quality control actions under
ordinary predictive accuracy. As a result, MPC has drawn
much attention to improving TSC in large-scale trans-
portation networks. However, the application of MPC-based
methods to TSC systems still faces the following challenges:

(i) Real-time performance: with the increase in the
number of controlled intersections, the computa-
tional complexity of MPC increases exponentially,
which is a major challenge to the real-time per-
formance of online TSC. In terms of improving the
real-time performance of MPC, the decentralized,

hierarchical, or distributed control structure is
widely applied. In [32], Ma et al. constructed a
decentralized model predictive signal control
method using a back-pressure policy, which effec-
tively improved the performance under congested
conditions in terms of throughput and compre-
hensive transportation efficiency. In [2], Ye et al.
proposed a hierarchical and distributed MPC to
improve the real-time performance of a TSC system.
However, the control performance was less efficient
than with centralized MPC due to the added
complexity brought about by distribution schemes.
In addition, it is obviously unreasonable to sub-
jectively set the control range of a single agent or
take a single intersection as a distributed control
unit in these methods.

(ii) MPC set-point optimization: the pros and cons of a
set point directly determine the control perfor-
mance of the system. However, most existing MPC-
based TSC methods have not paid enough attention
to the optimization of set points. Some researchers
employ amacroscopic fundamental diagram (MFD)
to determine the expected number of vehicles in a
controlled area [33]. However, considering that an
MFD does not have a good definition for hetero-
geneous networks and often appears with high
scatter and hysteresis phenomena, this kind of
method is not universal for real road networks.
Others employ a model-free adaptive control
(MFAC) approach to address the set-point deter-
mination of traffic control [34]. Although it can
obtain good results, such a method relies heavily on
high-quality data and is not stable enough.

(iii) Uncertainty handling: although there is a feedback
correction mechanism in MPC, the systematic de-
fect of using a linear model to deal with nonlinear
problems will still lead to the existence of uncer-
tainty in the control system. 'e two most repre-
sentative ones are the influence of the unobservable
disturbance on the prediction results in the road
section and the uncertainty of subarea control pa-
rameters [35]. For the former, some studies have
taken the impact of a disturbance into account, but
none has tried to model the disturbance [36–38].
For the latter, the use of a robust model can reduce
the impact of uncertainty on the optimal control of
traffic systems [39–41].

In summary, although there are improvements in many
aspects, current MPC-based TSC methods still have some
limitations. In a sophisticated MPC method for urban road
networks, reasonable subarea division, dynamic set-point
optimization, and full consideration of system uncertainty
are necessary.

Based on the above discussion, we propose a hierar-
chical, distributed, and robust MPC approach (HD-RMPC)
for urban TSC. Specifically, the system adopts a multi-
hierarchical distributed design. At the slow-update layer, the
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road network is divided into several coordinated control
subareas, and the set-point matrix of each subarea is dy-
namically optimized according to the network topology and
real-time traffic flow. Meanwhile, system sampling is per-
formed by the fast-update layer, and a model that explicitly
considers disturbances is used to make predictions. At the
control layer, the construction and solution of the objective
function are completed according to the prediction results
and the set-point matrix, and the optimal control law will be
obtained. Compared with the existing MPC-based TSC
methods, through the continuous optimization of the set
point, our proposal can make the traffic flow in the road
network tend to be equilibrium, which is more effective
against local congestion. Moreover, the robust response to
system uncertainty and explicit modeling of disturbances
significantly improves the accuracy of MPC. 'e main
contributions of this paper are summarized as follows:

(1) A novel MPC-based TSC method named the HD-
RMPC is developed for urban road networks. It
formulates the TSC problem as a multiple combi-
natorial optimization problem and adopts a dis-
tributed computing form to solve it, which is
economical and efficient.

(2) Inspired by the theory of traffic equilibrium, we
enable a dynamic set-point optimization model that
considers traffic flow, network topology, and evac-
uation demand in controlled subareas. Compared
with existing methods, the proposed model has
stable performance and does not depend on large
historical data.

(3) To deal with the uncertainty in the system, the
unobservable disturbance is modeled parametrically
and updated in real time through online sampling,
which greatly improves the prediction accuracy. In
addition, the model with uncertain parameters in
subarea coordination is robustly equivalent to im-
proving the stability of the control system.

'e rest of the paper is organized as follows. Section 2
formulates the problem. We present the details of the
proposed method in Section 3. 'e simulation results and
analysis are shown in Section 4. In Section 5, concluding
remarks and trends for further research are discussed.

2. The General Form of an MPC-Based
TSC Method

2.1. 2e Main Composition and Process of MPC. Figure 1
presents a schematic diagram of MPC for TSC [35]. Gen-
erally, the execution process of an MPC approach is com-
posed of three parts: a prediction model, an objective
function, and a rolling optimization scheme.

A concrete example is given in Figure 2. MPC predicts
the future state of the system in the finite time domain based
on the prediction model according to the sampling infor-
mation [31, 38]. Considering the system constraints, it es-
tablishes the control optimization problem in the future
finite time domain and obtains a control sequence to make

the system state tend to the set point. Moreover, MPC has
the characteristics of feedback correction and receding
horizon optimization, which can compensate for the un-
certainty caused by model mismatch, distortion, interfer-
ence, and other factors in a timely manner.

2.2.2eGeneral FormofMPC-BasedTSCMethods. 'emost
critical part of MPC-based methods is using a model to
predict the future dynamics of the traffic flow of urban roads
at each optimization step. To maintain universality, traffic
flow dynamics under a discrete-time system can be
expressed as

y(k + 1) � f(y(k), u(k), d(k)), (1)

where y(k) is the system state (i.e., the traffic volume) of the
k th discrete timestep and u(k) and d(k) denote the control
input vector (i.e., the green time) and the measurement
vector (i.e., the travel demand), respectively. 'e optimi-
zation function can be defined as follows:

min J(y(k), u(k)), (2)

subject to

y(k + 1) � f(y(k), u(k), d(k)),

y(k) � y(k), y(k + 1), . . . y k + Np − 1  ,

u(k) � u(k), u(k + 1), . . . u k + Nc − 1(  ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

Predictive model Objective function

Optimizer

Traffic networks
u*

J (y, u)
u (k)

y (k)

d (k)

d (k)
y (k+1)

Figure 1: Schematic diagram of MPC for TSC.

Past Future The set point Ys

Optimal control output u– (x)
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k k+1 k+2 ... k+Np

Figure 2: MPC execution process.
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where Np and Nc are the prediction and control horizons,
respectively.

At each prediction step, the system performs equation
(1) to obtain the prediction result y(k). Meanwhile, the
objective function equation (2) will be solved, and the op-
timal control sequence u(k) will be output. When the
prediction horizon is moved forward one step, the same
optimization process over the new prediction horizon is
repeated.

From the above discussion, we can see that the appli-
cation of MPC to TSC is based on an important assumption;
that is, the travel demand d(k) of the whole traffic system
and each subsystem can be observed. In practice, it can be
obtained using fixed detectors, floating cars, etc. 'erefore,
as with most of the existing work, the same assumption is
also used in this paper.

3. Distributed and Robust MPC with a
Multihierarchical Structure

3.1. System Framework. Since an urban road network is a
large nonlinear time-varying system with numerous traffic
zones, centralized control approaches not only have a high
computational burden but also face the problem of insuf-
ficient robustness. Applying distributed or hierarchical
control structures is generally recognized as an effective
solution [36, 42].

Figure 3 shows the proposed hierarchical and distributed
hybrid MPC architecture for the TSC of urban road
networks.

'e slow-update layer is used for distributed processing
of road networks and optimization of set points. Its input
contains the topology of the road network, the real-time
regional travel demand, and historical data. 'e outputs are
the subarea division results and the set point. 'e fast-
update layer is responsible for sampling the traffic state of
each link at the time step k and predicting the state of the
next step, both of which will be used to build the final
optimization function. Based on the output of other layers,
an optimization function will be constructed and further
solved at the control layer to obtain the optimal control law
of the next step.

'e components contained in each layer and how they
work are described in detail as follows.

3.2. 2e Slow-Update Layer: Optimization of the Set Point.
As a reference value in MPC, the set point directly deter-
mines the optimality of the solution. However, an implicit
assumption in existing MPC-based TSC methods is that the
set point is generally assumed to be known a priori. 'is
means that the control objective is to tilt the number of
vehicles on the road toward a fixed value, which can hardly
cope with the time-varying traffic states. We regard the
optimization of set point as the process of bringing traffic
networks to the system equilibrium. In this way, the problem
of set-point optimization is transformed into a combina-
torial optimization problem, including traffic subarea divi-
sion, subarea coordination control, and subarea dynamic
traffic assignment.

The slow-update
layer

The control layer

The fast-update
layer

predictor_1
y1 (k + 1)

=f1(u)

predictor_2
y2 (k + 1)

=f2(u)

predictor_m
ym (k + 1)

=fm(u)

ym (k + 1)

ym(k + 1)

Ys
m (t)

yp
m(k + 1)

Controller_m
minJm (ym,um)

Controller_2
minJ2 (y2,u2)

Controller_1
minJ1 (y1,u1)

subarea 1

Set – point
optimizer_1

Set – point
optimizer_2

Set – point
optimizer_m

subarea 2

subarea msubarea 2subarea 1
Urban road network

Urban road network

subarea m

um (k + 1)

Y(t + 1)

Figure 3: 'e framework of the distributed and robust MPC with a multihierarchical structure.
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In [43], Wardrop Equilibrium was proposed to decrease
the optimal user state; i.e., the traffic network would reach
the equilibrium state when all users know exactly what the
traffic status of the network is and try to choose the shortest
path. On this occasion, the running time of each used path of
each OD pair is equal. Inspired by this, we regard the op-
timization of set point as the process of bringing traffic flow
to equilibrium. Combined with the idea of distributed
control, the process is divided into three stages: traffic
subarea division, subarea coordination control, and set-
point calculation.

3.2.1. Traffic Subarea Division. Decomposing the network-
level TSC problem into several subproblems to consequently
reduce overall computation complexity is the basic idea of
distributed control. 'e simplest way is to treat each indi-
vidual signalized intersection as an agent, but this approach
is apparently uneconomical. Considering the complexity of
urban traffic networks, from simple geometric structure and
road topology to regional attributes and historical traffic
flow, many factors affect the division of traffic subareas.
Referring to complex network theory [44, 45], this paper
describes the “modularity (assumes to Q)” of road network
from the perspectives of road network topology, area at-
tributes, and traffic dynamic attributes and further presents a
novel subarea division algorithm.

We use a directed graph to describe the topological
structure of a road network. Each intersection is treated as a
node, and each road link is set as an edge. Assume that the
link connecting intersection i and j is a one-way street, and
the relevancy degree rij can be calculated by

ri,j � ρ1 ·
Ni,j

Li,j,lane · li,j
+ ρ2 · pi,j, (4)

where Nij and Li,j,lane are the traffic volumes and the number
of lanes of this link, respectively. pi,j is the regional cor-
relation of intersection i and j, which is generally defined as
0 (irrelevant), 0.1 (similar), or 0.2 (consistent). ρ1 and ρ2 are
balance factors. In the same way, when the link is a two-way
street, the relevancy degree Ri,j can be calculated by

Ri,j � ρ1 ·
ri,j · Ni,j + rj,i · Nj,i

Ni,j + Nj,i

+ ρ2 · pi,j. (5)

'en, we use the relevancy degree as the weight of edges
to transform the directed graph into an undirected graph.
Initialize the network to several subnetworks, each con-
taining one node. Create a system weight matrix E � ei,j ,
where ei,j is represented as follows:

ei,j �

Ri,j

2M
, two − way street,

ri,j

2M
, one − way street,

0, no link,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where M is the sum of the edge weights in the undirected
graph. 'e increment of modularity ΔQ is calculated by
equation (7) after the subareas are merged.

ΔQ � 2 ei,j −
kikj

4M
2 , (7)

where ki is the sum of all edge weights connecting subarea i.
Select the direction of maximum growth or minimum re-
duction of ΔQ for traffic subarea merging.

After completing subarea merging, the modularity Q of
the road network will be calculated by

Q � 
i

mi −
k
2
i

4M
2 , (8)

where mi is the sum of the edge weights in subarea i.
Meanwhile, the weight matrix E will be updated. Finally,
repeat steps 4 to 6 until all traffic subareas are merged into
one system. 'e partition result with the largest Q value in
the merging process is selected as the optimal partition
scheme.

3.2.2. Traffic Subarea Coordination and Boundary Control.
To reduce the complexity of the problem, a subarea is se-
lected as the main objective of coordination. 'erefore, the
average traffic saturation degree S of a traffic network is
taken as the coordination index of the controlled subareas.
When the traffic saturation degree of the controlled subarea
m exceeds a threshold, its evacuation coefficient αm can be
calculated by equations (9) and (10).

αm �
Lm · Sm − S(  + o∈Nm

αo,m · YNm

Ym

, (9)

S �
Y

Y
c, Sm �

Ym

Y
c
m

, (10)

where Nm is the set of subareas adjacent to m. αo,m is the
evacuation coefficient from Nm to m. Sm is the average traffic
saturation degree of the controlled subarea m. Ym and YNm

are the traffic volumes of m and Nm. In an actual trans-
portation system, the evacuation coefficient is restricted by
the evacuation capacity of the subareas. 'erefore, the
constraint 0≤ αm ≤ αm,max should be added to the optimi-
zation function. After obtaining the evacuation proportional
coefficient of the controlled subarea, traffic flow coordina-
tion is realized by boundary control, and the control action is
shown as follows:

gm,i �
αmYm

ρ · ϕ · vm,i · wm,i

, (11)

where gm,i, vm,i, and wm,i represent the average green time,
evacuation flow rate, and turning rate, respectively, of
connecting link i. ϕ is the updated step length of the top
layer, and ρ is the number of evacuation routes.

In addition, considering the uncertainty of the evacua-
tion coefficient between subareas, we employ a robust nu-
merical expression of the coordinated control model.
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Assume that the evacuation coefficient intervals of subareas
m and o based on historical data are [αm − αm, αm + αm] and
[αo − αo, αo + αo]. In this paper, the linearly equivalent dual
variables zm, pm, zo, and po are introduced, and the pa-
rameters Γm and Γo between 0 and 1 are used to indicate
whether a parameter is under robust control. In this way, the
total traffic volume of the traffic subarea m can be described
as

Ym(t + 1) � Ym(t) + Dm(t)

+ 
o∈Nm

αo(t)βom(t)Yo(t) − αm(t)Ym(t) + U,

U � 
o∈Nm

zoΓo + po(  − zmΓm − pm,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(12)

zm + pm ≥αmxm,

zo + po ≥ αoxo,

− xo ≤ βom(t)Yo(t)≤xo,

− xm ≤Ym(t)≤ xm,

pm, po, zm, zo ≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(13)

where Dm(t) is the travel demand in the t th stage and
βo,m(t) is the percentage of the evacuated flow from subarea
o to subarea m.

3.2.3. Calculation of the Set-Point Matrix. A traffic assign-
ment coefficient matrix is established in each control subarea
according to the static attribute values (i.e., lane grade,
number of lanes, and length of sections) in the subarea, as
follows:

w
i
m �

δi · ni · li

jεmδj · nj · lj
, (14)

where wi
m is the traffic assignment coefficient of link i in

traffic subarea m. δi, ni, and li are the lane coefficient, lane
number, and length, respectively, of link i.

'e set-point matrix of the traffic subarea m in the t stage
can be expressed as

Y
s
m(t) � Wm · Ym(t + 1), (15)

where Wm is the traffic assignment coefficient matrix of the
traffic network. At this point, for the road network, the set-
point optimization problem is transformed into the
equalization distribution of traffic volume in several con-
trolled subareas.

3.3. 2e Fast-Update Layer: A Prediction Model Explicitly
consideringDisturbance. 'e fast-update layer is responsible
for sampling the traffic states from the road network,
providing the sampling value and prediction state to the
control layer. Herein, we apply a novel traffic flow prediction
model which explicitly models the possible disturbance.

'e store-and-forward (SF) model provides a succinct
and clear mathematical description of the relationship be-
tween road network, traffic flows, and lights. 'erefore, it is
widely used in traffic control [46, 47]. 'e core idea of an SF
model is regarding the urban road network as a directed
graph with links and junctions. As a paradigm, Figure 4
presents a small urban traffic network that consists of two
intersections, where the link r2 connects the upstream and
downstream. Its traffic flow dynamics can be expressed as
follows.

yr2
(k + 1) � yr2

(k) + T · q
in
i,r2

(k) − q
out
i,r2

(k) + er2
(k) . (16)

Assume that the steady flow rate of the corresponding
link is constant under fixed travel demand. 'e output flow
of the link r2 is shown as follows:

q
out
i,r2

(k) � 

p∈τ r2 ,j( )

uj,p(k) ·
l
p
output · Sj,p(k)

T
, (17)

where τ(r2, j) is the signal phase set of the link r2 in the
intersection j. uj,p(k) is the green time of the pth phase in
the stage k. l

p
output represents the number of lanes corre-

sponding to uj,p(k). Sj,p(k) is the corresponding traffic flow
rate. By the same token, the input flow of the link r2 is

q
in
i,r2

(k) � 

p∈τ i,r2( )

ui,p(k) ·
l
p
input · Si,p(k)

T
. (18)

Substituting equations (16) and (17) into equation (15),
we have

yr2
(k + 1) � yr2

(k) + T 

p∈τ i,r2( )

ui,p(k) ·
l
p

input · Si,p(k)

T
− 

p∈τ r2 ,j( )

uj,p(k) ·
l
p
output · Sj,p(k)

T
+ er2

(k)⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠. (19)

Analogously, we can obtain the traffic flow dynamics of
the link r1.

yr1
(k + 1) � yr1

(k) + T · d
in
r1,i − 

p∈vr1 ,i

ui,p(k) ·
np · Si,p(k)

T
+ er1

(k)⎛⎜⎝ ⎞⎟⎠.

(20)

It can be seen from equations (18) and (19) that the
future state of the road network is related to its current state,
input traffic volume, signal control scheme, and traffic
disturbance. Assuming that the traffic state is observable, for
a traffic subarea, the state transition equation is shown as
follows:
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y(k + 1) � y(k) + Bu(k) + D d(k) + e(k), (21)

where B is the subarea feature matrix. u(k) is the control
input vector consisting of all the green times. D is the
subarea travel demand matrix. d(k) is the travel demand
vector.

Utilizing the simplified mathematical expression defined
above, a linear state-space model for traffic networks of
arbitrary size, topology, and characteristics can be clearly
derived.

As a disturbance item, e(k) is generated by the discrete
approximation of the prediction model, the error of the input
and output flow rates, and vehicles entering and leaving in the
middle of a section, which are difficult to determine in an
actual traffic network. Inspired by a BP neural network error
correction mechanism, this paper proposes a disturbance
modeling method to alleviate the influence of disturbance on
prediction accuracy. We divide the disturbance model into an
online term eon(k) and an offline term eoff(k), in which
eoff(k) is roughly calibrated according to historical data and
can be calculated by equation (21):

eoff(k) �
1
n



λ− 1

i�λ− n

ei, (22)

where λ is the current system date and ei is the mean of the
historical error of the prediction model on day i. When the
control horizon is rolled to the prediction horizon, we can
obtain the real measured value of the last time point.
'erefore, we can obtain the prediction error of the previous
step online, and the online disturbance eon(k) is shown as
follows:

eon(k) � el · y(k − 1) − y
p
(k − 1) , (23)

where el is the error learning rate and y(k − 1) and yp(k −

1) are the actual and predicted values of the previous stage,
respectively. 'erefore, e(k) is as follows:

e(k) �
1
n



λ− 1

i�λ− n

ei + el · y(k − 1) − y
p
(k − 1) . (24)

3.4. 2e Control Layer: Establishment and Solution of Opti-
mization Function. 'e control layer will solve the opti-
mization problem after obtaining the set-point matrix and

predicted traffic flow from the fast-update and slow-update
layers, respectively. 'rough the work above, the optimi-
zation problem of signal timing in a road network has been
transformed into a convex quadratic programming problem
with nonlinear constraints under the framework of hier-
archical and distributed integration. Taking subarea m as an
example, the optimization objective is to obtain the optimal
control law um(k) at the k th step so that the predicted value
y

p
m(k) approaches the set-point ys

m(k) as much as possible.
'e mathematical description of this problem is as follows:

min
u

Jm(y, u) � min



Np

k�1
y

p
m(k + 1) − y

s
m(k + 1)

2
Q

����
����

+ 

Np

k�1
u(k) − u(k − 1)

2
R

����
����

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(25)

subject to

y
p
m(k + 1) � y(k) + Bu(k) + D d(k) + e(k)

(19) − (20), (23)

y
s
m(k + 1) ∈ Y

s
m(t)

Y
s
m(t) � Wm · Ym(t + 1)

(12) − (14)

g(u(k)) � 0

h(d(k)) � 0

umin(k)≤ u(k)≤ umax(k)

ymin(k)≤y(k)≤ymax(k),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

where Jm(y, u) is the objective function of traffic subarea m.
Np is the prediction step size. g(·) and h(·) are the ab-
breviated cycle time constraints and demand equilibrium
constraints, respectively. p is a correctional item, which will
be executed when the green time obtained by the solution
differs greatly from the previous stage. Q and R are the road
network weight matrix and correctional matrix, respectively.
[u(k) − u(k − 1)] in equation (25) is designed to avoid
excessive difference between the control schemes of the two
stages.
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Figure 4: Traffic flow dynamics in links r1 and r2.
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Since the objective function takes the signal timing
scheme of each intersection as an independent variable, the
optimal signal control scheme sequence can be obtained by
solving the minimum value of the function.'e first element
of the sequence is sent to the controlled traffic system for
execution, and the one-step signal timing optimization is
completed.

At the control layer, the TSC of an urban road network is
decomposed into a series of discrete problems for each
decision stage k. At each sample stage, the optimization
problem can be regarded as mixed-integer convex quadratic
programming. Because of its very small size, existing opti-
mization techniques can be used to solve it effectively. Here,
we apply the sequential quadratic programming (SQP) al-
gorithm to solve the problem [48, 49].

4. Simulation-Based Case Studies

4.1. Simulation Settings

4.1.1. Simulator. 'e performance of the proposed HD-
RMPC was evaluated using the microscopic traffic simulator
VISSIM (version 9.0). Algorithm scripts are compiled using
the Python 3.9 programming language.

'e interaction between the HD-RMPC controller and
VISSIM is shown in Figure 5. 'rough the COM interface,
VISSIM delivers real-time traffic status to the controller. 'e
latter calculates the optimal control sequence of the system
based on real-time traffic state, historical traffic state, and
road network topology attributes and the first element of the
control sequence will be fed back to VISSIM for execution
via the COM interface. By repeating the above process at
each time step, a simulation of online real-world traffic
signal timing optimization can be completed.

4.1.2. Benchmark Methods and Metrics. To demonstrate the
performance of the proposed HD-RMPCmethod, three TSC
methods are used for comparison.

(i) Fixed-time control: the fixed-period F–B method
proposed by F. Webster and Cobber [50] is adopted
in this paper as a baseline. 'e scheme for each
intersection will be calculated based on the average
flow.

(ii) Centralized MPC (C-MPC): this method regards the
road network as a whole, and the objective is to
minimize the sum of predicted vehicles on the road
section through the predictive modeling of the
controlled system. 'e C-MPC used in this paper is
referred to [30]. In contrast to the proposed HD-
RMPC, C-MPC treats all intersections centrally
instead of subdividing the road network. At the
same time, it does not take measures against un-
certainty, and the set points are set to 0 (as suggested
in many previous papers, e.g., in [2, 38, 42]).

(iii) Distributed MPC (D-MPC): the applied distributed
MPC was developed by Ye et al. [42]. It decomposes
the entire system into multiple controlled subsys-
tems and considers the coordination constraints

between the subsystems on the basis of MPC for
each controlled subsystem. In contrast to the pro-
posed HD-RMPC, D-MPC is lacking treatment for
uncertainty and its set points are set to 0.
At the same time, we employ the average vehicle
delay to evaluate the performance of the different
TSC methods.

(iv) Average vehicle delay: as Wardrop suggested, we
apply the average vehicle delay to evaluate the
performance of the proposed method. Assuming
that there are N vehicles in a certain area, the av-
erage vehicle delay in this area can be calculated by

Delay �


N
i�1 ti − t

s
i( 

N
, (27)

where ti is the actual driving time of the vehicle i and
ts
i is the time to pass through the system with the
design speed.

In addition to a comparison of these strategies, the study
included an analysis of the efficiency of the different MPC-
based solutions, which is reflected in the difference in CPU
running time using the same operating platform environ-
ment. Meanwhile, in-process results in optimization control,
such as the set point, traffic flow in each subarea, and the
prediction accuracy of the model, are also shown and an-
alyzed to illustrate the effectiveness of the improvement
measures.

4.1.3. Study Area and Simulation Parameters. To evaluate
the performance of the HD-RMPC, we chose a medium-
sized urban network with prominent subarea characteristics.
In the simulation process, we will also adjust the input flow
of different links to simulate the change in traffic demand.
Figure 6 illustrates the study area in Huangpu District,
Shanghai, for the simulation experiment. 'ere are 17 in-
tersections in total, 9 of which are signal-controlled. 'e
simulation network contains 44 links, 9 input links, and 9
output links. We assume that the average vehicle length is
5meters and that the road lane is 3.5m in width. 'e sat-
urated flow rate for all links is set as 2000 veh/h.

We define the TSC cycle time as 60 seconds. During the
simulation, the sampling time is also 60 seconds, and the
simulation period is set to 4800 seconds (including 80 signal
control cycles). Figure 7 shows the input flow to the sim-
ulation network. Herein, the flow rate of each link in the set
varies once every 10 TSC cycles (600 seconds). 'e initial
turn rate of the link is calibrated using historical data.
Referring to [2, 32, 34, 38], in the simulation evaluation part,

VISSIM
y

u

COM Interface

HD – RMPC
controller

Figure 5: Interaction between HD-RMPC controller and the
microscopic traffic simulator VISSIM.
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we repeated a set of experiments (including HD-RMPC,
C-MPC, and D-MPC) five times with different random seeds
at each Np and took the average result of the five experi-
ments to avoid the impact of randomness;, i.e., the evalu-
ation was actually conducted 15 times (three different values
of Np and five different random seeds). All of these ex-
periments are performed on a computing platform with an
Intel Core i9-10900K CPU (3.70GHz), NVIDIA GeForce
RTX 2080Ti GPU, with 32.0 GB memory.

4.2. Results

4.2.1. Evaluation of Process Performance. 'e process per-
formance of the proposed HD-RMPC will be evaluated from
three dimensions: the results of subarea division, the effect of

subarea flow coordination, and the optimization of set
points. We also compare the variation of prediction error
with or without robustness expression at different Np.

At the beginning of the experiment, according to the
subarea division method in Section 3.2, the simulation traffic
network is divided into three subareas to obtain the max-
imum modularity and the results are shown in Table 1.

Figure 8 shows the evolution of traffic volume in each
subarea during the simulation. At the beginning of the
simulation, the total volume of traffic in subarea 2 is sig-
nificantly higher than that in subareas 1 and 3. At the end of
the simulation, the traffic capacity ratio of the three subareas
is approximately 0.29 : 0.38 : 0.33; i.e., with the combined
action of time-varying traffic demand, coordination, and
optimization, the total traffic volume in the three subareas
tends to the traffic capacity ratio.
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Figure 7: Input flow to the simulation network.

Table 1: 'e initial result of traffic subarea division.

Serial number of traffic subarea Intersection
Subarea 1 1, 2
Subarea 2 3, 4, 5, 6
Subarea 3 7, 8, 9
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Figure 8: Evolution of traffic volume in each subarea.
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Taking link 1 as an example, the relationship between set
point and input traffic flow is given in Figure 9. We can see
that the adjustment of set points has been done in a relatively
gentle manner and the applied set-point optimization
component responds to the change of input flow in general.

It indicates that the proposed method can effectively
balance the regional traffic flow of the road network, which
proves the effectiveness of the dynamic subarea division and
the set-point optimization components in HD-RMPC.

Figure 10 illustrates the comparison of prediction errors
between HD-RMPC and D-MPC during simulation. 'e
difference lies in that the former carries out robust corre-
spondence of uncertainty and explicit modeling of distur-
bance while the latter does not. Comparing Figures 10(a)–
10(c), we can see that the prediction error of all methods
would increase with the increase in Np. During the process
of TSC, accumulative prediction errors can make the effect
of MPC-based methods get steadily worse. 'is view is
demonstrated in the subsequent evaluation of results. Most
importantly, although the initial prediction error of both
HD-RMPC and D-MPC is considerable, HD-RMPC ach-
ieves a significant reduction in prediction error by self-

adjusting as the simulation progresses. It indicates that the
proposed robust error characterization approach is valid.

4.2.2. Evaluation of Control Effect. Figure 11 shows the
average vehicle delay under different prediction horizons. As
shown in Figure 11(a), whenNp is equal to 1, compared with
fixed-time control, C-MPC, and D-MPC methods, the av-
erage vehicle delay of the proposed method decreases by
56.91%, 49.65%, and 51.89%, respectively.

For the other MPC-based methods, we can see that the
C-MPCmethod performs better than the D-MPC (for about
4.45%). Although the coordination of controlled subareas is
taken into account, the control performance of the D-MPC
method is inevitably lower than that of the C-MPC.

When Np � 2, at the scale of the road network, the
average vehicle delay of the proposed method is 54.88%,
64.56%, and 56.89% lower, respectively, than the three
baselines. Since then, the performance of C-MPC and
D-MPC began to be inferior to the fixed-time control due to
the increase in prediction error. Meanwhile, the perfor-
mance of C-MPC is greatly reduced due to the more serious
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Figure 10: Comparison of prediction errors between HD-RMPC and D-MPC during simulation. (a) Np � 1. (b) Np � 2. (c) Np � 3.
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Figure 11: Average vehicle delay variation in simulation using baselines and the proposed HD-RMPC. (a) Np � 1. (b) Np � 2. (c) Np � 3.
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error accumulation effect. Similarly, the HD-RMPC method
also achieves the optimal performance when Np � 3.

Comparing the simulation results of Np � 1, 2, and 3, it
can be found that the C-MPC method is more susceptible to
traffic disturbance than the D-MPC. 'e reason is that the
object of the C-MPC method is the whole traffic system, and
that of the D-MPCmethod is to predict andmodel the traffic
flow of a target road section in each controlled subarea.
When the dimension of modeling is reduced, the negative
impact of prediction error is weakened accordingly. At the
same time, the proposed HD-RMPC method can maintain
the optimality of the solution and the robustness of the
system in an actual traffic environment because of the hi-
erarchical and distributed reconstruction of the algorithm
framework and objective function.

Moreover, with the increase in Np, the performance of
the C-MPC and D-MPC shows a significant decline, which is
different from the results of pure numerical simulation
experiments. 'is is because the traffic disturbance in the
professional traffic simulation tool adopted in this study is
unobservable and noisy, which is closer to the actual world.

On this basis, taking Np � 1 as an example, we further
analyzed the variation of delays in each subarea during the
simulation. As is shown in Figure 12, for different traffic
subareas, it is obvious that the HD-RMPC method is

superior to the other three methods in subarea 2 because the
flexible set-point setting of the proposed method effectively
evacuates the traffic flow in subarea 2. Combined with the
analysis of process performance, we can conclude that the
proposed set-point optimization and disturbance modeling
methods can make the prediction state and the set goal tend
to the real value at the same time and greatly improve the
quality of the optimal solution.

4.2.3. Efficiency Analysis. To demonstrate the efficiency of
the proposed algorithm, we present the average CPU run-
ning time of one simulation that is used for solving the
online optimization problem under different Np. 'e results
are shown in Figure 13.

One counterintuitive phenomenon is that when Np � 1,
the efficiency of the C-MPC method is significantly higher
than that of the other two methods. 'is can be interpreted
as the applied traffic network being limited in scale. In this
context, computational complexity is not the main factor
affecting the CPU runtime. Meanwhile, the D-MPC and
HD-RMPC methods require more time due to the existence
of decomposition and coordination of the traffic network. As
Np increases, the computational complexity of the C-MPC
method increases geometrically while the D-MPC and HD-
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Figure 12: Average vehicle delay variation in each subarea during the simulation when Np � 1. Figures (a)–(c) are the results of subareas 1,
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RMPC methods keep their real-time efficiency benefit from
their distributed characteristics.

To summarize, faced with a road network with obvious
subarea characteristics or local congestion, the proposed
HD-RMPC method performs much better than all baselines
with excellent computational efficiency. Meanwhile, the
performance of the HD-RMPC method does not suffer as
the prediction horizon length increases. 'erefore, it has
significant advantages in applications for real-world traffic
networks.

5. Conclusions

MPC is proven to be a promising control paradigm for TSC.
However, further efforts are still needed to cope with the
challenges of real-time performance, set-point optimization,
and prediction disturbance modeling. To address these
problems, this paper proposes a distributed and robust MPC
with a multihierarchical structure for urban traffic networks.
Macroscopically, the applied multihierarchical distributed
structure mode can achieve an ideal control effect with better
real-time performance. Microscopically, the dynamic sub-
area division model, the robust coordination algorithm of
subareas, and the set-point online optimization method
based on traffic equilibrium theory have achieved good
results. Meanwhile, traffic disturbances are explicitly mod-
eled and feedback regulated for the first time, which further
improves the prediction accuracy and control performance.
A series of simulation experiments based on the real road
network show that the proposed HD-RMPC performs better
than the existing MPC-based method for the road network
with significant subarea characteristics or local congestion.

Although the disturbance modeling method can sig-
nificantly improve the accuracy of the prediction and reduce
the error to within a reasonable range to maintain the
validity of the prediction model, it cannot compensate for
the structural defects of employing a linear model to solve
nonlinear problems. 'is is also considered the main
shortcoming of MPC-based methods [35]. In future studies,
more data-driven methods, such as data-enabled predictive
control (DeePC) [51], will be used to solve TSC problems.
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