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For a long time now, trafc equations have been considered, and diferentmodeling has been done for it. In this article, we work on
the macroscopic model, especially the most famous light model. Because these models are among the stif and shocking problems,
theoretical methods do not give good answers to these problems. Tis paper describes a meshless method to solve the trafc fow
equation as a stif equation. In the proposed method, we also use the exponential time diferencing (ETD) method and the
exponential time diferencing fourth-order Runge–Kutta (ETDRK4). Te purpose of this new method is to use methods of the
moving least squares (MLS) method and a modifed exponential time diferencing fourth-order Runge–Kutta scheme. To solve
these equations, we use the meshless method MLS to approximate the spatial derivatives and then use method ETDRK4 to obtain
approximate solutions. In order to improve the possible instabilities of method ETDRK4, approaches have been stated. Te MLS
method provided good results for these equations due to its high fexibility and high accuracy and has a moving window and
obtains the solution at the shock point without any false oscillations. Te technique is described in detail, and a number of
computational examples are presented.

1. Introduction

Car trafc modeling has been around since time immemorial,
around the early twentieth century. Many methods have been
modeled according to diferent cases, from microscopic
methods that have been modeled individually for each vehicle
to dynamic kinetic and macroscopic methods that deal with
the relationship between vehicles and even driver behavior, all
of which have been modeled in diferent ways ([1–5]).

Tere are many articles on trafc fowmodeling. Existing
trafc fow simulations are usually based on mesoscopic
modeling; that is, models that are microscopic simulations is
mixed with macroscopy, meaning that, in some cases, it is
based on aggregation, or macroscopic models that are
combined with microscopic modes, and in some cases, it
isbased on the individual mode of each vehicle [6–8].

Tere are many trafc models in these categories, such as
automated cellular models, car chase models, gas kinetic
models, fuid fow models, and hydrodynamics [9–11].

Microscopic models have many applications, such as trafc
forecasting, accident detection, and trafc control, which are
typically described using a system of nonlinear partial dif-
ferential equations. Macroscopic trafc models look at trafc
fow as a cumulative concept and are commonly used to
analyze service level and also supply and demand, during
regional planning or surface transportation networks [12].
In 1955, Lighthill and Whitham and, in 1956, Richards
showed that equations expressing water fow could explain
the fow of car trafc. Teir idea was to assume machines to
be small particles and their density to be principal quantity.
Tey established one of the most famous models of trafc
fow called model LWR.Te LWRmodel is the frst model of
trafc fow in the form of equations of nonlinear hyperbolic
partial derivatives [7, 13].

In any case, it makes sense to assume that maintaining
the number of vehicles leads to a conservation laws. Because
they show severe discontinuities in trafc jams, there is an
adaptive relationship between trafc jams and shock waves
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[6, 14–16]. Fluid dynamic models are often considered the
best simulations for trafc fow because they seem to be
better able to detect some phenomena, such as the formation
and propagation of shocks on roads, and the answers to
problems can create strong discontinuities, even with per-
fectly smooth initial conditions (see [17]). We investigate
trafc simulations from the term of macroscopic models that
use fuid dynamics and consist of conservation laws. In
Section 2, we will explain these equations in more detail.

In this article, an adaptive numerical method is proposed
based on the method the meshless method and ETD scheme.
In recent years, meshless methods including MLS scheme
have been used for diverse diferential equations.

One of the numerical methods examined in this paper
and used to discretize time is the “exponential temporal
diference”method, which involves the correct integration of
dominant equations and then the approximate integral of
nonlinear expressions [18, 19]. In principle, this method was
in the category of frst-order explicit methods, which over
time has been extended to explicit and explicit designs. We
discuss the sustainability of these methods, which are further
explored in Ref. [20]. To improve ETDmethods, we consider
new and more accurate ETD methods. Te method com-
bines ETD scheme with Runge–Kutta [19]. As Cox and
Matthews (the originators of this method) recognized, they
have a big problem with eigenvalues close to zero, especially
when the matrix for the linear part (L) is not diagonal. If
these problems are not solved, ETD schemes for PDE
equations whose matrix is not diagonal will have many
errors and then fail. In this work, we use modifed ETD
schemes to avoid these problems [21]. Low-order ETD
methods are more suitable for application in computational
electrodynamics [22]. Tey are often taken independently
[19, 20, 23]. In his article, Iserles stated that in 1928, Filon
proposed ideas related to this method in the feld of ODE
[24, 25]. Te best solution to the problems of this method is
to use the fourth-order Runge–Kutta formula (ETDRK4)
with exponential time diference [19]. Cox and Matthews
argued that ETD schemes perform better than implicit-
explicit (IMEX) schemes, where linear expressions pre-
dominate and perform better than integration-factor (IF)
schemes, where nonlinear expressions predominate. We will
explain more about this method in Section 3.

In recent decades, methods for better solving equations
called meshless methods have been proposed [26]. Tese
methods are used to discretize the domain without using a
predefned mesh by creating a system of algebraic equations
for the entire problem domain. How this method works is
that a set of nodes that gets difused across the domain of the
problem is used to indicate its domain, and a set of nodes is
used at the domain boundaries to represent its boundaries.
Te set of these difuse nodes is called feld nodes [27]. Mesh-
free methods can be divided into three groups:

(1) Mesh-free methods based on weak forms, such as the
element-free Galerkin method (EFG) [28]

(2) Mesh-free methods based on strong forms, such as
collocation method based on radial basis functions
(RBFs) [29, 30]

(3) Mesh-free methods based on a combination of weak
forms and collocation method [31, 32]

In the written works, several methods without weak
mesh are stated which are as follows:

(1) Dispersed elements method (DEM) [33]
(2) Smooth particle hydrodynamics (SPH) [34]
(3) Reproducing kernel particle method (RKPM) [35]
(4) Boundary node method (BNM) [36]
(5) Partition unity fnite element method (PUFEM)

[37]
(6) Finite sphere method (FSM) [38]
(7) Boundary point interpolation method (BPIM) [39]
(8) Border radius point interpolation method (BRPIM)

[40]
(9) Meshless local Petrov-Galerkin(MLPG) [41]
(10) Meshless local radius point interpolation (MLRPI)

[42–47]

One of the meshless methods is moving least squares
(MLS) method, in which we use a local interpolation or
approximation to express an experimental function with
unknown values at some node points [48]. In this paper, the
moving least squares (MLS) approximation is used. In
Section 4, we discuss this method in detail. In Section 5, we
explain about our adaptive method. In Section 6, a number
of examples are solved with these methods.

2. The Traffic Flow Equation

Trafc modeling and simulation is the subject of research
that has attracted much attention today. Travel information
technology seeks to alleviate the problems of congestion and
travel time that travelers face in most cities around the
world. Attempts are being made to answer questions,such as
where should the trafc lights or stop signs be installed, what
should be the trafc light cycle, and where is the construction
site of entrance, exit, and overpass?

Te aim of this research is to solve the trafc equation in
a way that has the least fuctuations and obtain the solution
of the shock point with the least error. When solving trafc
equations is done by researchers, more general goals such as
increasing car trafc and reducing trafc congestion, acci-
dents, and air pollution can be achieved. Tis is possible
through better scheduling of trafc lights and informing
drivers in choosing the route based on real and correct
information of trafc situations. Tese issues have led to the
issue of modeling and predicting trafc parameters, as one of
the main components has attracted considerable scientifc
interest. For this reason, mathematical modeling and solving
trafc fow models as one of the efective methods of trafc
management is very important.

Trafcmodels can be found in approximately threemodels:
(1) microscopic models, (2) mesoscopic models, and (3)
macroscopic models. Tere are many models by researchers
who study trafc from other perspectives, see Refs. [1–5]. In
many cases, attention is paid to a section of road or small
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sections of the urban network. One of the most widely used
models of trafc fow is the macroscopic model that expresses
trafc fow as one or a set of nonlinear hyperbolic partial
equations. Since there are sudden changes or shocks in the
answer to most of these equations, choosing the appropriate
numerical method to solve this category of equations is critical.

Te macro theory looks at trafc fow as a cumulative
concept. Tis method is the most appropriate method to study
the steady state of the fow phenomenon based on physical
analogies such as heat fow and fuid fow, and therefore, it best
explains the device’s potential performance. In these models,
trafc fow simulations are performed on a part of the road.Te
interactions of individual road users are not considered.

Macrosimulation models are commonly used to analyze
service, supply, and demand levels during regional planning
or large-scale transportation networks. Micro models are
more detailed than macro models and can therefore be used
to assess the efects of the proposed level of improvement on
road facilities with a higher degree of accuracy. However,
due to the nature and breadth of information that the
shredding models simulate, they run slowly compared to the
macro models, so they require lengthy calculations.

In this paper, we examine models from a macroscopic
perspective that are inspired by fuid dynamics and com-
posed of conservation laws. Te trafc fow equation is

zρ
zt

+
z(f)

zx
� 0. (1)

Macroscopic models present the parameters of trafc
density (ρ), fow rate (f), and average speed (v), and the
basic relationship is f � ρv(ρ(x, t)), where t is time and x is
space. Te number of vehicles per unit length is called trafc
fow density (ρ � n/Δx). Trafc fow rate indicates the
number of vehicles passing a certain point per unit of time
f � (n/Δt).

In the model LWR, speed is expressed as v � v(ρ), s.t.
0≤ ρ≤ 1. Here, it is assumed that the function f has the
following conditions:

(1) Te function f is continuous until the second time
(2) Te function f is strictly concave
(3) Let f(0) � f(ρmax) � 0

When the number of vehicles gradually increases, the
density and therefore the fow also increases. If the number
of cars is constantly increased, we will reach a situation
where other cars cannot move. In this case, the density is
equal to the density of trafc jams and the fow is zero, and
ρmax is the density of trafc jams.

One of the most important discussions of trafc mod-
eling is how to defne the velocity function as a function of
density. Tere are many models for defning velocity in
terms of density [49].

3. The MLS Approximation Scheme

Meshless methods work without using a predetermined
meshing to discretize the problem domain. Among themany
meshless methods, we chose method 1 because there were

good reasons for this choice; that is, the development of a
smooth weight function that is a guarantee for the continuity
of variable felds, very high fexibility of this method, and
high accuracy of this method.

MLS combines the moving window with weight func-
tions that have compact support. Tis method is very ac-
curate even with low-order basis functions and also has very
good stability because it uses a local approximation scheme.
Calculations are performed in subdomains of the global
domain. A very attractive feature of MLS is its fexibility.
With the parameters of the weight function, it is easy to
provide the appropriate tuning for the MLS and thus control
and adjust the data ft.

In the trafc equations, shocks inevitably appear and the
ftting method is preferred to solve these equations.Te least
squares (LS) method is the most used one in data ftting.

Most LS-based methods are global approximation
schemes that are not suitable for large amounts of data,
irregular or sparse distribution cases. Terefore, the MLS
method, which is a local approximation and has high
computational accuracy and stability, was proposed. Te
moving window introduced in MLS shows a good perfor-
mance in solving these problems. Te compact support
weight function indicates that only partial measurement
data near the unknown measurement point are involved in
the calculation. Ten, the moving window in MLS acts as a
smooth section. Due to the fact that rigid segmentation
causes problems in the way of part selection and ftting
discontinuity, segment selection is avoided and thus the
continuity and smoothness of the connection is guaranteed.

In this section, we explain one of the meshless methods
called MLS for the approximation of the function v(x) in the
domain Λ. Assume that Λ is expressed by computational
geometry techniques. In this supposed domain, we assume
the nodes xi, i � 1, . . . , N and denote the approximate
value of the related with the MLS method at the point of the
assumed node i with vi. As explained in section 1, meshless
methods use local interpolation or approximation to express
an experimental function that at several node points is the
value of unknown variable.

Here, among the meshless methods, we used the moving
least square (MLS) method because it seems to work better
for shock problems. We consider a subdomain Λs. In the
neighborhood, the point x, which exists within the principal
domain of the problem Λ, is represented as the support
domain of the MLS approximation for the experimental
function at the point x.

To approximate the function v in Λs, on random points
of nodes xi, i � 1, . . . , N. We illustrate the approximation
of the v function by the method of moving least squares with
vh(x) upon the domain Λs, and we can defne ∀x ∈ Λsas

v
h
(x) � DT

(x)q(x), ∀x ∈ Λs, (2)

where DT(x) is a vector of order m as DT(x) � [d1(x),

d2(x), . . . , dm(x)].DT(x) is a complete monomial basis, and
q(x) is a vector since q(x) � [q1(x), q2(x), . . . , qm(x)]. Let
qj(x), j � 1, 2, . . . , m be a function of the coordinates of
space x, and dj(x) be monomial in the coordinates of space,
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and m be the number of basic polynomial functions. To
make dj(x), the Pascal triangle is used and a complete base is
certainly preferred. Te basic functions are ascertained by

DT
(x) �

1, m � 1,

1, x{ }, m � 2,

1, x, x2􏽮 􏽯, m � 3.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

Here, if we want to shift the origin to a fxed point xe �

(Xe
1, Xe

2, . . . , Xe
n)T, x in D(x) must be replaced by x − xe.

Point xe � (Xe
1, Xe

2, . . . , Xe
n)T is on R(x), where R(x)

represents the infuence domain of x. Ten, a linear basis is
given by

D(x) � 1, x1 − x
e
1, x2 − x

e
2, . . . , xn − x

e
n􏼂 􏼃

T
, x ∈ Rn

, (4)

for m � 1 and a quadratic basis by

D �
1, x1 − x

e
1, x1 − x

e
1( 􏼁

2
􏽨 􏽩

T
, x ∈ R,

1, x1 − x
e
1, x2 − x

e
2, x1 − x

e
1( 􏼁

2
, x2 − x

e
2( 􏼁

2
, x1 − x

e
1( 􏼁 x2 − x

e
2( 􏼁􏽨 􏽩

T
, x ∈ R2

,

⎧⎪⎨

⎪⎩
(5)

for m � 2.Te weight function used in the MLSmethod is as
follows:

wi(x) � φ
x − xi

����
����

h
􏼠 􏼡,

i � 1, . . . , N,

(6)

where the function φ is non-negative, c th times continu-
ously diferentiable, and its derivatives are bounded for a
higher order than c and compactly supported. Many weight
functions used in meshless methods have these conditions,
such as Gaussian, exponential, cubic, and quadratic splines.
In this paper, the Gaussian weight function is used, which is
defned as follows:

wi(x) �

exp − di/ci( 􏼁
2

􏽨 􏽩 − exp − rs/ci( 􏼁
2

􏽨 􏽩

1 − exp − rs/ci( 􏼁
2

􏽨 􏽩
, 0≤di ≤ rs,

0, di ≥ rs,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

where di � ‖x − xi‖, ci is a constant that controls the shape of
the weight function wi and rs is the size of the support
domain.Te ci parameter is a constant that controls the shape
of the weight function, which can be dependent on the points
for more fexibility. Tis shape parameter, in general, may
vary from one subdomain to another. In addition, this shape
parameter can be chosen diferently in diferent directions. As
an example, a problem with nine nodes that is uniformly
distributed is presented in Figure 1(a). Te most appropriate
weight function for this case is shown in Figure 1(b). In
Figure 2(a), the uniform distribution of nodes depends on the
coordinate direction, where the grid spacing is diferent in the
x and y directions. To obtainmore accurate spatial derivatives,
the weight function for this case should be diferent in each
direction in Figure 2(b). In other words, the ci parametermust
be larger in the x direction. To read more about weight
function and shape parameter, refer to [50].

Te support size of the weight function wi related to
node i(rs) is very important. On the one hand, it should be
chosen so that it is large enough to cover the required

number of nodes in the defnition domain of each sample
point, and on the other hand, a very small rs It can also cause
a large error in calculating the entries of matrix when using
Gauss numeric quadrants. Care must also be taken that rs

should be small enough, that is, not too small to preserve the
local properties of the MLS approximation.

As it was said vh(x) � DT(x)q(x) that we talked about
DT(x), now we are talking about the coefcients of q(x) in
detail.

To defne a coefcient vector q(x), q(x), we use the L2
-norm in such a way that these coefcients are determined
by minimizing the weighted discrete L2-norm:

J(x) � 􏽘
n

i�1
wi(x) DT xi( 􏼁q(x) − 􏽢vi􏽨 􏽩

2

� [D.q(x) − 􏽢v]
T
.W.[D.q(x) − 􏽢v].

(8)

Here, wi(x) is defned as the weight function for node i.
Note that for all points in the support domain of wi(x),
wi(x), the value of the weight function at each point, i.e.,
wi(x), wi(x) is positive. xi represents the value of x in node i,
and n is the number of nodes in Λs, for each weight function
is wi(x)> 0. Te matrices D and W are defned as

D �

dT x1( 􏼁

dT x2( 􏼁

. . .

dT xn( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

W � diag w1(x), . . . , wn(x)( 􏼁,

􏽢v
T

� 􏽢v1, . . . , 􏽢vn􏼂 􏼃.

(9)

Note that 􏽢vi, i � 1, 2, . . . , n are not node values of the
unknown trial function vh(x) but are artifcial node values.
Tere is a linear relationship between q(x) and 􏽢v. Tis re-
lationship is derived from the stationarity of J in (2) with
respect to q(x), i.e.,

Q(x)q(x) � S(x)􏽢v. (10)

Defne the matrices Q(x) and S(x) as
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Q(x) � DT
.W.D,

S(x) � DT
.W.

(11)

Obtaining q(x) from the equation (10) and substituting
it in (2) yields

v
h
(x) � μT

(x).􏽢v

� 􏽘
n

i�1
μi(x) 􏽢vi, x ∈ Λs,

(12)

μT
(x) � DT

(x)Q− 1
(x)S(x), (13)

or

μi(x) � 􏽘
m

j�1
dj(x) Q− 1

(x)S(x)􏽨 􏽩
ji

, (14)

where μi(x) is called a shape function of the MLS ap-
proximation dependent on the xi node. From (13) and (11),
it can sometimes be concluded that μi(x) � 0 when wi(x) �

0. In practical applications, usually wi(x) is selected such
that over the support of xi node is nonzero. In fact, μi(x) � 0,
for x that is not in the support area of the node xi, is to
maintain the local character of the MLS approximation.

Note that the sustainability of the linear system is ef-
fectively dependent on conditioning of the coefcients
matrix. Te conditioning of the coefcients matrix can be
measured using the condition number.
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Figure 2: (a) Nodes. (b) Weight function.
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Figure 1: (a) Nodes. (b) Weight function.
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Theorem 1. If we consider the Q(x) matrix that is produced
by the basis D(x) (i.e., Q(x) � DTW(x)D), then there is a
bounded and countable number Cd(x, n, m), which is inde-
pendent of h and such that for the determinate ofQ(x), we get

det(Q(x)) � Cd(x, n, m)h
2

􏽘

m

i�1

􏽢i, ∀x ∈ Λ. (15)

In addition, there is a constant h0 > 0, for h≤ h0, such
that a bounded and computable number Cc(x, n, m) is in-
dependent of h that the norm 2 condition number ofQ(x) is

cond(Q(x)) � Cc(x, n, m)h
− 2􏽢m

, ∀x ∈ Λ. (16)

Proof. A proof is described in [51].
Equation (15) states that

det(Q(x))⟶ 0 as h⟶ 0. (17)

Note that from the above discussion we conclude that
whenever a sufciently small nodal distance h is selected, the
instantaneous matrix Q(x) obtained in MLS approximation
is approximately a single matrix. Tis causes the errors to
increase; that is, when the instantaneous matrix Q(x) has ill
conditions or is singular, the answers obtained for the vector
of coefcients q(x) have a large error, and therefore, the
function of the shape μi(x) will have a large rounding error.

Referring to (16), we fnd that the condition number
Q(x), Q(x) has an inverse relationship with factor h2􏽢m.Tat
is, as h2􏽢m decreases, the condition number increases and as a
result the rounding error increases because it is very clear
that when the matrix conditioning number increases, the
degree of ill conditioning of the matrix increases to the point
that for singular matrices, the situation worsens and the
condition number Infnitely desires. Terefore, we conclude
that the instability of the MLS method depends on h and 􏽢m

so that by reducing the value of h and increasing the value of
􏽢m too much, the instability of the MLS method increases. So
we conclude that the MLS method achieves well and low-
error solutions to solve problems when matrix Q in (10) is
nonsingular. Tis happens when the rank D is equal to m.

In order not to have the problem of instability and MLS
method being a well-defned method, a necessary condition is
that there must be the least at least m nonzero weight functions
(i.e., n>m) for each point x ∈ Λ and the points determined in
Λs do not follow from a regular and special pattern. □

4. A Modified ETD Scheme

Te trafc fow equation combines nonlinear terms with
linear terms. To solve these problems and obtain low-error

numerical answers to these problems, high-order approxi-
mations for place and time must be used. Because we have a
nonlinear and stif combination in these problems, it has not
been used much until the second order. Te general form of
the stif equations is as follows:

vt � Lv + N(v, t). (18)

In this equation,L represents the linear operator and
N represents the nonlinear operator. First, the spatial
part of the PDE equation is discretized by the method of
the previous section, and thus we obtain a system of
ODEs as

vt � Lv + N(v, t), (19)

where L,N are the matrices obtained after using method
MLS and approximating spatial derivatives on linear and
nonlinear operators, L and N. For this special trafc
equation, bothmatrices are written in Section 5.We begin by
multiplying equation (19) through by e− Lt, where the term
e− Lt is the integrating factor, then we take the integral from
the equation on a single time step of length h from t �

tn to t � tn+1 � tn + h to give

vn+1 � e
Lh

vn + e
Lh

􏽚
h

0
e

− LζN v tn + ζ( 􏼁, tn + ζ( 􏼁dζ. (20)

In this equation, diferent orders of ETD schemes can be
obtained from how the integrals are approximated. A se-
quence of recursive formulas is presented that obtains higher
order approximations than the multistage type. Andthe
generating formula is

vn+1 � e
Lh

vn + h 􏽘
s− 1

m�0
ηm 􏽘

m

k�0
(− 1)

k
m

k
􏼠 􏼡Nn− k, (21)

wherein s represents the order of the method. Te coef-
cients ηm can be obtained from the following recursive
relation:

Lhη0 � e
Lh

− I,

Lhηm+1 + I � ηm +
1
2
ηm− 1 +

1
3
ηm− 2 · · · +

1
m + 1

η0.
(22)

Whenever we use Runge–Kutta methods in the set of
ETD methods and derive its time step with Runge–Kutta,
then the method is called ETDRK. In this paper, we use only
the fourth-order method and derive it with ETDmethods. In
this case, the method is called ETDRK4. Tis is not entirely
clear and needs to be explained in the form of a symbolic
manipulation system. Here are the formulas for the ETDRK4
method:
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an � e
Lh/2

vn +
e
Lh/2

− I􏼐 􏼑

L
N vn, tn( 􏼁,

bn � e
Lh/2

vn +
e
Lh/2

− I􏼐 􏼑

L
N an, tn + h/2( 􏼁,

cn � e
Lh/2

an +
e
Lh/2

− I􏼐 􏼑

L
2N bn, tn + h/2( 􏼁 − N vn, tn( 􏼁( 􏼁,

ϖ � − 4 − Lh + e
Lh 4 − 3Lh +(Lh)

2
, ϱ � 2 + Lh + e

Lh
(− 2 + Lh), ς � − 4 − 3Lh − (Lh)

2
+ e

Lh
(4 − Lh), vn+1􏼐

� e
Lh

vn +
ϖN vn, tn( 􏼁 + 2ϱ N an, tn + h/2( 􏼁 + N bn, tn + h/2( 􏼁( 􏼁 + ςN cn, tn + h( 􏼁

h
2L3

.

(23)

Te coefcients inside the ETDRK4 formula can be
rewritten as follows:

α �
ϖ

h
2L3

,

β �
ϱ

h
2L3

,

c �
ς

h
2L3

.

(24)

As mentioned before, we tried to solve the trafc
equations with the methods described, and an example of
these trafc equations is solved in the next section.

In the written codes, for all these formulas, division by
matrix L means the inverse of the matrix L is multiplied in
the desired expression and to calculate eL, commands exp
and expm of MATLAB software are used, if L is diagonal,
command exp is used, and if it is a nondiagonal matrix,
command expm, expm is used.

5. Adaptive Method

In this article, we have tried to solve equation

zρ
zt

+
zf(ρ(x, t))

zx
� 0, (25)

by a adaptive method. In this section, we explain how to
solve this equation according to methods MLS and
ETDRK4. To solve equation, we frst use the MLS method to
approximate spatial derivatives and then use the ETDRK4
method to approximate time derivatives.We divide themain
domain of the problem (Λ) into N parts so that the distance
between the nodes is constant, and for each point, we
consider a neighborhood (Λs) that is inside the main do-
main. To approximate the function ρ, by MLSmethod, inΛs,
on random points of nodes xi, i � 1, . . . , n, from (12) and
(14), we get

ρh
(x, t) � 􏽘

n

i�1
μi(x)􏽢ρi(t). (26)

By replacing the equation, we have

zρ
zt

+
zf 􏽐

n
i�1 μi(x)􏽢ρi(t)( 􏼁

zx
� 0. (27)

Note that 􏽢ρi(t) � 􏽢ρ(xi, t) in (27) are node values that are
fctitious. On the other hand, for the derivative μi(x), it can
be explained as follows.

Let Cq(Λ) be the space of functions that are continuously
qth diferentiable on Λ. If wi(x) ∈ Cq(Λ) and
dj(x) ∈ Cs(Λ), i � 1, 2, . . . , n, j � 1, 2, . . . , m, then
μi(x) ∈ Cr(Λ) with r � min(q, s). Te k derivatives of μi(x)

becomes

μi,k � 􏽘

m

j�1
dj,k Q

− 1
S􏼐 􏼑

ji
+ dj Q

− 1
S,k + Q

− 1
,k S􏼐 􏼑

ji
􏼔 􏼕, (28)

where we show the derivative inverse of the matrix Q, which
depends on xk, with the symbols Q− 1

,k � (Q− 1),k, which can
be obtained by the formula Q− 1

,k � − Q− 1Q,kQ− 1. As men-
tioned in Section 2, the density function is f � ρV(ρ). In the
frst example V(ρ) � vmax(1 − ρ), where vmax � 1, then we
can write

zρ
zt

� −
zρ
zx

+ 2ρ
zρ
zx

. (29)

Now, considering the spatial discretization and using the
MLS method, we have

zρ(x, t)

zt
� − 􏽘

n

j�1
μj
′(x)􏽢ρj(t)) + 2ρ(x, t) 􏽘

n

j�1
μj
′(x)􏽢ρj(t)). (30)

For xi ∈ Λ (Λ is the global domain of problem), we have

ρi
′(t) � − 􏽘

n

j�1
μj
′ xi( 􏼁􏽢ρj(t)) + 2ρi(t) 􏽘

n

j�1
μj
′ xi( 􏼁􏽢ρj(t)). (31)

Note that the derivative of ρ is relative to time, and the
derivative of ϕ is defned in 20. When we disassemble the
PDE space partition, we get a system of ODEs as
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ρ1′(t)

ρ2′(t)

⋮

ρn
′(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� −

μ1′ x1( 􏼁 μ2′ x1( 􏼁 . . . μn
′ x1( 􏼁

μ1′ x2( 􏼁 μ2′ x2( 􏼁 . . . μn
′ x2( 􏼁

⋮ ⋮ ⋮ ⋮

μ1′ xn( 􏼁 μ2′ xn( 􏼁 . . . μn
′ xn( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏽢ρ1(t)

􏽢ρ2(t)

⋮

􏽢ρn(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 2

ρ1(t)

ρ2(t)

⋮

ρn(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
°

μ1′ x1( 􏼁 μ2′ x1( 􏼁 . . . μn′ x1( 􏼁

μ1′ x2( 􏼁 μ2′ x2( 􏼁 . . . μn′ x2( 􏼁

⋮ ⋮ ⋮ ⋮

μ1′ xn( 􏼁 μ2′ xn( 􏼁 . . . μn′ xn( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏽢ρ1(t)

􏽢ρ2(t)

⋮

􏽢ρn(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (32)

where ∘ is the Hadamard product.
In this step, to approximate time derivatives by method

ETDRK4, we have to divide the fux function into two parts,
linear and nonlinear:

L � −

μ1′ x1( 􏼁 μ2′ x1( 􏼁 . . . μn
′ x1( 􏼁

μ1′ x2( 􏼁 μ2′ x2( 􏼁 . . . μn
′ x2( 􏼁

⋮ ⋮ ⋮ ⋮

μ1′ xn( 􏼁 μ2′ xn( 􏼁 . . . μn
′ xn( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (33)

and

N(ρ, t) � 2

ρ1(t)

ρ2(t)

⋮

ρn(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
°

μ1′ x1( 􏼁 μ2′ x1( 􏼁 . . . μn′ x1( 􏼁

μ1′ x2( 􏼁 μ2′ x2( 􏼁 . . . μn′ x2( 􏼁

⋮ ⋮ ⋮ ⋮

μ1′ xn( 􏼁 μ2′ xn( 􏼁 . . . μn′ xn( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏽢ρ1(t)

􏽢ρ2(t)

⋮

􏽢ρn(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (34)

For time discretization, the method ETD, which is de-
scribed in section, is used. Assuming that we divide the main
domain into n parts with equal distances, it is assumed that
ρ(xi, kt), i � 1, 2, . . . , n is specifed, and our goal is to
calculate ρ(xi, (k + 1)t), i � 1, 2, . . . , n. Multiply the
equation by e− Lt and then integrate the equation into a single
time step of length h, so we get

ρk+1
i � e

Lhρk
i + e

Lh
􏽚

h

0
e

− Lζ2ρi tk + ζ( 􏼁 􏽘

n

j�1
μj
′ xi( 􏼁􏽢ρj tk + ζ( 􏼁)dζ ,

(35)

where ρk
i � ρ(xi, tk) and then we solve it using the formulas

of method ETDRK4 that is expressed in (15), but we have
problems with the ETDRK4 method and that it becomes
unstable for some points. One way to solve this problem is to
use a Taylor expansion point with a cut-of point for small
eigenvalues so that if the matrix is a linear diagonal operator,
the Taylor expansion is used for the diagonal points below
the cut, but one of the serious problems with this method is
that it possible to extend this method to nondiagonal
problems? Tat is why we went the other way. Another way
that can be used is to use the contour integral of the idea of
complex analysis. In fact, we have a function to evaluate that
has a single point and is analytical elsewhere. Near this
singular point, the function has a numerical error. Te
suggested solution is to use a contour integral on a complex
plane that includes z and is separated from z � 0 by

f(z) � (2πi)
(− 1)

􏽚
Γ
f(s)(s − z)

(− 1)ds. (36)

Now instead of z-scalar we use the matrix L and apply
the same method again, only the expression 1/(s − z) be-
comes the matrix (sI − L)− 1 as

f(L) � (2πi)
(− 1)

􏽚
Γ
f(s)(sI − L)

− 1ds, (37)

where the contour must be such that it contains the ei-
genvalues of L. Te result of contour integrals of functions in
the complex plane is obtained using the trapezoidal rule,
which converges exponentially.

Te contour area can be considered as a circle, and we
usually consider 32 points with equal distance in this circle.
Tere are many diferent choices for the contour region that
work well, but the important thing is that the eigenvalues are
really restricted by Γ. When L is real, we use only the upper
half of the circle for the contour area whose center is the real
axis, then we get the real part of the result. Te contour
integral can be approximated by the mean f(s) on Γ so that
we obtain the mean at points of equal distance along Γ, or
again consider only the upper half of Γ, and then consider
only that real part.

6. Numerical Example

We have described themethod implemented in this article in
detail in the previous sections. In this section, we will solve
two examples of trafc equations and compare their nu-
merical answer form with other methods. As explained,
because these equations are in the category of stif equations,
it is very important to display the numerical answer obtained
with the least vibrations at the moment of shock and after.

6.1. Example 1. Consider the following trafc fow equation:

zρ(x, t)

zt
+

zF(ρ(x, t))

zx
� 0. (38)

Te density function in this model is expressed as
follows:

F(ρ(x, t)) � ρV(ρ), (39)

where V is

V(ρ) � vmax(1 − ρ), 0≤ ρ≤ 1. (40)

Here, we assume that vmax � 1, and the initial conditions
are as follows:

ρ(x, 0) � 0.25 + 0.7e
− βx2

, (41)

where β � 0.01.
Te density bulge (or density shock) changes over time.

After a while, the shock wave simulation shows that the
density of the trafc fow increases and the speed decreases
very quickly (drivers who were speeding in light trafc
suddenly had to brake). As vehicles exit the shock zone, they
gradually accelerate, resulting in a gradual decrease in
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density. Figure 1(a) shows the numerical answer to this
problem in the method presented in this paper and rejects
the shape of the shock part well.Te fgure is drawn to t � 30
.

Because these problems do not have an exact answer and
they are very difcult to solve, we tried to solve this problem
with diferent methods, and the best answer is obtained from
the method mentioned in the article. It is important that the
movement of the shock point in the fgures after the oc-
currence of trafc is completely clear, but in some methods,
since the occurrence of the shock, the error is very high and
does not show the movement of the shock. However, in the
method mentioned in the article, as shown in Figure 3(a), it
shows the shock point well.

Compared to Figure 3(b), which was obtained by
Mathematica Software and did not pass from time 8 due to
shock, but in our calculation method, it was obtained up to
time 30 and the fgure is acceptable. In Figure 3(c), an at-
tempt has been made to solve the equation by the method of
reproduction kernel, where unfortunately the error has
increased so much after the shock time, which is quite clear
in the fgure. Also, in Figure 4, we compare the moment
t � 25, which is the time after the shock, with the fgure

shown in Ref. [52], which shows the routes of individual
vehicles and the density observed by each driver. A com-
parison of the obtained solution using the present method
with MLS and without MLS is shown in Figure 5. Table 1
shows a comparison of the obtained solution using the
article method with other numerical methods.

6.2. Example 2. In the second example, we consider another
model of the trafc problem in which the density function is
the same as in the previous example, but the initial data are
piecewise function:

ρ(x, 0) �
1, 4≤ x≤ 6,

0.5, otherwise.
􏼨 (42)

Tis can be interpreted as cars approaching a congested
trafc or encountering a line of cars behind a red light waiting
to turn green. Tis example describes the trafc situation at
the trafc light installation site. Here, the trafc light is in
position x � 6, and at moment t � 0, it has changed from red
to green. Figure 6 shows the numerical solutions up to time
t � 30 computed in the new proposed scheme.
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Figure 3: A comparison of the solution of equation of Example 1 using the present method: (a) with solution by Mathematica Software and
(b) solution by the method of reproduction kernel.
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Figure 4: A comparison of the solution of equation of example 1 using the present method with the solution in Ref. [52].
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Figure 5: A comparison of the solution of equation of example 1 using the present method with the solution without MLS.

Table 1: A comparison of the solution of equation of example 1 using the present method with other numerical methods.

t x Without MLS Mathematica New method

5

− 20 0.2624 0.2640 0.2631
− 10 0.6136 0.5600 0.5613
0 0.8872 0.9089 0.9184
10 0.4653 0.4695 0.4726
20 0.2618 0.2624 0.2626

10

− 20 0.2628 . . .. . . 0.2633
− 10 0.7288 . . .. . . 0.6537
0 0.8877 . . .. . . 0.8535
10 0.4334 . . .. . . 0.4476
20 0.2616 . . .. . . 0.2625
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7. Conclusion

Trafc issues are very important, and on the other hand, they
are very difcult to solve due to problems such as having a
shock, and it is very important to choose a good numerical
method for trafc fow models.

In the present article, a new method has been proposed
to identify shock points well and to fnd a better answer
without vibrations in these points. In the method described
in the article, frst we solved such problems from meshless
methods and then with the ETDRK4 method. We chose the
MLS method from among the meshless methods. In this
method, we used quadratic basic functions. Ten, we used
the ETDRK4 method to approximate the time derivative.
Due to the high fexibility and accuracy of MLS, it is con-
sidered to solve these trafc equations, which have shocks.
Because they discretize the problem domain without using a
predetermined grid, it seems to work well for equations that
have shocks at points in the domain. On the other hand,
contour integral and other suitable approaches are used for
controlling the instability and challenges of ETDRK4. Now,
by combining these methods, we get good results for solving
these equations. In MLS, parameter c can be changed, and
with it, the shape of the weight function can be controlled,

and the type of weight function can be diferent. In ETDRK4,
as mentioned, we used contour integral to control instability,
but contour integrals are not the only solutions ofered for
this problem, but the contour integral method attracts us
due to its generality for dealing with arbitrary functions.
Tere is considerable fexibility with this procedure. Finally,
two examples of trafc equations presented in this way were
solved. Te results showed that this method can successfully
solve trafc problems.
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