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In this paper, we introduce a new variant of large-scale vehicle routing problem that arises in the goods distribution of city e-
commerce logistics, the multi-depot vehicle routing problem with order split and allocation (MD-CVRP-OSA), which
incorporates the issue of split and allocation of online orders into traditional VRP. A mathematical formulation is constructed
for the MD-CVRP-OSA, and an efficient metaheuristics algorithm based on a variable neighborhood search (VNS) solution
framework is designed to solve it. The proposed method is tested on a large family of instances, including real-world data
collected from JD.com, and the effectiveness of the VNS algorithm and also the algorithm components are analyzed.

1. Introduction

Global retail e-commerce market has been witnessing a
rapid expansion on account of the shifting habits of internet
users towards new shopping channels. According to Statista
Digital Market Outlook, a market research firm, retail e-
commerce sales worldwide in 2021 amounted to 3.78 trillion
US dollars, a 16.7% increase over the previous year, and e-
retail revenues are projected to grow to 5.73 trillion US
dollars in 2025 (https://www.statista.com/outlook/dmo/
ecommerce/worldwide). E-retail made up 17.6% of total
retail sales worldwide in 2021, up from 15.9% a year prior.
This growth in share is largely driven by Asia-Pacific,
where e-commerce contributes 14.6% of overall retail
spending. Statistics from China E-Commerce Research
Center show that the transactions of retail e-commerce
market in China reached $2.1 trillion in 2021, an increase
of 17.2% year on year, accounting for 25.3% of the total
retail sales (https://www.globaldata.com/chinese-e-commerce-
market-reach-us3-3-trillion-2025-says-globaldata).

In order to succeed in the highly competitive market, e-
retail platforms have been striving to optimize order fulfil-
ment operations and ensure a speedy, flexible, secure, and

low-cost delivery service for customers [1]. To meet the
increasing customer expectations towards shorter delivery
time, many leading e-retailers started in recent years to offer
same-day delivery (SDD) service in metropolitan areas that
consolidates, dispatches, and delivers orders to customers on
the same day the orders are placed [2]. For example, JD.com
started its speedy SDD service since 2010 that delivers the
orders received prior to 11AM on the same day and the ones
received before 11PM the next day (before 3PM) (https://ir.jd
.com/news-releases/news-release-details/jdcom-launched-its-
speedy-211-program-which-provides-same-day). Amazon’s
SDD service has now covered major cities in over 20 countries
as of May 2022. Moreover, the recently launched Prime Now
Program allows customers to receive their orders on selected
items within two hours for free and in one hour for $7.99
(https://primenow.amazon.com/).

Management of the SDD system is costly and logistically
complicated for e-retailers as it aggravates the inherent
issues in urban delivery operations, such as tight delivery
deadlines, small-sized orders, and low rate of order consoli-
dations [3–5]. The logistics system of SDD service generally
consists of a two-echelon network where the first level are
distribution centers/warehouses for massive product storage

Hindawi
Journal of Advanced Transportation
Volume 2022, Article ID 8253175, 15 pages
https://doi.org/10.1155/2022/8253175

https://orcid.org/0000-0002-5685-4940
https://www.statista.com/outlook/dmo/ecommerce/worldwide
https://www.statista.com/outlook/dmo/ecommerce/worldwide
https://www.globaldata.com/chinese-e-commerce-market-reach-us3-3-trillion-2025-says-globaldata
https://www.globaldata.com/chinese-e-commerce-market-reach-us3-3-trillion-2025-says-globaldata
https://ir.jd.com/news-releases/news-release-details/jdcom-launched-its-speedy-211-program-which-provides-same-day
https://ir.jd.com/news-releases/news-release-details/jdcom-launched-its-speedy-211-program-which-provides-same-day
https://ir.jd.com/news-releases/news-release-details/jdcom-launched-its-speedy-211-program-which-provides-same-day
https://primenow.amazon.com/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8253175


and the second level are delivery stations or pickup stations
for end customer distribution. For a guarantee of fast deliv-
ery and high service level, it is common for an SDD service
provider to operate multiple warehouses closely located to
metropolitan area. For example, JD.com builds four ware-
houses in urban district of Guangzhou, the third largest city
of China. Amazon recently opened a series of so-called mini-
fulfillment centers closer to four big U.S. cities as an action
to guarantee packages arrive by several set times daily
(https://www.reuters.com/article/us-amazon-com-delivery/
amazon-adds-warehouse-network-closer-to-cities-to-speed-
up-same-day-delivery-idUSKBN20Q0T3 ). Each warehouse
is equipped with a fleet of vehicles. During the course of
operating time, vehicles are loaded with parcels and dis-
patched from warehouses to visit customers’ locations [4].
In the operation of SDD, vehicles are usually not dispatched
simultaneously in the beginning and may be reused multiple
times during a service day [2, 6].

The strategy of maintaining multiple warehouses poses
challenges on the operational efficiency of SDD logistics sys-
tem. Due to the limit of storage space, a single warehouse
located in urban area usually cannot cover all stock keeping
units (SKUs), but only keeps a certain range of them instead.
For example, the four warehouses of JD.com in Guangzhou
mainly store 3C products, shoes and clothing, and health
care products; snacks, grain and oil, and books; home appli-
ances and 3C products; and clothing and groceries, respec-
tively. Given this, there is high chance that no single
warehouse contains all requested SKUs for a customer order.
This causes a serious issue that SKUs of an order may need
to be split up and separately satisfied by more than one
warehouses. Order split issue frequently arises during the
order fulfillment process of SDD service under multi-
warehouse mode. Even if a warehouse stores all SKUs in
an order, inventory of certain SKU of that order may go
below the requested amount. Another case is that as a way
of promoting sales, tie-in sale strategy is often applied by
the marketing department that offers discounts or deals to
customers if they buy a specific combination of different
SKUs. However, when the sales promotion is planned and
executed, the marketing department may not be aware of
the availability of the combined SKUs in the same ware-
house. Under such circumstances, order split is inevitable.
Figure 1 illustrates an order split example where SKUs of
order O1 are split and allocated to warehouses W1 and W3
because none of the three warehouses can provide all
requested items of O1 at the same time.

In this work, we address a new goods distribution prob-
lem of SDD logistic system with order split issue under
multi-warehouse mode. Each warehouse keeps a limited
range of SKUs and may not be able to satisfy all order
requests. Each customer order contains a number of differ-
ent SKUs and requests certain amount for each SKU. Due
to aforementioned reasons, orders often need to be split up
and are allocated to more than one warehouses. In the actual
SDD logistics operation, items of the same SKU in an order
are usually packaged together as a whole for the convenience
of handling, which implies that a single order can only be
split on SKU level instead of being split up arbitrarily. That

is, items that are of different SKUs in an order is allowed
to be separated, but items of the same SKU cannot be further
parted. The logistics activities involve two core processes: (1)
upon receiving and accumulating online orders, splitting
each of them and allocating to different warehouses if neces-
sary and (2) designing a route for each vehicle that is
assigned delivery task. The goal is to minimize the total rout-
ing cost of all vehicles. It is assumed that all the needed
information of the SDD system is known to us and the
VRP problem considered in our work is static.

The problem studied in this paper extends the traditional
vehicle routing problem (VRP) [7] by incorporating order
split and allocation issue under multi-warehouse mode,
which makes it essentially a multi-depot capacitated vehicle
routing problem with order split and allocation (MD-
CVRP-OSA). The review papers (Braekers et al. [8] and
Tan & Yeh [9]) survey the most recent works on variants
of vehicle routing problem and proposed exact and heuristic
methods for the VRP in the literature. Related problem to
the MD-CVRP-OSA are the location-routing problem
(LRP) and the multi-depot VRP (MDVRP). Reviews about
variants and heuristic and exact algorithms for these prob-
lems can be found in Drexl and Schneider [10], Prodhon
and Prins [11], Montoya-Torres et al. [12], and Chen and
Yang [13]. Besides the traditional solution approaches, there
is also a recent trend to apply machine learning methods,
such as deep (reinforcement) learning as a new type of heu-
ristic to solve VRP. Interested readers may refer to Li et al.
[14], Ma et al. [15], and Li et al. [16].

A closely related work to the MD-CVRP-OSA is the
multi-depot split delivery vehicle routing problem
(MDSDVRP) introduced by Gulczynski et al. [17]. Gulc-
zynski et al. [17] consider that the customers are not neces-
sarily assigned to depots and allow serving customers from
multiple depots. Thus, how the split of products and which
depots to be assigned need to be decided. The authors devel-
oped an integer programming based heuristic for the
MDSDVRP. Ray et al. [18] investigated a same problem as
Gulczynski et al. [17]. They proposed an integer linear pro-
gramming model and used an heuristic search method to
solve the problem. Izar and Suwilo [19] studied the
MDSDVRP with time windows (MDVRPSDTW), whereas
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SKU4 SKU5

SKU2 SKU3

O1 O2

SKU5

SKU5- 2 units

SKU1 SKU3
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SKU4

SKU2- 2 units
SKU5- 4 units

Figure 1: An illustrative example of orders split among different
warehouses.
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Wang et al. [20] proposed the min-max split delivery multi-
depot vehicle routing problem with minimum service time
requirement (min-max SDMDVRP-MSTR), which allows
the split of service time for each customer. However, we
point out that this work differs from the aforementioned
ones because SKUs cannot be further split and not all SKUs
are available at all depots. Therefore, our problem cannot be
considered the SDMDVRP.

To the best of our knowledge, our work is the first to
introduce a new and practical logistics problem that com-
bines the joint optimization of vehicle routing and order
split and allocation, which is now a big challenge in the
logistics system of e-retailers. To solve the problem, we for-
mulate it as an integer programming model and propose an
efficient variable neighborhood search (VNS) [21] algo-
rithm. Extensive numerical experiments are conducted on
instances derived from classical capacitated VRP instances
and on real-world instances.

The rest of the paper is organized as follows. In Section
2, we describe the MD-CVRP-OSA and introduce a mathe-
matical formulation. In Section 3, we apply a VNS technique
to solve the MD-CVRP-OSA. Computational results are pre-
sented in Section 4, and Section 5 concludes the paper and
indicates future research directions.

2. Problem Description and
Mathematical Formulation

The MD-CVRP-OSA addressed in this paper can be
described as follows. We are given a complete directed graph
G = ðV , AÞ, where the node set V is further partitioned as
V = Vw ∪ Vs. Set Vw = f1, 2, 3,⋯, Kg represents K ware-
houses, and Vs = fK + 1, K + 2, K + 3,⋯, K + Ig represents I
delivery stations. The arc set E is defined as A = fðk, jÞ, ðj, kÞ:
k ∈ Vw, j ∈ Vsg ∪ fði, jÞ, ðj, iÞ: i, j ∈ Vs, i ≠ jg. We assume that
each warehouse k ∈ Vw has one vehicle to deliver the goods,
and all the K vehicles are homogeneous with the same vehicle
capacityQ. Each arc ði, jÞ ∈ A is associated with a non-negative
cost cij which represents the routing cost between node i and j.
Each delivery station i ∈ Vs serves a set Mi of customers.
Figure 2 illustrates an example of the MD-CVRP-OSA.

In the MD-CVRP-OSA, each customer’s order is sent to
the associated delivery station first and then delivered to its
location. The distribution of goods from the delivery station
to the individual customers can be regarded as a classical
VRP, so the corresponding planning problem is not explic-
itly considered in the MD-CVRP-OSA.

Let N be the set of all SKUs provided by the e-retailer
and let qn be the weight of n-th SKU. Further, we denote
the amount of n-th SKU requested by the m-th customer
of station i as simn. We assume that a customer’s order is
allowed to be split and allocated to multiple warehouses,
each of which may only store a limited number of SKUs,
but the amount of a single SKU cannot be further split up.
This means that if a warehouse accepts a request on a spe-
cific SKU, it must fully satisfy it. Define pkn as a binary
parameter that takes 1 if the n-th SKU is stored in warehouse
k, and 0 otherwise.

A vehicle route is a simple cycle R = fWk, Si, Sj,⋯,Wkg
in graph G passing through a warehouse Wk ∈ Vw and
sequentially visiting stations fSi, Sj,⋯g ⊆Vs. The cost of a
route is equal to the sum of the routing costs of the arcs
forming the route. The MD-CVRP-OSA consists of deter-
mining a set of at most K vehicle routes of minimum cost
such that:

(i) Each warehouse operates at most one vehicle route

(ii) A customer’s demand for an SKU must be fully ser-
viced by the same warehouse but customer’s
requests for different SKUs can be satisfied by dif-
ferent warehouses

(iii) The total demand of each vehicle route does not
exceed the vehicle capacity

2.1. Mathematical Formulation. In this section, we describe a
mathematical formulation for the MD-CVRP-OSA. The
mathematical model defines the following decisions
variables:

(i) xkij: binary variable equals to 1 if arc ði,Þ is traversed
by warehouse k’s vehicle, and 0 otherwise

(ii) zkimn: binary variable equals to 1 if the n-th SKU
requested by the m-th customer of station i is allo-
cated to warehouse k, and 0 otherwise

The MD-CVRP-OSA can be formulated as the following
integer programming problem:

min 〠
k∈Vw

〠
i,jð Þ∈A

cijx
k
ij,

s:t:
ð1Þ

〠
k∈Vw

pknz
k
imn = 1,∀i ∈ Vs,m ∈Mi, n ∈N , ð2Þ

S3

W1

W3

W2

S7

S5

S6

S1

S4

S2

Route 1

Route 3

Route 2

Figure 2: An example of MD-CVRP-OSA vehicle routes.
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〠
m∈Mi

〠
n∈N

zkimn ≤M 〠
j∈V ,j≠i

xkji,∀k ∈ Vw, i ∈ Vs, ð3Þ

〠
j∈V ,j≠i

xkji ≤ 〠
m∈Mi

〠
n∈N

zkimn,∀k ∈ Vw, i ∈ Vs, ð4Þ

〠
i∈V ,i≠j

xkij = 〠
i∈V ,i≠j

xkji,∀k ∈ Vw, j ∈ V , ð5Þ

〠
i∈V ,i≠j

xkij ≤ 1,∀k ∈ Vw, j ∈ Vs, ð6Þ

〠
m∈Mi

〠
n∈N

zkimn ≤M〠
j∈Vs

xkkj,∀k ∈ Vw, i ∈ Vs, ð7Þ

xkij = 0,∀k ∈ Vw, i ∈ Vw, j ∈ Vw, ð8Þ

〠
n∈N

qn〠
i∈Vs

〠
m∈Mi

simnz
k
imn ≤Q,∀k ∈ Vw, ð9Þ

〠
i∈S

〠
j∈ V\S\Vwð Þ∪ kf g

xkij ≥ zkimn,∀k ∈ Vw, i ∈ Vs,m ∈Mi, n ∈N ,

S ⊆V \ Vw, i ∈ S, S∅,
ð10Þ

xkij, zkimn ∈ 0, 1f g, k ∈ Vw, i ∈ V , j ∈ V ,m ∈Mi, n ∈N:

ð11Þ
Objective (1) is to minimize the total routing cost of all

vehicles. Constraint (2) indicates that the demand of each
SKU of a customer order must be satisfied by one and only
one warehouse. Constraints (3) and (4) state that the
demand of the m-th customer of delivery station i for the
n-th SKU can be fulfilled by warehouse k only when the
vehicle of warehouse k visits station i, where M is a large
constant. Constraint (5) guarantees that any vehicle that
enters a node must also depart from that node. Constraint
(6) ensures that each vehicle visits any given delivery station
at most once. Constraint (7) states that if the vehicle of a
warehouse is assigned delivery task, it should start its tour
from the warehouse. Constraint (8) ensures that no vehicle
is allowed to travel between two warehouses. Constraint
(9) limits the capacity of any vehicle. Constraint (10)
imposes the connectivity of the route performed by vehicle
k by eliminating subtours involving stations only. Constraint
(11) defines the domains of decision variables.

The MD-CVRP-OSA is NP -hard. Indeed, its special
case where K = 1, jNj = 1, and jMij = 1 for all i ∈ Vs is the
classical CVRP, a well-known NP -hard problem.

3. A VNS Algorithm for the MD-CVRP-OSA

To solve the MD-CVRP-OSA efficiently, a VNS algorithm is
proposed in this section. The VNS algorithm introduced in
Mladenoví c and Hansen [21] and Hansen et al. [22] makes
use of a series of random and improving local searches based
on systematically changed neighborhoods and a shaking
process that escapes from local optimum by choosing a
new starting point for running an improving search. The
reason that VNS is chosen to solve the MD-CVRP-OSA is

because VNS and its variants are simple and effective. They
have been widely applied in solving compelx combinatorial
optimization problems, such VRP [23–25], and other related
problems [26]. The idea of VNS is generally easy to imple-
ment with a limited number of parameters. Moreover, sev-
eral groups of neighborhood structures are designed with
the aim of facilitating the local searches, and the VNS
approach has been proven to be very effective in combining
different neighborhood structures.

The VNS algorithm proposed for the MD-CVRP-OSA is
given in Algorithm 1. The algorithm starts with an initial
solution and employs a set of local search operators OPT .
Two nested loops are used to improve the solution, where
the inner loop uses the local search operators to generate
random neighbouring solutions and the outer loop generates
different starting points for the inner loop by a diversifica-
tion mechanism. In the algorithm, variable S∗ is used to
store the best-found solution, and variable nonImp records
the number of outer loops during which S∗ has not been
improved.

At each iteration of the inner loop (lines 7-11), given the
current solution S, a random solution S′ of S is generated
with an operator OPTk (k is set to equal to 1 initially). If
the new solution S′ is better than the S, the algorithm
accepts S′ and replaces S with S′. Then, the loop continues
after having set k equal to 1, i.e., a new random solution is
generated from S according to operator OPT1 in the next
iteration. Otherwise, S remains unchanged, and a new ran-
dom solution is generated according to neighborhood N
Sk+1 in the next iteration. This loop repeats until all local
search operators are used and no new better solution is
found.

In the outer loop, a diversification procedure is intro-
duced to produce a new initial solution based on the best-
found solution (line 16). The inner loop resumes the search
with the new initial solution. This process is repeated until
the best-found solution is not improved during maxNonI
mp iterations.

The initial solution generation, local search operator,
and diversification procedure are described in details as
follows.

3.1. Generating an Initial Solution. In this work, a three-
stage method is employed to generate initial solutions for
the MD-CVRP-OSA. In the first stage, for each delivery sta-
tion i ∈ Vs, we rank the routing cost between the location of
station i and each warehouse k ∈ Vw, i.e., cik, in an increasing
order. Hence, each delivery station i is associated with a
sorted list of warehouses. In the second stage, we allocate
warehouses for each delivery station. The warehouses in
the sorted list of station i are sequentially selected to satisfy
the SKUs requested by the customers associated with station
i, the demands of which are fulfilled customer by customer,
and SKU by SKU for each customer. If there are still cus-
tomers with unsatisfied demand because the current ware-
house does not contain the requested SKUs or the vehicle
of the warehouse is fully loaded, the next warehouse in the
list will be chosen. Such process continues until all demands
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of the customers in station i are fully satisfied. The same pro-
cess is repeated to assign warehouses to all delivery stations.

As a result of the first two stages, a certain number of
warehouses are assigned delivery jobs to serve a given set
of stations. In the last stage, we apply the well-known cost
saving algorithm [27, 28] to separately determine the

sequence of service for each warehouse. Define ~V
k
s as the

set of stations that are to be visited by warehouse k’s vehicle.

For each station i ∈ ~V
k
s , a simple route ðk, i, kÞ is constructed

in the first step. In the second step, for each pair of routes
ðk,⋯, i, kÞ and ðk, j,⋯, kÞ, we calculate the cost saving ci,k
+ ck,j − ci,j. The pair of routes that have the largest cost sav-
ing are merged into a new route ðk,⋯, i, j,⋯, kÞ in the third
step. The second and third steps are repeated until all sta-
tions are included in one single route, and such cost saving
algorithm is applied for each warehouse with delivery jobs.

3.2. Description of the Local Search Operators. The effective-
ness of a VNS algorithm strongly relies on the structure of
the local search operators. In this paper, we designed seven
operators to generate random neighboring solutions from
the current solution. In the following, we refer to a route
Rk that is associated with warehouse k, Rk = frk1, rk2,⋯,rkRg,
where rk1 = rkR ∈ Vw represents a warehouse and rki ð1 ≤ i ≤
R − 1Þ ∈ Vs represents the stations visited by the vehicle
associated with the route. Besides, for each station rki ð1 ≤
i ≤ R − 1Þ, there is a corresponding SKU number set fsk
uking, where skukinð1 ≤ n ≤NÞ is the number of the n-th
SKU provided by warehouse rk1 for station rki . According to
our assumption, skukin =∑m∈Mi

xmnsimn (xmn is an 0-1 variable

that takes 1 if the n-th SKU of the m-th order in station rki is
provided by rk1 and 0 otherwise), which is the combination of
the number of n-th SKU requested by the customers in sta-
tion rki . We define the set of SKUs whose value skukin is larger
than one as the SKUs provided by rk1 for station rki .

The seven operators are defined as follows:

(1) Intra-swap: The operator swaps the positions of two
selected stations within the same route

(2) Intra-move: The operator shifts a subtour from its
position to a different position within the same route

(3) Inter-swap: The operator swaps the positions of two
stations from different routes, as depicted in Figure 3

(4) Inter-shift: The operator shifts a station from its
position to a different route (see Figure 4)

(5) Order-split: The operator moves the SKUs provided
by one route for a station to a different route visiting
the same station. Note that this operator is only used
to split the SKUs and the travel cost of these route
remains unchanged (if a station is removed from
one route, all the SKUs are also moved). In
Figure 5, the SKU3 provided by route a is moved
to route b

(6) Station-remove: The operator removes a station
from one route and shift its provided SKUs for this
station to another route that visits the same station.
In Figure 6, the station rb4 is original served by routes
a and b (a provides SKU3 and SKU5, while b pro-
vides SKU1). After the application of the station-
remove operation, the station rb4 is only served by
route b. The difference between station-remove and
order-split is that all the SKUs provided by one route
for this station are moved to another route

(7) Super-move: The operator tries to move the stations
visited by a route to another route. Firstly, it selects
two routes a and b. For each station rbi , it tries to
move rbi from b to a step by step. If rbi is already in
a, it just increases the SKUs number of station rbi in

1 Construct an initial solution S
2 Define a set of local search operators OPTkðk = 1,⋯,OÞ
3 S∗ = S, nonImp = 0
4 while nonImp ≤maxNonImp
5 k = 1
6 while k ≤ jOj
7 Generate a random neighboring solution S′ of S using OPTk

8 if S′ is better than S
9 S = S′, k = 1
10 else
11 k = k + 1
12 if S is better than S∗

13 S∗ = S, nonImp = 0
14 else
15 S = S∗, nonImp = nonImp + 1
16 S = DIVERSIFYðSÞ
17 return S∗

Algorithm 1: VNS for the MD-CVRP-OSA.
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Figure 3: Inter-swap operator.
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a. Otherwise, it inserts rbi into a randomly selected
position in a. In Figure 7, the stations rb2, r

b
4 and rb5

are originally served by route b. After the super-
move operation, these stations are moved from the
route b to that of warehouse a

Note that in the first four operators, only the position of
the station is changed, while the corresponding SKUs num-
ber set remains unchanged. The resulting route is feasible
only if the total demand is not larger than the vehicle capac-
ity Q and all the SKUs provided by this route for each station
must be available in the warehouse.

3.3. Diversification Mechanism. Diversification helps to pre-
vent the search from trapping in local optima, and the mech-
anism adopted in our algorithm works as follows. Firstly, it
selects two routes a and b. Then, a subsequence rs

b is
selected from route b, and an insert position k is selected
from route a. For each station rbi ∈ r

b
s′, it tries to move rbi

from route b to route a step by step. If rbi is already in a, it
just increases the SKU number of station rbi in a. Otherwise,
it inserts rbi behind the last inserted items (the first item is

inserted into position k). In Figure 8, the stations rb4 and rb5
are moved from route b to that of warehouse a.

4. Numerical Experiments

This section reports on the computational results of the VNS
algorithm described in Section 3. The algorithm was imple-
mented in C++ and tested on a computer equipped with
an Intel(R) Core(TM) CPU i7-7920HQ @3.10Ghz with
32GB RAM. The general purpose mixed-integer program-
ming solver CPLEX was used to solve the integer model
described in Section 2.1, where the subtour elimination con-
straints (10) have been handled in a cutting-plane fashion
using the CPLEX callable library. A time limit of 7200 sec-
onds was imposed on the CPLEX solver. The number of iter-
ations iterCount of the VNS algorithm was set to 300000,
and a time limit of 7200 seconds was also imposed to its exe-
cution. Besides, to show the performance of our VNS algo-
rithm, we also compare it with another well-known meta-
heuristic, tabu search. Similarly, the number of iterations
of tabu search is 300000, and a time limit of 7200 second
is imposed. Each of the local search operators in the pro-
posed VNS algorithm is randomly selected with the same
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Figure 6: Station-remove operator.
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possibility during the execution. The length of tabu list is set
to 50, and the number of candidate solutions during the
search is 300.

In our experiments, we considered both random and
real-life instances.

4.1. Random Instances. We randomly generated eight classes
or sets of instances by varying the number of warehouses
and of stations. In the first 5 sets, the number of warehouses
is set equal to 2, 4, 6, 8, and 10, respectively, and the corre-
sponding number of stations is set equal to 5, 10, 15, 20,
and 25, respectively. The number of warehouses in the last
three sets is set equal to 12, and the number of stations is
set equal to 30, 60 and 120, respectively. For each set, 10
instances were generated, thus providing a total of 80
instances.

In each instance, the number of SKUs is set equal to 20,
and the weight of each SKU is set to an integer random
number between 1 and 3. The coordinates x and y of the
warehouses and the stations are randomly sampled in the
range of ½1, 1000�. The availability of the n-th SKUs at ware-
house k (i.e., value pkn) is also randomly defined. The number
of orders for each station and the number of SKUs for each
order are randomly generated in the ranges ½1, 10� and ½1, 3�,
respectively. For each order, the SKUs are randomly selected
from the 20 types until the requested number is reached. The
number of each selected SKU is randomly selected from the
range ½1, 3�. Let the total weight of the SKUs required by all
customers is Qsum; then, the vehicle capacity Q is set equal to
q ×Qsum/K , where q is a constant factor which is set equal to
1.25.

4.1.1. Results on Random Instances. Tables 1 and 2 give the
results obtained for small-sized and large-sized instances,
respectively. The tables show the percentage of improvement
of the solution cost computed by the VNS and tabu search
with respect to the solution cost provided by the CPLEX
solver (“IVNS%

” and “ITS%
”), computed as 100 × ð1 −

costVNS/costcplexÞ and 100 × ð1 − costTS/costcplexÞ, where
costVNS,costTS, and costcplex are the solution costs found by
the VNS algorithm, tabu search algorithm and by CPLEX,

respectively. In addition, for each method, the tables show
the computing time in seconds (“tðsÞ”).

On the small-sized instances, Table 1 shows that both
CPLEX and VNS computed the optimal solutions for all
the instances of set 1. Tabu search can find eight optimal
solutions out of ten. On the remaining sets, the table shows
that the VNS algorithm and tabu search algorithm greatly
improved the solutions provided by CPLEX. The improve-
ment increases as the size of instances becomes larger.
Meanwhile, our proposed VNS algorithm outperformed
tabu search algorithm on almost all instances. Further, the
computing time spent by the VNS and tabu search is on
average limited, being equal to less than 800 seconds.

On the large-sized instances, the VNS algorithm and
tabu search algorithm found better solutions than CPLEX
for all the instances. None of the instances was solved to
optimality by CPLEX within the imposed time limit, and
the VNS and tabu search were capable of greatly improving
the solutions provided by CPLEX, especially for the
instances of sets 7 and 8. Similarly, as the case of small-
sized instances, our proposed VNS algorithm outperformed
tabu search algorithm on almost all instances. On the larger
instances, the VNS and tabu search algorithm reached the
time limit imposed to its execution.

In summary, the VNS approach improves the results sig-
nificantly compared to CPLEX, especially for the large-sized
instances.

To investigate the convergence behavior of the VNS
algorithm on difficult instances of sets 7 and 8, we ran the
VNS algorithm without any time limit, and we recorded
the cost of the best solution found after every 10000 itera-
tions. The results obtained for each instances of the two sets
are given in Figures 9(a) and 9(b), respectively, where the x
axis reports the number of iterations (the unit is 104) and the
y axis reports the percentage of the improvement of the solu-
tion cost with respect to the previous best solution. The
results show that VNS converges quite quickly for instances
of set 7, whereas a slower converge rate can be observed for
instances of set 8.

4.2. Real-World Instances. This work was motivated by a
real-world problem. In this section, a case study from
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Table 1: Results on randomly generated small-sized instances.

Set Id
CPLEX TS VNS

costcplex t (s) costTS ITS (%) t (s) costVNS IVNS (%) t (s)

1 K = 2 ; I = 5ð Þ

1 4401.6 0 4401.6 0.0 53 4401.6 0.0 49

2 1955.5 0 1955.5 0.0 48 1955.5 0.0 43

3 2674.5 0 2674.5 0.0 46 2674.5 0.0 50

4 2292.5 0 2292.5 0.0 58 2292.5 0.0 49

5 3317.7 1 3321.8 -0.1 47 3317.7 0.0 51

6 2494.5 0 2494.5 0.0 55 2494.5 0.0 48

7 2061.9 0 2061.9 0.0 51 2061.9 0.0 46

8 3595.5 23 3595.5 0.0 62 3595.5 0.0 57

9 2380.5 0 2380.5 0.0 58 2380.5 0.0 47

10 3313.4 38 3316.2 -0.1 54 3313.4 0.0 45

Avg 2848.8 6 2849.5 -0.02 47 2848.8 0.0 49

2 K = 4 ; I = 10ð Þ

1 6838.5 7202 6833.3 0.1 158 6831.4 0.1 167

2 7697.2 7201 7428.5 3.5 135 7044.2 8.5 127

3 6383.4 7200 6383.4 0.0 198 6383.4 0.0 225

4 6400.6 7202 6387.0 0.2 201 6387.0 0.2 212

5 5419.1 7201 5302.4 2.2 151 5216.3 3.7 106

6 7011.8 7201 6725.1 4.1 153 6613.3 5.7 142

7 5198.2 7201 5198.2 0.0 205 5198.2 0.0 231

8 6734.6 7201 6684.2 0.7 147 6684.2 0.7 135

9 5141.0 7200 5141.0 0.0 156 5141.0 0.0 124

10 5664.9 7201 5664.9 0.0 169 5664.9 0.0 172

Avg 6248.9 7201 6174.8 1.1 167 6116.4 1.7 164

3 K = 6 ; I = 15ð Þ

1 7784.3 7202 7251.8 6.8 293 7050.0 9.4 271

2 8703.2 7202 8488.5 2.5 295 8461.0 2.8 264

3 6100.3 7209 5896.6 3.3 315 5865.7 3.8 227

4 6710.0 7206 6712.1 0.0 284 6705.2 0.1 397

5 7059.7 7202 6995.0 0.9 497 6995.0 0.9 525

6 8312.8 7212 7205.3 13.3 258 7193.0 13.5 240

7 6279.5 7201 5915.3 5.8 218 5859.1 6.7 327

8 7079.5 7201 6431.8 9.1 263 6488.6 8.3 257

9 6977.8 7207 6912.4 0.9 264 6905.1 1.0 247

10 8633.3 7209 8125.6 5.9 428 8091.4 6.3 440

Avg 7364.0 7206 6993.4 4.9 328 6961.4 5.3 336

4 K = 8 ; I = 20ð Þ

1 8192.4 7211 8015.3 2.2 620 7941.0 3.1 568

2 9335.7 7215 7938.6 15.0 512 7526.4 19.4 490

3 10744.0 7215 8125.3 24.4 488 7876.5 26.7 453

4 9506.2 7201 9410.3 1.0 468 9321.0 1.9 403

5 8530.4 7218 8284.6 2.9 472 8218.8 3.7 510

6 8276.8 7202 7648.9 7.6 415 7599.7 8.2 476

7 7201.3 7212 7015.3 2.6 561 6904.4 4.1 575

8 8201.4 7218 7529.8 8.2 368 7363.2 10.2 397

9 10527.7 7216 8564.2 18.7 810 8298.8 21.2 774

10 8235.2 7209 7771.3 5.6 623 7574.2 8.0 559

Avg 8875.1 7212 8030.4 8.8 554 7862.4 10.6 554
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Table 2: Results on randomly generated large-sized instances.

Set Id
CPLEX TS VNS

costcplex t (s) costTS ITS (%) t (s) costVNS IVNS (%) t (s)

5 K = 10 ; I = 25ð Þ

1 8157.0 7213 7548.6 7.5 957 7399.8 9.3 1086

2 9635.0 7200 8842.3 8.2 655 8073.9 16.2 630

3 10847.7 7222 9899.2 8.7 931 9408.7 13.3 949

4 9072.3 7228 8321.4 8.3 1206 8146.6 10.2 1127

5 11067.3 7207 8902.5 19.6 630 8305.8 25.0 642

6 9904.4 7221 9328.6 5.8 602 9167.1 7.4 635

7 8639.7 7225 7425.3 14.1 684 7478.1 13.4 630

8 8904.4 7221 8518.6 4.3 1124 8420.1 5.4 1198

9 8928.3 7229 8215.3 8.0 798 7813.6 12.5 776

10 9697.9 7201 8962.0 7.6 658 8623.7 11.1 609

Avg 9485.4 7217 8596.4 9.2 880 8283.7 12.4 884

6 K = 12 ; I = 30ð Þ

1 16404.4 7215 11053.2 32.6 1423 10135.0 38.2 1342

2 14227.2 7202 8925.3 37.3 1511 8745.8 38.5 1438

3 16787.8 7201 9563.2 43.0 1102 9030.1 46.2 1061

4 16888.4 7219 9847.3 41.7 984 8700.8 48.5 1012

5 11812.1 7219 10642.5 9.9 2106 10708.5 9.3 2008

6 14900.4 7214 11254.9 24.5 2658 10661.4 28.4 2836

7 27326.9 7204 13478.6 50.7 1028 10213.9 62.6 1097

8 8421.8 7210 8210.6 2.5 1987 8149.2 3.2 1819

9 15415.0 7200 9102.5 41.0 1089 8965.4 41.8 1165

10 13331.3 7218 10894.5 18.3 1384 10649.3 20.1 1464

Avg 15551.5 7214 10297.3 30.1 1527 9595.9 33.7 1524

7 K = 12 ; I = 60ð Þ

1 33768.6 7223 11673.6 65.4 7167 11324.8 66.5 7200

2 41853.6 7214 12868.4 69.3 7200 12897.3 69.2 7200

3 38638.8 7218 13546.0 64.9 7200 12988.8 66.4 7200

4 39574.1 7212 12023.8 69.6 7200 11266.7 71.5 7200

5 64875.9 7222 11675.4 82.0 7200 11367.0 82.5 7200

6 17687.5 7259 13245.2 25.1 7200 13515.5 23.6 7200

7 48120.1 7230 13845.2 71.2 7200 12389.0 74.3 7200

8 39105.5 7216 14265.3 63.5 7157 13987.1 64.2 7077

9 36150.2 7205 11547.8 68.1 7200 11363.4 68.6 7200

10 56085.3 7225 12875.6 77.0 7200 12530.7 77.7 7200

Avg 41586.0 7215 12756.6 65.6 7192 12363.0 66.4 7188

8 K = 12 ; I = 120ð Þ

1 166196.7 7202 20144.3 87.8 7200 19794.0 88.1 7200

2 100338.8 7202 18125.4 81.9 7200 17859.7 82.2 7200

3 118469.2 7203 21425.3 81.9 7200 21192.2 82.1 7200

4 115770.5 7202 20015.6 82.7 7200 19568.6 83.1 7200

5 166901.8 7201 21546.8 87.1 7200 20921.2 87.5 7200

6 137609.3 7201 20571.3 85.1 7200 20250.3 85.3 7200

7 124766.9 7201 17785.6 85.7 7200 17334.3 86.1 7200

8 137447.7 7211 21445.7 84.4 7200 21093.2 84.7 7200

9 119388.4 7203 22863.4 80.8 7200 22197.9 81.4 7200

10 130576.4 7203 17557.6 86.6 7200 17425.9 86.7 7200

Avg 131746.6 7206 20148.1 84.4 7199 19763.7 84.7 7199
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JD.com, one of China’s biggest e-commerce companies, is
analyzed and solved with the proposed VNS approach.

4.2.1. A Case Study from JD.com: Problem Description. To
serve online customer demands in Guangzhou, the third
largest city of China, JD.com maintains four warehouses
located within or very close to the urban area. The locations
of the fours warehouses are depicted in Figure 10: Asia No. 1
warehouse, South China Logistics Center Foshan Park (FS
warehouse), the 2nd South China Logistics Center Machong
Park (MC warehouse), and South China Logistics Center Luo-
gang Park (LG warehouse). In the figure, the black circles rep-
resent the warehouses, and the empty circles are the delivery
stations. The following categories of SKUs are stored in the
warehouses: 3C products, shoes and clothing, and health care
products; snacks, grain and oil, and books; home appliances
and 3C products; and clothing and groceries, respectively.

Parcel deliveries are handled by means of a fleet of vehi-
cles from the warehouses to the delivery stations that are
scattered over the urban area. At each station, orders placed
by nearby residents are accumulated. To fulfill the demands
in these delivery stations, logistics manager should simulta-
neously optimize the order allocation and routing with the
aim of minimizing the total travelling distance. As one of the
largest e-retailers of China, JD.com faces massive amount of
online orders everyday. Upon receiving orders, the handling
system needs to split and allocate it immediately and delivers
it within very short time once the vehicle is available.

In this case study, we consider five real cases in Guang-
zhou city. The following assumptions were made in consid-
ering the data provided by JD.com:

(i) The travelling distances between each pair of points
of the distribution network were approximated with
the Euclidean measure

(ii) Time windows constrains were ignored, and also all
returned orders were not considered

(iii) The vehicle fleet is assumed to be homogeneous

The number of the delivery stations with delivery
demands ranges between 13 and 33, and the total number
of orders from all delivery stations that need to be fulfilled
in each case ranges from 157 to 396. The vehicle capacity
of the vehicles is set equal to 6,800 KG.

4.2.2. Results Obtained. The results obtained by applying the
VNS algorithm are summarized in Table 1. The first five
columns of the table give the instance name, the number
of warehouses K , the number of delivery stations I, the total
number of orders OTðOT =∑i∈Vs

MiÞ, and the vehicle
capacityQ.

Due to the huge amount of daily delivery orders and the
latest service options, such as “deliver within one hour” and
“deliver within three hours,” launched in many big cities by
JD.com, the decision on the order split, allocation, and rout-
ing needs to be made within a very limited computing time.
For this reason, we record the values of the solutions gener-
ated by the VNS algorithm after 15, 30, and 60 minutes, and
we compare the obtained values with respect to the cost of
the initial solution.

For each instance, Table 3 reports the total distance (in
kilometers) corresponding to the cost of the initial solution
computed by the VNS (“z0”), and the solution costs after
15, 30, and 60 minutes (“z1, z2, z3”), respectively. The table
also shows the percentage gap of solutions z1, z2, and z3 with
respect to solution “z0”.

The results shown in Table 3 can be commented as
follows. The initial heuristic finds feasible solutions for all
the instances with an average value of 124.96 kilometers.
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Figure 9: Convergence of the VNS algorithm on sets of instances 7 and 8.
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Starting from the initial solutions, the VNS algorithm
improves this value by 21.83%, 23.76%, and 26.92% on aver-
age for the 15, 30, and 60 minutes runs, respectively. The
results have shown that the proposed VNS algorithm can
be an effective tool to deal with the fast decisions needed
by the order fulfillment process in JD.com.

As an example of the solutions obtained, Figure 11 gives
the solution obtained after 60 minutes by the VNS regarding
instance Case1 depicted in Figure 10. In instance Case1, four
warehouses are used to serve customers in Guangzhou city,
and 13 delivery stations are associated with the customer
orders that need to be fulfilled at that time. The SKUs stored
in each warehouse and the SKUs requested by each station
are also shown in Figure 10. Note that for each warehouse,
we only show the SKUs that may be needed in this case.
Figure 11 displays the four routes designed by the algorithm
to deliver parcels to the delivery stations. Among these sta-
tions, Xinshi, Longgui, Taihe, Longdong, Huapu, Yonghe,
Xincun, Luotou, Xintang, Xietong, and Luoxi need to be vis-
ited twice which means that the customer orders associated
with these stations are spilt up and allocated to more than
one warehouses.

4.3. Impact of the Main VNS Components. We conducted
additional experiments to measure the contribution of each
operator of the VNS. More precisely, from each of the 5, 6,
7, and 8 instance sets, we selected two instances and ran the
VNS algorithm by selectively disabling one of the following
three operators: order-split, station-remove and supper-move.

Table 4 gives the results obtained. In the table, column
head “VNS” reports the best results obtained by the VNS
algorithm, whereas column heads “NoOrderSplit,” “NoSta-
tionRemove,” and “NoSupperMove” give the results
obtained by the VNS without the order-split, station-
remove, and supper-move operators, respectively. Column
Impð%Þ reports the percentage of improvement of the differ-
ent VNS variants considered; a negative value means that the
corresponding solution is worse than the solution computed
by the VNS with all operators.

The table clearly shows that all operators are affective
and that in only two cases improved solutions have been
computed.

4.4. Sensitivity Analysis-Vehicle Capacity and SKUs
Availability. In this section, we perform a second set of

Figure 10: Real-world instance: locations of warehouses and stations points.

Table 3: Results on real-world instances: the JD.com case.

Index K I OT Q z0 z1 gap1 z2 gap2 z3 gap3
Case1 4 13 157 6,800 65.74 54.37 20.91% 54.37 20.91% 54.37 20.91%

Case2 4 18 218 6,800 114.86 91.97 24.89% 91.09 26.10% 91.09 26.10%

Case3 4 23 276 6,800 126.01 103.76 21.44% 102.39 23.07% 100.63 25.22%

Case4 4 28 336 6,800 144.69 119.21 21.37% 116.79 23.89% 114.18 26.72%

Case5 4 33 396 6,800 173.52 143.55 20.88% 140.21 23.76% 132.04 31.41%

Average 124.96 102.57 21.83% 100.97 23.76% 98.46 26.92%
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experiments focused on the impact of the vehicle capacity
and the SKUs availability. Also for these experiments, we
considered two instances from each of the 5, 6, 7, and 8
instance sets.

4.4.1. Vehicle Capacity. We recall that the vehicle capacity Q
is set equal to q ×Qsum/K , where q is a parameter, and Qsum
is the total weight of all the required SKUs. In our experi-
ments, we set the value of q equal to 1.1, 1.15, 1.2, 1.25,
1.3, 1.35, and 1.4, respectively. The results obtained are sum-
marized in Table 5 for the different values of q, where col-
umn Impð%Þ gives the percentage of the improvement of
the solution cost with respect to the solution cost computed
with q = 1:1.

The table shows that, as expected, the smaller the value q,
the more expensive the delivery cost and hence implies that
the right trade off between the distribution cost and the vehi-
cle capacity needs to be done.

4.4.2. SKUs Availability. We recall that when the (0-1) coef-
ficient pkn is equal to 1, it means that the n-th SKUs is stored
or available at warehouse k. In the results reported in Section
4.1, the probability of stockout (i.e., pkn = 0) was set equal to
1/K . In the new experiments reported in this section, we
compare the case where all SKUs are available to all ware-
houses (“NoStockOut” case), i.e., pkn = 1∀i ∈N , k ∈ Vw, with
the case where the probability of stockout is set equal to 1/
K (as in Section 4.1 (“StockOut(1/K)” case)) and the case
where the probability is set equal to 0.5 (“StockOut(0.5)”
case)).

The results obtained are summarized in Table 6, where
column Impð%Þ gives the percentage of improvement com-
puted with respect to the solution cost obtained for case
“NoStockOut.”

The results clearly show that the probability of stock out
has a significant effect on the total distribution cost. When
the probability increases to 0.5, the cost increases up to

Figure 11: Vehicle routes for real-world instance Case1.

Table 4: Impact of the main VNS operators.

Set Id
VNS NoOrderSplit NoStationRemove NoSupperMove

Cost t (s) Cost Imp %ð Þ t (s) Cost Imp %ð Þ t (s) Cost Imp %ð Þ t (s)

5
1 9408.7 949 10210.6 − 8.5 831 10775.6 − 14.5 558 9827.7 − 4.5 579

10 8146.6 1127 8225.5 − 1.0 1172 8316.4 − 2.1 966 8357.0 − 2.6 936

6
1 9030.1 1061 9078.7 − 0.5 1074 9648.4 − 6.8 1655 9255.0 − 2.5 1260

10 8700.8 1882 9284.8 − 6.7 954 8873.6 − 2.0 1002 8955.6 − 2.9 1887

7
1 12988.8 7200 13357.3 − 2.8 6548 15115.6 − 16.4 2988 12794.3 1.5 5905

10 11266.7 7200 11931.7 − 5.9 7200 12905.6 − 14.5 4944 11449.0 − 1.6 7200

8
1 21192.2 7200 21749.6 − 2.6 7200 21532.7 − 1.6 7200 23694.8 − 11.8 7200

10 19568.6 7200 20638.5 − 5.5 7200 20283.7 − 3.7 7200 19491.1 0.4 7200
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almost 4 times the cost of no “NoStockOut,” and the right
trade off between the distribution cost and SKUs availability
at the different warehouses needs to be done.

5. Conclusions and Future Research

In this paper, we proposed a new variant of vehicle routing
problem motivated by real-world applications arising in
the e-commerce logistics. The problem, called the multi-
depot vehicle routing problem with order split and alloca-
tion (MD-CVRP-OSA) considers the split and allocation
issue of online customer orders in traditional vehicle routing
problem. We formally introduced the new problem and for-
mulated it as an integer programming problem. To solve the
MD-CVRP-OSA, we proposed an effective variable neighbor-
hood search (VNS) algorithm that makes use of seven elabo-
rately designed operators and a diversification mechanism.

The VNS algorithm was extensively tested on both ran-
domly generated and real-life instances. In particular, a case
study from JD.com, one of China’s biggest e-commerce
companies, was analyzed and solved with the proposed
VNS approach. The computational results obtained showed
the effectiveness of the VNS approach and also different
components of the algorithm.

The future research perspectives are multiple. Firstly, we
recommend to pursue the study of exact methods for the
MD-CVRP-OSA. Secondly, our problem definition and
solution method could be extended to incorporate additional
operational constraints, such as time window constraints,
the use of an heterogeneous vehicle fleet, and order returns.
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