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Spatially aggregated data are prone to the effects of the modifiable areal unit problem (MAUP), which applies to built envi-
ronments and traffic data. Although various studies have been carried out to explore the impact of built environment factors on
traffic systems, few have consideredMAUPs, whichmay result in statistical inconsistency.*e purpose of this study is to assess the
effects of MAUPs on statistical variables and geographically weighted regression results when evaluating the influence of the built
environment on the traffic system state. Fifty sets of spatial configurations were created using the different aggregation criteria.*e
variance inflation factor and spatial autocorrelation of the variables, as well as the R2 and root mean squared error of the GWR
model, were used to assess the MAUP effect.*e results show that the index variation is more dependent on the scale of the spatial
unit than on zoning type. In the case study presented, based on the available dataset, the optimal spatial unit size for analyzing the
influence of the built environment on Jinan’s traffic system was 900m× 900m.

1. Introduction

Although increasing attention has been paid to the MAUP,
it is still neglected in research on built environments (BEs)
and traffic system states (TSSs). Some authors discuss BE
study areas at the city [8, 9], community [10], or block [11]
levels, but these studies generally use scale as a category
rather than as a basis for MAUP discussion. Recent studies
have investigated the effect of MAUP on the impact of BE
on travel behaviors. Zhong et al. [12] investigated the
impact of BE on travel behavior on both traffic community
and buffer zone scales and found that at a neighborhood
scale, the BE cannot explain all resident types’ travel be-
havior effectively. Hong et al. [13] studied the effect of BEs
on the vehicle travel distance at a transport analysis zone
(TAZ) scale and at a 1 km buffer zone scale and found that
the travel distance is more sensitive to the BE variables at
the TAZ scale. However, the spatial scale classifications of

the above study are too simple, and the SU scale and zoning
type design were not carried out; therefore, the corre-
sponding MAUP effect analyses were insufficient, while the
conclusions are only applicable to the TAZ and buffer
zones. In addition, the above study mainly evaluated the
changes in the model parameters while ignoring the MAUP
effect on the variables. In addition, the above research
focuses on the relationship between BE and travel behavior,
and the latter will eventually affect TSS.*e influence of the
MAUP on the relationship between the BE and TSS has
received little attention.*us, it is necessary to compare the
influence of BE on TSS from multiple spatial scales and
types to determine the effect of the MAUP. In addition, the
wide availability and utilization of transportation and
geographic big data provide an opportunity to study the
MAUP within the context of the BE-TSS relationship from
the perspective of variable variation and model parameter
fluctuation.
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In this study, we examined how variables and model
results change when using SUs of various scales and zoning
types, as well as the optimal SU choice.

2. The Built Environment

BE refers to various buildings and urban spaces that are
different from the natural environment, especially those that
can be changed through policies and human behavior. BE
contains multidimensional elements. In the field of urban
geography and urban planning, Cervero et al. [14] put
forward the “3 Ds” element, referring to density, diversity,
and design, which is widely applied. Ewing et al. [15] ex-
tended the “3 Ds” to “5 Ds,” adding “destination accessi-
bility” and “distance to transit”. In this paper, we use the “5
Ds” dimensions of BE. *e main indicators and calculation
methods for each dimension are listed in the Table 1.

3. The Traffic System State

*e TSS refers to the running and changing states of
complex traffic systems. In a narrow sense, TSS is usually
expressed through parameters such as the urban road traffic
service level, vehicle speed, and road congestion index, with
the focus being an accurate representation of traffic effi-
ciency. *e generalized TSS includes the state of traffic
travel, safety, and comfort, and is a comprehensive repre-
sentation of the multidimensional state of the traffic system
(shown in Table 2). *e TSS studied in this study was in a
generalized state.

4. Methodology

4.1. Design of SU Scale and Type. *e MAUP effect can be
subdivided into scale and zoning effects [18] *e scale effect
refers to the fact that when the size of the SU changes owing
to aggregation, the statistical results of the same dataset will
be different (shown in Figure 1). *e zoning effect occurs
when a change in the spatial element boundaries for the
same unit area results in different statistical results (shown in
Figure 2).

Commonly used SUs in the study of BE and TSS in-
teractions include the TAZ [19, 20], buffer zone [21], and
grid [22]. Considering the need for multiscale design of the
SU scale and types of this study, we note that once the
traditional TAZ division has been completed, it is difficult to
change. In addition, TAZs are too large and, therefore,
unsuitable for fine-scale research. Buffers are more focused
on “point/line” research and are not suitable for the whole
region’s “surface” research. Grids can be varied freely in scale
and type and are more conducive to data clustering analysis
at different scales. Considering the strong operability and
wide application of square grids, a square grid was used as
the basic SU in this study.

*e selection of the SU scale should consider the road
length and block area enclosed by the road in the urban built-
up area. On February 6, 2016, the Central Committee and the
State Council issued “several opinions on further strength-
ening the management of urban planning, construction,”

which introduced the concept of “narrow roads and dense
networks,” and proposed that road density should reach
8 km/km2. Based on this initiative, the resulting road spacing
was between 100m and 200m. *erefore, in this study, the
minimum SU scale selected was 100m. For the selection of the
maximum scale of SU, we referred to the literature on BE and
transportation [23–27], where 400m, 500m, and 1000mwere
used as maximum SU scales. Eventually, the 1000m SU scale
was chosen as the maximum, with 10 subscales ranging from
100m to 1000m at 100m intervals.

To explore the role of SU type in the influence of BE on
TSS, five zoning methods with grid aspect ratios of 1 :1, 1 : 2,
2 :1, 1 : 3, and 3 :1 were adopted (shown in Figure 3). Finally,
we designed 50 SU types (10 scales multiplied by 5 zoning
types).

4.2. Two Layer MAUP Effect Analysis

4.2.1. Analysis of MAUP Effect on Variables. Spatial auto-
correlation analysis can reflect whether the pattern reflected
by spatial elements is aggregated, discrete, or random.
Spatial autocorrelation analysis is often used as a partition
reference in spatial data research. Marcos et al. [6] used the
spatial autocorrelation of traffic accident data as the basis for
dividing research units. In this study, spatial autocorrelation
was also used to test the MAUP effect of variables. *e
metric of spatial autocorrelation is Moran’s I and is cal-
culated as follows:

I �
n


n
i�1 

n
j�1 Wij

×


n
i�1 

n
j�1 Wij xi − x(  xj − x 


n
i�1 xi − x( 

2 , (1)

where i is the SU index, xi and xj are the attribute values of
SUs i and j, x is the mean value of all SU values, and Wij is
the spatial weight matrix. I> 0 indicates that the attribute
values of all SUs have a positive spatial correlation; that is, as
the spatial distribution locations are aggregated, their cor-
relation becomes more significant. I� 0 represents random
regional distribution with no spatial correlation. I< 0 in-
dicates that the attribute values of all regions have a negative
correlation in space; that is, with the dispersion of spatial
distribution positions, their correlation becomes increas-
ingly significant.

In a linear regression model, multicollinearity refers to a
large deviation between the linear regression result and the
true value owing to a high linear correlation between var-
iables. *e scale of SU and the type of zoning also have an
important influence on variable multicollinearity. *e var-
iance inflation factor (VIF) is commonly used in multi-
variate multicollinearity tests, with high values indicating
possible collinearity between the explanatory variables. *e
VIF is calculated as VIF � (1/(1 − R2

j)), where R2
j is the

degree of linear correlation between the variable xj and the
other variables.

4.2.2. Analysis of MAUP Effect on Model Parameters. In this
section, the variation rules of model parameters under
different SU scales and types are studied to explore the
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influence of the MAUP on the effects of BE on the TSS
models. Since both BE and TSS data are spatial, the impact of
BE on TSS may vary depending on SU, and the traditional
ordinary least squares global linear regression model is not
capable of explaining spatial heterogeneity. *e geograph-
ically weighted regression (GWR) model fully considers the
spatial characteristics of the research object, and the local
regression function can be adjusted according to the spatial
variation of the sample. *erefore, in this study, the GWR

model was used as a unified model. *e mathematical ex-
pression corresponding to the GWR model is shown as
follows [28]:

yi � β0i + 

p

j�1
βijxij + εi, (2)

where yi is the ith dependent variable, xij is the value of the
jth variable at the ith grid, βij is the jth regression parameter
of grid i, and p is the number of independent variables.

GWR models of BE, traffic efficiency, traffic safety, and
traffic comfort were constructed and are denoted as GWR-
TE, GWR-TS, and GWR-TC, respectively. To evaluate the
effect of the GWR model on different SUs, the root mean
square error (RMSE) of the model was used, where smaller
RMSE values corresponded to a better fit of the GWRmodel
to the observed data, as well as R2, which is the determi-
nation coefficient of the GWR.

4.3. Multiobjective Selection Model of SU

4.3.1. Model Construction. In the study of the influence of
BE on TSS, it should be noted that the aggregation values of
variables, such as population density, land use diversity, and
intersection density, are affected by the MAUP. Simulta-
neously, the performance of the model is also affected by
MAUP, as the parameter estimates and performance indi-
cators of different SUs are different. *erefore, multi-
objective functions with both variable -and model result-
related objectives should be designed. *e goal of a

Table 1: Main indicators of the 5Ds.

Variables Main indicators of previous
studies

Indicator variables
of this paper Calculation method

Density
Population density,

employment density, building
density

Population density Population per square kilometer

Diversity Land-use mix, job-housing
imbalance Land-use mix [16]

HHIi � 
n
j�1(xij/xi)

2

Where HHIi is the herfindahl-hirschman index of grid i, xi is the
total POI in grid i and xij is the total POI of category j in grid i

Design Intersection density,
neighborhood, road density Intersection density Number of intersections per grid

Destination
accessibility

Accessibility to jobs, distance to
CBD Distance to CBD

Ai � 
n
j�1

1
dij

Where Ai is the destination accessibility of grid i, dij is the
distance between grid i and CBDj

Distance to
transit

Bus stop density, distance to
transit stop Bus stop density Number of bus stops per grid

Table 2: Definition and calculation method of TSS indicators.

Variables Definition Calculation method

Traffic
efficiency Road speed

TTIi � vf/1/N(
N
w vi

w)

Where TTIi is the travel time index of grid ivf is the free-flow speed, vi
w is the actual speed of

track point w in grid i

Traffic safety Number of traffic
accidents Total number of incidents per year

Traffic
comfort

Comfort level while
driving *e sum of uncomfortable track points, as defined in the literature [17]

Figure 1: Scale effect.

Figure 2: Zoning effect.
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multiobjective selection model is to select an appropriate SU
that minimizes the influence of the MAUP on the variables
and models. We set four goals as:

Goal 1: *e spatial autocorrelation of the variables is
minimal to achieve homogeneity in the region and
randomness in the interval. *e degree of spatial au-
tocorrelation was measured by Moran’s index I, with
smaller values corresponding to less spatial
autocorrelation.
Goal 2: *e collinearity degree between variables is
minimal to ensure that the variables are independent.
*e degree of collinearity was measured using VIF,
with smaller values corresponding to less collinearity.
Goal 3: *e model-fitting effect is the best. *e fitting
effect of the GWR model was measured using R2, with
larger values considered more desirable.
Goal 4:*emodel-fitting performance, measured using
the RMSE in the case of the GWR model, is optimal.
Smaller RMSEs correspond to a better fit.

A multiobjective function is now established according
to the above objectives.

*e decision variables are the SU type (z).

*e objective function is:

min I(z)

minV(z)

maxR(z)

minRSS(z)

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

*e constraints are as follows:
z � 100m ∗ 100m, 100m ∗ 200m, 200m ∗ 100m, . . . ,

3000m ∗ 1000mI(z), V(z), R(z), and RSS(z) are the mean
values of Moran’s I, VIF, R2, and RMSE, respectively, for SU
type z.

In this study, multiple objective functions were com-
bined into a unified function via a weighted grouping
method.

minF(z) � w1I(z) + w2V(z) − w3R(z) + w4RSS(z), (3)

where w1, w2, w3, w4 are the weights of I(z), V(z), R(z), and
RSS(z), respectively.

4.3.2. Model Solution. To determine the weights while en-
suring that (i) they include both subjective and objective
factors, (ii) the uncertainty of subjective factors is reduced,
and (iii) any discrepancy between the objective weight and
the actual degree of importance is minimized, we chose a

hybrid weighting method combining the analytic hierarchy
process (AHP) and the entropy weight method.

*e calculation process of AHP is mainly divided into
three steps:

(i) *e comparison matrix B � (aij)n×n is established,
where aij is a value indicating the importance of
factor i relative to factor j and n is the number of
scoring objects.

(ii) *e largest eigenvector of matrix U was found. *e
maximum eigenvalue of the comparison matrix
λmax is then obtained, followed by the corre-
sponding eigenvector w using the equation
Bw � λmaxw′.

(iii) A consistency test was conducted. If the random
consistency ratio CR < 0.1, it can be concluded that
the consistency of the comparison matrix is strong,
where CR � CI/RI, with CI � /λmax − n/n − 1, and
RI are obtained from Table 3.

*e entropy weighting method determines the index
weights according to their degree of difference. *e main
calculation process is as follows.

(i) *e variables are normalized and forwarded.
(ii) *e information entropy of the j-th index is cal-

culated according to the equation as:

Ej � −
1

ln n


m

i�1
xij
′ ln xij
′ , (4)

where xij
′ is the value of the j-th index of the i-th

sample after normalization and forward
transformation.

(iii) *e difference coefficient gj of the j-th index is
calculated as the following type.

gj � 1 − Ej. (5)

(iv) *e weight index wj
″ is calculated as the following

type.

wj
′ �

gj


n
j�1 gj

. (6)

*en, the combined weight is calculated as the following
type:

(a) . (b) (c)

Figure 3: Diagram of basic SU type design: (a) 100m× 100m (1 :1). (b) 100m× 200m (1 : 2). (c) 200m× 100m (2 :1).
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wj � 0.7wj
′ + 0.3wj

′. (7)

5. Case Study

In this study, the main urban area of Jinan is taken as the
research area (shown in Figure 4), and the specific scope is
the area enclosed by the Ji-Guang Expressway, the Jinan
Ring Expressway, the South Viaduct of the Second Ring
Road, and the Jinan Ring Expressway, representing an area
of approximately 438 square kilometers (shown in Figure 5).
BE data were obtained from the POI data provided by the
AutoNavi API, and road network data were obtained using
OpenStreetMap. TSS data were calculated using taxi tracks
and accident data shared by the traffic management de-
partment. *e basic BE and TSS data are shown in Figure 6
to Figure 10, respectively. According to the design scheme of
the SU scale and type, the SU ranged from 100 to 1000m,
with the five zoning types being 1 :1.1 : 2, 1 : 3, 2 :1, and 3 :1,
resulting in a total of 50 SU types. *e 500m× 500m area is
shown as an example in Figure 5.

6. Results and Discussion

6.1.Effects ofMAUPonMoran’s IVariables. Before analyzing
the scale and type of SU effects on R2 and RMSE for the
application of the GWR model, an investigation of the effect
of MAUP on the variables should be performed. *e dis-
tributional characteristics of the variables for the different
SUs are shown in Figure 11. As evident from the figure, the
spatial autocorrelation of variables fluctuates with the dif-
ferent SU sampling scales and zoning types and shows
relatively consistent regularity as follows:

(i) Larger SU scales result in weaker data differences
and stronger spatial autocorrelation, whereas
smaller SU scales yield weaker data similarity and
spatial autocorrelation.

(ii) *e effect of the SU type on spatial autocorrelation
was weaker than that of the SU scale.

(iii) *e Moran’s I values of the variables were all
positive.*is means that the variables had a positive
spatial correlation. *e correlation became more
significant as the spatial distribution locations were
aggregated.

6.2. Effects ofMAUPonVIFofVariables. *e computation of
the VIF led to the conclusion that multicollinearity issues
were not present, as the VIF factors were all below 10 (shown
in Figure 12). However, the VIF values of the independent
variables fluctuated as the SU scale and type changed. In
particular, the VIF values of 3 :1 and 1 : 3 subdivisions were

generally higher. *e VIF value of intersection density was
higher than 5 at the SU scale of 1000m and the 1 : 3 sub-
division, showing relative multicollinearity. *erefore, to
reduce the multicollinearity of the variables, large SU types
and scales should be avoided.
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Study area

Figure 4: Study area.

25000 and below
25000 to 40000
40000 to 59000
59000 to 90000
90000 to 160000
160000 and above

Population

Figure 5: Population distribution of study area.

Road network
Intersection

CBD
Bus station

Figure 6: Intersection, bus station, and CBD of the study area.

Table 3: Determination of matrix RI value.

n 2 3 4 5 6 7 8 9 10
RI 0 0.52 0.9 1.12 1.24 1.32 1.41 1.45 1.49
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6.3. Effects of MAUP on R2 and RMSE. *e distributional
characteristics of the R2 and RMSE for the GWR model are
shown in Figures 13, and 14, respectively. *e following
characteristics can be observed in the figure.

(i) Under a unified SU scale, radial and zonal zoning
had little influence on the correlation coefficient.
For example, the R2 values of the 1 : 3 and 3 :1 SU
types were relatively similar, as were those of the 1 :
2 and 2 :1 types.

(ii) Larger SU scales tend to result in fluctuations of the
correlation coefficients.

(iii) Larger SU scales caused a decrease in the RMSE of
GWR-TE and an increase in the RMSE of GWR-TS
and GWR-TC.

*ese characteristics indicate that when the SU scale and
type change, the model results and goodness of fit undergo
complex changes.

6.4. Model Solution. Nine transportation engineering ex-
perts were invited to fill in a judgment matrix questionnaire
on the importance of the indicators. *e weight index was
calculated according to each specific judgment matrix, with
that obtained from expert A (Table 4) considered as an
example to illustrate the calculation process.

*e index calculation results were as follows:
λmax � 4.2, CI � 0.068, RI � 0.075< 0.1. Based on these

values, the judgment matrix exhibited satisfactory
consistency.

Similarly, the judgment matrices of the remaining eight
experts are calculated to obtain the corresponding index
weight values. Finally, the weight values of all the expert
scores were averaged and normalized, and the final weights
of the four indices were calculated as follows:

W1 � 0.21W2

� 0.17W3

� 0.27W4

� 0.35.

(8)

*e index weights calculated using the entropy weight
method were as follows:

w1″ � 0.19w2″

� 0.62w3″

� 0.13w4″

� 0.06.

(9)

*e weight values of each index were calculated, and the
results were as follows:

w1 � 0.21

w2 � 0.3

w3 � 0.23

w4 � 0.26.

(10)

*eminimum value of the objective function is obtained
for z� 900m× 900m.

Catering POI

Company POI
Shopping POI

Scenery POIScience POI
Residential POI
Medical POI

Figure 7: POI of the study area.

Accident point

Figure 8: POI of the study area.

37 to 50
50 to 80
80 and above 27 to 37

19 to 27
19 and below

Speed

Figure 9: Speed distribution for the study area.
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(a) (b) (c)

(d) (e)

Figure 10: SU types corresponding for a scale of 500m. (a) 500m× 500m. (b) 500m× 1000m. (c) 1000m× 500m. (d) 500m× 1500m. (e)
1500m× 500m.
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Figure 11: Continued.

Journal of Advanced Transportation 7



100 m 200 m 300 m 400 m 500 m 600 m 700 m 800 m 900 m 1000 m
BSU scale

1:1
1:2
2:1

1:3
3:1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

M
or

an
’s 

I

(g)

1:1
1:2
2:1

1:3
3:1

100 m 200 m 300 m 400 m 500 m 600 m 700 m 800 m 900 m 1000 m
BSU scale

M
or

an
’s 

I

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

(h)

Figure 11: Moran’s I of variables. (a) Moran’s I of HHI. (b) Moran’s I of Intersection density. (c) Moran’s I of bus station density. (d)
Moran’s I of population density. (e) Moran’s I of distance to CBD. (f ) Moran’s I of traffic safe. (g) Moran’s I of traffic comfortable. (h)
Moran’s I of traffic efficiency.
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Figure 12: Continued.
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Figure 12: VIF of variables. (a) VIF of Population density. (b) VIF of HHI. (c) VIF of Intersection density. (d) VIF of Distance to CBD. (e)
VIF of bus station density.

0.5
0.45

0.4
0.35

0.3
0.25

RM
SE

0.2
0.15

0.1
0.05

0
100 m 200 m 300 m 400 m 500 m 600 m 700 m 800 m 900 m1000 m

BSU scale

1:1
1:2
2:1

1:3
3:1

(a)

RM
SE

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
100 m 200 m 300 m 400 m 500 m 600 m 700 m 800 m 900 m 1000 m

BSU scale

1:1
1:2
2:1

1:3
3:1

(b)

RM
SE

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
100 m 200 m 300 m 400 m 500 m 600 m 700 m 800 m 900 m 1000 m

BSU scale

1:1
1:2
2:1

1:3
3:1

(c)

Figure 13: RMSE of GWR model. (a) RMSE of GWR-TE. (b) RMSE of GWR-TS. (c) RMSE of GWR-TC.
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Figure 14: Continued.
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7. Conclusion

To the best of our knowledge, this study is the first attempt to
simultaneously investigate the effect of SU scale and type on
the MAUP, affecting the relationship between BE and TSS.
Another capital objective was to assess how changes in SU
affect the variables and model parameter data. *e conse-
quences of MAUP cannot be ignored, as the extent to which
MAUP affects variables andmodel results is obvious, but it is
difficult to explain why SU changes lead to inconsistent
changes in model parameters. However, several rules can
still be extracted. Longitude and latitude zoning (such as 1 : 3
or 3 :1) has little influence on data aggregation, while SU
scale variation has a great influence on both variables and
model parameters. Larger SU scales resulted in weaker data
differences and stronger spatial autocorrelation. *ese
findings suggest that a change in the SU scale should prompt
additional checks on the randomness of the spatial data
distribution and collinearity. Comparative analysis showed
that a 900m× 900m square grid was the optimal size for
investigating the relationship between BE and TSS. How-
ever, this result is only the optimal solution for the available
data, and may not be valid when the data are updated. *us,
the effect of the MAUP requires further investigation under
various conditions.

Moreover, this study has some limitations. First, the SU
scale and types were mainly based on square grids, whereas
in the field of transportation, SUs generally include addi-
tional types, such as TAZ and Tyson polygons. In the future,
the detection scope of SU types will be expanded to study the
MAUP more comprehensively. Second, in this study, only
the MAUP effect on the GWR model was investigated, but

the applicability of the method to different models, such as
multiple linear regression or conditional autoregressive
models, for determining the effects of MAUP was not
considered.
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