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Received 4 August 2021; Revised 14 December 2021; Accepted 16 December 2021; Published 24 January 2022

Academic Editor: Roćıo de Oña
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Feeder transport services are fundamental as first and last-mile connectors of mass rapid transit (MRT). )ey are especially
beneficial in low-demand areas where private transport is usually the main transport mode. Besides, the rapid spread of new
technologies such as vehicle automation and the shared mobility paradigm gave rise to new mobility-on-demand modes that can
dynamically match demand with service supply. In this context, the new generation of real-time demand-responsive transport
services can act as on-demand feeders of MRT, but their performance needs to be compared with conventional fixed-route fixed-
schedule feeders. )is article aims at presenting an agent-based model able to simulate different feeder services and explore the
conditions that make a demand-responsive feeder (DRF) service more or less attractive than a fixed-route fixed-schedule feeder
(FRF). )e parametric simulation environment creates realistic constraints and parameters that are usually not included in
analytical models because of high computational complexity. First, we identified the critical demand density representing a
switching point between the two services. Once the demand density is fixed, exploratory scenarios are tested by changing the
demand spatial distribution and patterns, service area, and service configurations. Main results suggest that the DRF is to be
preferred when the demand is spatially concentrated close to the MRTstation (e.g., in a TOD-like land-use area) or when station
spacing is quite high (e.g., a regional railway service), whereas the FRF performs better when the demand is mainly originated at
the MRT station to any other destinations in the service area (e.g., during peak hours). Besides, automated vehicles could play a
role in reducing the operator cost if the service is performed with many small vehicles rather than higher-capacity vehicles, even if
this would not imply a major benefit gain for the users.

1. Introduction

Transport systems are experiencing times of unprecedented
changes. )e push towards sustainable mobility and the ad-
vances in technology are changing both transport services and
user habits [1]. Besides, the COVID-19 outbreak has heavily hit
public transport (PT) and influenced travel behaviour with
expected long-lasting impacts, especially at the urban level. In
this changing environment, good planning and designing of
transport systems become increasingly important to shape the

future of urban regions [2]. Transport planning cannot ignore
new trends and paradigms that are rapidly emerging, oriented
towards the concept of sharing assets and services via on-
demand services enabled by digital platforms. Mobility as a
Service (MaaS) is one good example of such a new concept,
being a digital platform enabling multimodal door-to-door
trips via a single app that should aim at reducing private car
usage (and eventually ownership) [3]. To achieve this goal, PTis
considered to be the backbone of MaaS, complemented by
mobility on-demand and shared modes [4].
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In this context, demand-responsive transport (DRT) can
play a fundamental role. Despite being an old concept that
goes back as far as the end of the 90s as “an intermediate
form of PT, somewhere between a regular service route that
uses small low floor buses and variably routed, highly
personalised transport services offered by taxis” [5], it came
back in the limelight in recent years mainly due to the spread
of app-based ride-sharing systems such as Uber, Via, and
Lyft (also known as transportation network companies).

However, the performance of these systems is often
questioned especially concerning the transport demand they
are meant to cover, the characteristics of the area, the to-
pology of the road network in which they should operate,
and the level of flexibility of the routes they follow. While
they are often in competition with PT in the case of densely
populated urban areas, they can potentially constitute a good
solution to improve the accessibility to mass transit systems
in the case of low-demand areas by covering the first-last
mile of passenger PT trips [6]. )e EU highlights how
sparsely populated and underpopulated regions suffer from
several structural problems such as lack of transport con-
nections, few job opportunities, and inadequate social ser-
vices [6]. In a recent publication by the European Parliament
[7], the lack of accessibility to PT is considered one of the
main issues faced by low-density and depopulated areas,
with the consequent social exclusion of their inhabitants [8].
)e strategic document underlines the role that DRTenabled
by novel technologies could have in those regions as a result
of its flexibility in meeting the demand. )e document also
notes that particular attention should be paid to its use in
supplementing conventional PT such as train, metro, and
trams that cannot reach all regions with the same coverage.

)e conditions for DRT success have been explored in
the literature focusing on some of the key aspects for PT
system viability, for example, the demand patterns making
DRT services more attractive than fixed scheduled ones [9],
optimal fleet size [10], and fleet composition [11]. Currie and
Fournier [12] showed that, statistically, high service costs are
a major failure factor for DRT systems and that simpler
operations (e.g., many-to-few or many-to-one, where rid-
ership is concentrated at one of the two trip ends or close to
it) had lower failure rates compared to more complex,
difficult to manage, many-to-many service types. )e use of
DRT as a feeder of PT has the double advantage of serving
the commuting demand of suburban areas and enhancing
the ridership of PT, that is, ensuring at the same time wide
coverage and high ridership at the expense of increasing the
number of transfers (e.g., from bus to mass rapid transit
(MRT)). Wang et al. [9] found that poor accessibility to PT
fosters the introduction of DRT services to cover long-
distance trips. Besides, accessibility, safety, and comfort-
related indicators should be considered to evaluate the
satisfaction of PT users [13–15]. Real case studies (or pilots)
involving DRToperations have been set up and investigated
in the literature. However, they are inevitably influenced by
the territorial context where they happen leading to results
that are often difficult to generalize and thus transfer to other
regions (e.g., [16, 17]). Analytical models have been typically
used to find demand thresholds and switching points from

one service to the other, as in, for example, the work by
Quadrifoglio and Li [18].

Moreover, while the routing of these systems has long
been addressed in the literature [19–21], the recent tech-
nological innovations in the trip booking processes have led
to the emergence of new problems due to the need to
guarantee dispatching of vehicles and requests in real time.
)ese issues are amplified in the case of shared rides since
different users might have different time schedules.

Finally, any analysis of these systems cannot ignore the
technological evolution of the vehicles used. )ese seem to
be oriented towards the conversion to full-electric ones and
in the longer run to full automation [22].

Based on these premises, this article aims at proposing
the use of an agent-based model (ABM) to explore the
performances of DRT in comparison with a fixed-route
service as a feeder to mass transit. )e authors began to
address this issue in Calabrò et al. [23] by presenting and
applying a new ABM to simulate adaptive flexible/fixed
feeder services in a low-demand urban area in Catania
(Italy). In this article, we upgrade the model also to verify
current analytical models that aim at distinguishing DRT
from fixed services [18]. Moreover, we extend such models
introducing a nonuniform demand density and a variable
vehicle capacity.

Our work tries to answer the two following research
questions: how can flexible demand-responsive feeder
transport services effectively match the demand with the
supply in real time, aiming at maximizing shareability,
minimizing the operator costs, and limiting passenger travel
time? And under which conditions is it more convenient to
adopt a fixed-route policy rather than a flexible one in
providing feeder services towards mass rapid transit? In the
process, we address several open research issues: (i) the
transferability to different contexts by introducing a para-
metric design model; (ii) the booking process, by taking into
account user-based time constraints in the dispatching al-
gorithm; and (iii) the possibility to perform the service with
automated vehicles, considering the impact they could have
especially in terms of the operator cost.

)e remainder of the article is organized as follows. )e
following section summarizes the literature on the DRT
topic and highlights the current research gaps to be filled by
this work. Section 3 presents the methodology, drawing an
overview of the model with the dispatching algorithm and
the selected output indicators.)emodel is then applied to a
synthetic parametric application case, and the results for
different scenarios are presented in Section 4. Finally,
conclusions and discussion and future research are proposed
in Section 5.

2. Literature Review

DRT planning and design has been addressed in literature
mainly since the beginning of the 2000s (e.g., [24, 25]). A fair
number of analytical models have been developed to face
strategic planning decisions. In 2004, Diana and Dessouky
[26] addressed the dial-a-ride problem with time windows
introducing a new regret insertion heuristic able to face a
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large number of requests and outperform classical heuristics
when a high-quality service (narrow time windows) is
provided to the users. However, a door-to-door transport
policy is assumed, while more trip shareability and travel
time savings could be achieved by aggregating requests in
virtual stops even if passengers would have to walk a short
distance. Later in 2007, Quadrifoglio et al. [27] proposed an
insertion heuristic for flexible services that merge the flex-
ibility of DRT systems with the low-cost operation of fixed-
route ones; the proposed service covers a specific geographic
zone, with mandatory checkpoints located at major con-
nection points or high-density demand zones. However, the
model assumes that customers never reject the insertion
proposed by the algorithm, so there is no negotiation phase
between the system and the customers. In 2009, Quad-
rifoglio and Li [18] proposed a continuous approximation
approach to compare the user-related performance of two
operating strategies for a feeder bus service: fixed-route and
demand-responsive. )ey provided approximate analytical
solutions to estimate the critical demand density that allows
a transit agency to switch between the two types of services.
Chandra and Quadrifoglio [28] extended this model [18],
using a gravity-based accessibility model to evaluate the
accessibility impacts for first-/last-mile transport connec-
tivity in the case of fixed-route transit and DRT, although
using the same uniform demand across space. Other issues
investigated through analytical models were fleet sizing
based on a given quality of service for users [10], route design
[20, 29], and the choice between different flexible transit
strategies to accommodate a variable demand level [30], or
estimating how user and operator costs vary according to the
demand density, the service area [31], and the fleet size [32].

Analytical models can be considered design models that
provide optimal solutions among infinite alternatives,
thanks to introducing some approximations and simpli-
fications within the model; such models are in general not
capable of reproducing a complex reality without requiring
enormous computation times; otherwise, it might be im-
possible to solve them analytically. In contrast, simulation
models are ideal for reproducing the complexity of a
system; once the input parameters are set, the simulation
model runs a series of operations to the data whose number
usually grows linearly with the size of the problem and can
then generate several outputs, which can be used as key
performance indicators of the system. In this respect,
simulation models have been used extensively for making
tactical and operational decisions regarding transport
services in general and in particular for flexible transport
services and last-mile connection [22, 33–36]. Winter et al.
[11] designed, simulated, and tested an automated DRT for
a campus-train station service; the simulation determined
the optimal fleet size for the operation of the service and
results showed the importance of adequate vehicle sizes and
short vehicle dwell times. Scheltes and Correia [37] ex-
plored the use of automated vehicles as last-mile con-
nection of train trips using an ABM. )e ABM
incorporated a dispatching algorithm distributing travel
requests among the available vehicles using a first-come-
first-serve sequence. However, the type of service that was

tested was conceived as being individual; therefore, it did
not allow for shared trips among the passengers. Araldo
et al. [38] studied the impact of consolidating the demand
and limiting the density of waypoints locations through a
modular simulation platform, searching for a trade-off
between guaranteeing high quality of service for the users
and providing a high-efficiency system; the model simu-
lated different flexibility levels from door-to-door to bus-
like services. Oh et al. [39] proposed an agent-based
simulation framework to evaluate the performance of an
automated demand-responsive transit system as a com-
plement and/or substitute to conventional mass transit.
)eir model suggests advantages in using higher-capacity
vehicles rather than taxis, resulting in less travelled kilo-
metres for the operator and less congestion. Fielbaum et al.
[40] abandoned the door-to-door scheme showing that
significant reductions in the vehicle-hours travelled and in
the number of rejections can be achieved by asking trav-
ellers to walk a short distance to reach the assigned pick-up/
drop-off points. )ey proposed an insertion heuristic al-
gorithm that encompasses and weighs both the travellers
and the operator costs. )e simulation was performed both
on a toy grid network and the real case study of Manhattan.
However, they considered neither the integration with PT
nor a comparison with other forms of PT. In 2019, Inturri
et al. [41] developed an ABM to compare the performance
of a shared DRTwith that of a taxi service [42] both for low-
demand areas and for fast-growing cities [43]. )e results
showed that DRT shared services are convenient under
specific demand patterns for the analysed case studies.
Based on these studies, Calabrò et al. [44] presented an
ABM tailored to solve the last-mile problem ofMRTin low-
demand areas, identifying optimal routes of feeder services.

Literature analysis shows that simulation models are not
meant to provide optimal service design; they provide a good
description of the performance of the system under spe-
cifically designed scenarios. Nevertheless, if the number of
combinations between relevant parameters is not great and
the simulation run time is not too long, it is possible to
search the different configurations space in search for so-
lutions that maximize or minimize a certain key perfor-
mance indicator.

In this article, we present an ABM, intending to in-
tegrate the benefits of the two methods: the model uses the
simulation approach but on an ideal parameterizable en-
vironment so that the results are as scalable as possible.
Based on [18, 23], the new ABM goes beyond a pure an-
alytic model by proposing realistic and real-time dis-
patching algorithms, but without being tied to a specific
simulation network neither to a particular case study, so its
results are easily adaptable to other contexts using the main
experimental parameters.

3. Methodology

Our research focuses on the first- and last-mile leg of PT
trips, supposing that the PT backbone is a MRTnetwork like
rail or bus rapid transit (BRT). )e transit agency might
choose between the following two operational strategies:
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(1) A fixed-route feeder (FRF) service carried out by
buses that pick-up and drop-off passengers at pre-
determined stops

(2) A demand-responsive feeder (DRF) service, where
each vehicle builds customized routes to serve a
group of passengers.

In our model, we assume that PT users choose between
walking and using the feeder service to reach the MRT
station. Although bikes and scooters (private or shared) can
also be regarded as competitors to the proposed feeder
system, we chose not to consider them in this first version of
the model. In fact, we are interested in comparing the
performance of FRF and DRF under different operating
contexts, assuming that users have already chosen to use the
bus as access/egress mode. Starting from this, the reliability
of the two operational strategies should be considered the
same, assuming an ideal scenario where all passengers are
perfectly aware of the status of the system (e.g., real-time
information sharing and no digital divide).

3.1. Overview of the Model. )e main components of the
simulation model are the service type (FRF or DRF), the
geometric features of the service area, the demand model,
the supply (vehicle) characteristics, and the simulation
duration. )e agents of the model are the travellers
requesting a ride and the vehicles.

We consider that our feeder service operates in a rect-
angular area of length L from the terminal station (hori-
zontal direction) and width W (vertical direction). )e
mobility demand follows a many-to-one/one-to-many
pattern since the focus is on the first/last leg of an entire PT
multimodal trip. A trip request can therefore have either
origin or destination at the MRT station (the terminal),
located on the left side of the service region. )e value of W

can be considered the average distance between the terminal
and the MRT stations upstream and downstream. Herein-
after, we will refer to the passengers originating at the
terminal as egress passengers, while the passengers having
destination at the terminal will be referred to as access
passengers.

From a spatial perspective, the base demand density λ (in
trips/km2h) is modelled as a linear function of the horizontal
distance x from the terminal that is analytically derived in
Appendix A. By varying the slope of the demand decay
function, we reproduce different types of urban density and
land use.

Each trip request i involves a group of a number Gi of
travellers. We assume that Gi follows a geometric distri-
bution. If we denote with p1 the probability that request i
consists of a single user (Pr(Gi � 1)); therefore, the prob-
ability that the group is constituted by k users is given by

Pr Gi � k(  � pk

� p1 1 − p1( 
k− 1

.
(1)

If the Manhattan distance (i.e., the distance measured
along axes at right angles) dT,i between the user’s origin

and the MRT station (access leg) or the MRT station and
the destination (egress leg) is lower than a minimum
threshold d0, a user is assumed to walk directly to/from
the station. Otherwise, the probability of choosing the
feeder service rapidly increases with dT,i and is given by
the attractiveness coefficient η ∈ [0, 1] we introduced as
follows:

η � 1 − e
− 0.5 dT,i − d0( )

2/c2( 
, (2)

where c is a parameter that rules the increase in attractivity
of the feeder service due to the distance from the station: the
lower the value of c, the higher the speed at which η increases
with dT,i. Figure 1 shows a graphical representation of η
across the service area.

As in [18], the fraction of trips having the MRTstation as
the destination is given by the parameter α ∈ [0, 1], so the
proportion of users going from the station to a destination
inside the service area is (1− α). Although the Poisson process
is well suited for the former, the temporal distribution of the
egress passengers is strongly related to the schedule of the
MRT line. However, assuming that the headway of the MRT
line is small enough (i.e., less than 5 minutes) in both di-
rections, we believe that the Poisson distribution with rate
parameter λ is a reasonable approximation and should
marginally affect the results.

Regarding the supply side, the vehicles (buses, mini-
buses, vans, or automobiles) are defined by three input
parameters: the number of vehicles nV composing the fleet,
the cruising speed v, and the allowed capacity in available
seats in each vehicle cap.

Finally, the duration of the simulation ST, in which the
input parameters are unchanged, should be sufficiently high
to ensure that the steady state is reached and that the results
are marginally affected by the warm-up period.

3.2. 9e Fixed-Route Feeder. )e FRF (Figure 2) runs back
and forth on a straight line from the MRT station to the
farthest bus stop, with spacing ds (input parameter) between
the stops.

Assuming ideal conditions (no congestion or other
disturbance to the service), the maximum cycle time CTmax,
that is, the time needed for a vehicle (bus) to complete the
round trip, is the sum of two components (adapted from
[18]), which is given as

CTmax �
2 L − ds/2( ( 

v
+

2L

ds

− 1  · τs + τp , (3)

where the first component is the ratio between the length of a
complete cycle and the bus cruising speed v, and the second
one estimates the dwell time at each stop τs, including the
time of acceleration and braking, and the additional dwell
time due to boarding/alighting passengers τp.

)e headway between two vehicles is given by

h �
CTmax + τt

nV

, (4)

where τt is the minimum dwell time required at the terminal.
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Egress passengers originate at the MRT station, take the
bus with the earliest departure time, alight at the desired stop
(i.e., the closest one to the destination of the trip) during the
first half of the cycle, and walk to their final destination.

Access passengers originate in the service area, walk to
the closest stop, wait for the first bus headed to the terminal,
travel onboard, and finally alight at the MRT station.

We assume that a traveller is aware of the expected
waiting time at the stop thanks to a real-time information
system by the feeder service provider. )erefore, if the ex-
pected waiting time is above a certain maximum waiting
time tw,max (input parameter), traveller i assumes the status
“rejected” and walks to the station. Instead, if the overall
travel time overcomes the latest drop-off time interval at the
station ldi, the passenger assumes the status of “delayed.”
)is threshold varies according to the different time toler-
ance of the users, as shown in the following equation:

ldi � min tw,max + 1 + δi + ci( 
dT,i

v
, 1 + ci( 

dT,i

vp

 , (5)

where δi � dT,i/(L + W/2) relates the travellers’ distance to
the maximum one to reach the terminal (based on the
farthest user that could be generated in the service area) and
represents the willingness to deviate from the shortest path
based on his/her distance to the terminal; ci ∈ [0, 1] aims at

reproducing travellers’ individual willingness to deviate
based on the trip purpose, and vp is the walking speed since
Equation (5) also takes into account the walking time from
origin to destination.

Fleet size, vehicle capacity, and cruising speed are set at
the beginning of the simulation. Each vehicle is generated at
the terminal stop (i.e., the MRT station). )e fixed feeder
vehicle travels along the route until it reaches a stop. Pas-
sengers at their destination stop alight while waiting trav-
ellers board the vehicle (if in the inbound direction),
following the first-come-first-served (FCFS) queue rule, and
only if the passenger group size is not greater than the
available seats.

3.3. 9e Demand-Responsive Feeder. )e DRF (Figure 3)
travels along a grid street network, with spacing dg between
the streets. Vehicle routes are dynamically created based on
users’ requests, and each intersection can act as a potential
access/egress location for a traveller (virtual stop).

Unlike in the FRF case, choosing the headway of the DRF
is not straightforward. While the flexibility of the DRF
implies that vehicles could leave the station when they are
full, in the case of a feeder service it could be better to assume
a given headway to assure service regularity and synchro-
nization with the MRT. In fact, the length of the full cycle

η

1.000
0.900
0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.000

0.60
0.45
0.30
0.15
0.00
-0.15
-0.30
-0.45

-0.60

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

1.
10

1.
20

1.
30

1.
40

1.
50

1.
60

1.
70

1.
80

1.
90

2.
00

2.
10

2.
20

2.
30

2.
40

W

L

TERMINAL
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c � d0� 0.3 km. From a temporal point of view, the demand follows a Poisson process with λ as the rate parameter.
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directly to the terminal.
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route and the cycle time depend on the expected number of
requests n that the vehicle should serve along that route,
which in turn depends on the headway, as shown in the
following equation:

n � nu 

∞

k�1

pk

k

� λLWh 
∞

k�1

pk

k
,

(6)

where nu is the number of users generated during the time
interval of duration h. We point out that n≤ nu because a
single trip request can involve k users (see equation (1)).

A rough approximation of the expected cycle distance
ECD, that is the length of the round route, can be estimated
based on n (Equation (6)) and is given by the sum of a
horizontal component (the vehicle movement from left to
the right and vice versa) and a vertical component (the
deviations along the vertical direction to serve the passen-
gers). For the analytical derivation of ECD, the reader is
referred to Appendix B.

Finally, the headway of the DRF can be derived from the
expected cycle time (ECT) and the fleet size as follows:

h �
ECT + τT

nV

�
(ECD/v) + ξcτs + τp n + τT

nV

.

(7)

Equation (7) is nonlinear (as ECD depends on h), so we
choose an initial value h∗ of the headway, compute n, ECD,
and ECTusing Equations (6) and (7), calculate the new value
of h, and then repeat the process for an adequate number of
iterations until convergence. )is procedure takes place in
the “setup” phase, before each simulation starts.

)e requests for the DRF service are processed in real
time through a dispatching algorithm that assigns the
traveller to a vehicle and a virtual stop (either a pick-up or

drop-off location), according to the user time windows and
the vehicle available seats, based on the FCFS rule. If no
feasible match can be found, the user assumes the status
“rejected” and walks directly to the destination. In this way,
the penalty due to the rejection is not an arbitrary fixed
value, as done, for example, in [41], but is directly related to
the walking time from the origin to the destination, under
the simplification that the rejected user does not have any
other modal choices. )is implies that rejecting requests
involving longer trips plays a significant role in increasing
the average user disutility (they will have to walk more to the
station or from the station). Figure 4(a)illustrates the dy-
namics for a DRF passenger, from the trip request moment
to the arrival at the destination, whereas Figure 4(b) shows
the vehicle state chart.

Let us define the set of egress passengers as E and the set
of access passengers as A. Egress passengers are assumed to
make the trip request as soon as they show up at the ter-
minal, so they are readily available to use the DRF service.
Access passengers, instead, need to be given enough time to
reach the assigned pick-up location and cannot be served
before the earliest pick-up time interval epij, which is for-
mulated as follows:

epij �
0, if i ∈ E,

wkij + τwk, if i ∈ A,

⎧⎨

⎩ (8)

where wkij is the walking time needed for passenger i to
reach the pick-up location j and τwk is a fixed extra time to
account for the variability of walking time implying the risk
of late arrival at the stop (it can be reasonably set to 1
minute).

When making a trip request, users should specify the
latest pick-up time interval lpi they are willing to accept.
Once again, this threshold is slightly different for egress and
access passengers. )e former has to wait for the DRF
vehicle at the terminal, so they are supposed to be less
tolerant towards the waiting time than the latter, who can
generally wait at home or the workplace. )e lpi is com-
puted as follows:

TERMINAL

walking
to the stop

walking
to destination

walking
to terminal

L

ds

W

Figure 3: Scheme of the DRF service: users in black are waiting for the assigned vehicle, users in grey have left the vehicle and are walking to
their destination, and the user in blue is walking directly to the terminal.
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lpi �
tw,max, if i ∈ E,

1 + ci(  tw,max, if i ∈ A,
 (9)

where the time tolerance level is ruled by the coefficient ci
introduced in Equation (5).

)e last component of the user time windows is the latest
drop-off time interval ldi, already introduced with the FRF
service. )is formulation is slightly different, since the term
tw,max is replaced by lpi, as follows:

ldi � min lpi + 1 + δi + ci( 
dT,i

v
, 1 + ci( 

dT,i

vp

 . (10)

3.4.9eDispatchingAlgorithm for theDRF. Every time a new
trip request i (consisting of a user or group of users) occurs,
the optimal matching between the demand (users group
requesting the trip) and the supply (vehicle fleet) is carried
out by the dispatching algorithm (Figure 5). As in [23], our
algorithm follows an insertion heuristic approach (An in-
sertion heuristic approach is adopted because it is widely
used in practice to solve transportation scheduling prob-
lems, as it often provides very good solutions compared to
optimality, it is computationally fast, and it can easily handle
complicating constraints [20].), involving three levels of
exploration of the feasible solutions:

(i) )e set of routes r ∈R, that is, the sequence of al-
ready scheduled stops (to be) visited by the vehicles
(0, 1, . . ., p, p + 1, . . ., m, 0) where 0 refers to the
terminal. Note that each route corresponds to a
complete cycle.

(ii) )e set of possible virtual stops for the new pas-
senger s ∈ S.

(iii) )e set of feasible insertions of the request in the
route schedule between two already scheduled stops
(p, p + 1) ∈ r.

When determining R for a new trip request i, the al-
gorithm first includes the vehicle routes of the current
service cycle. In case no feasible insertion is found, R is
updated including the vehicles’ route schedule of the next
cycle. In this way, the possibility of rejection is reduced.

)e algorithm only considers the nearest three inter-
sections to the user’s origin (or destination), plus the nearest
already scheduled virtual stop, so to limit the vehicles’ detour
from the original route. )is implies a maximum of four
possible stops, which is important to limit the length of S,
especially in very “dense” street networks and reduce the
computational time. Moreover, through this approach, we
keep constant the maximum number of candidates and
unbind the time complexity of the algorithm from the
granularity of the street network.

For each r ∈R and each s ∈ S, the algorithm repeats the
procedure of inserting s between p and p + 1 for each p� p∗,
. . ., m, where p∗ is the first not yet visited stop of r, verifying
that the following constraints are satisfied and computing
the cost of the insertion.

)e first constraint to be met is that the time ts at which
the vehicle v will stop at s must be consistent with the time
windows of the newly arrived user group i, as defined by
Equations (8)–(10). )is can be expressed as follows:

t0 < ts ≤ ldi, if i ∈ E,

epi ≤ ts ≤ lpi, if i ∈ A.
 (11)

)e second constraint is related to the departure time t0
from the terminal and to the expected cycle time (ECT) (see
(7)), as shown as follows:

User at origin

Waits for assignment

Waits at the stop

Waits for vehicle

Travelling on board

Travelling on boardStatus “rejected”

Arrived at destination

Walks directly
to destination

Walking to the
assigned stop

Walking to the
destination

Waits on board
for the departure

Requests
a vehicle

Dispatching
algorithm

[Feasible
solution
found]
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is about to
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Time = 
departure-time

Vehicle arrives
at the stop/

gets off the vehicle
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at the terminal/
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boards the vehicle
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[No feasible solution]

(a)

Waiting at the terminal
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User request
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operations
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Figure 4: State charts for the DRF feeder service: (a) passenger state chart and (b) vehicle state chart.
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0< t0 ≤ lpi, if i ∈ E,

ts < t0 + ECT≤ ldi, if i ∈ A.
 (12)

Finally, the third constraint imposes that the number of
passengers on board (loadv,s) when vehicle v stops at s must
not exceed the vehicle capacity, as expressed by the following
relation:

loadv,s ≤Cap. (13)

If all the constraints are met, the cost function of
inserting s into r between p and p + 1 is inspired by [40] and
is computed as the sum of the cost ci for the user (group of
users) i to be inserted, the additional cost Δcd for the
passengers who are delayed because of the insertion, and the
cost Δco for the operator due to the detour.

cost(r, s, p) � ci(r, s, p) + Δcd(r, s, p) + Δco(r, s, p). (14)

Equations (15)–(17) show the three components of the
cost function, expressed in terms of time. )e cost for the
user group is given by the weighted sum of the three
components of the travel time minus the ride time related to
the shortest path from/to the terminal (since it is not affected
by the optimization procedure), multiplied by the number of

users in the group Gi (see equation (1)) making the request,
which is given as

ci(r, s, p) � Gi wwk twk,i(s) + wwt twt,i(r, p)

+ wr d tr d,i(r, s, p) −
dT,i

v
 .

(15)

Where wwk, wwt, and wr d are weighting coefficients related
to the walking, waiting, and ride time, respectively. )e
additional costs depend on the detour time Δtr caused by the
insertion of s in r, which is given as

Δcd(r, s, p) � wrdnr d,d(r, p)

+ wwtnwt,d(r, p)Δtr(r, s, p),
(16)

where nr d,d is the number of passengers on board affected by
the detour, nwt,d is the number of users who will have to wait
an extra Δtr at the stop due to the schedule update, and wo is
the weighting coefficients of the additional cost caused by the
detour for the operator, related to the vehicle-kilometres
travelled. After having examined all the feasible solutions (if
any), the insertion heuristic chooses the assignment that
minimizes the cost function, which is shown as follows:

User request

Checks next feasible vehicle

Checks next feasible stop

Checks next feasible
insertion in the schedule

Calculate Insertion Cost

Update Min Cost Insertion

Minimum cost
so far?

N

N

N

Constraints:

satisfied?

- User Time Windows
- Expected Cycle Time
- Vehicle Capacity

N

N

N

Y

Y

Y

Y

Y Assign stop
and vehicle

to passenger

Update vehicle
schedule

Feasible
solution
found>

All stops
checked?

All vehicles
checked?

All
insertions
checked?

Request
rejected

Request
accepted

Y

Figure 5: Flowchart of the dispatching algorithm for the DRF service.
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min
r∈R;s∈S;p∈r

cost(r, s, p) s.t.Equations 11 − 13 . (17)

Regarding the time complexity of the insertion heuristic,
considering the “first level” of exploration of the feasible
solution, the size of the set of feasible routes r is linearly
related to the fleet size nV. It is an input parameter, but it
should be properly chosen based on the expected number of
requests n to serve (imagine having no constraints on nV). If n
is sufficiently high, nV is linearly related with n. )e second
level regards the potential stops s to associate with the user
request. As already explained, we chose to limit the number of
feasible stops to a maximum of four. Finally, in the third level,
the number of feasible insertions in the vehicle schedule
(m+1) is also linearly related to n. Based on these consid-
erations, the time complexity of our insertion heuristic is
O(n2), for each new request. )is means that the matching
process between passengers and vehicles requires low com-
putational efforts and takes place dynamically, in real time,
even with a high number of requests per unit of time.

3.5. Output Indicators. )e model results can be assessed
through different output indicators [41] to compare the two
feeder services: FRF and DRF as shown in Tables 1 and 2.

Another indicator that encompasses both the user and
operator point of view is the so-called total unit cost (TUC).
It is based on [41] and is equal to the sum of the passenger
unit cost (PUC) and the operator unit cost (OUC), which is
given as

TUC(€/pax) � PUC + OUC, (18)

where

PUC
€
pax

  � wwk Twk +Trej  + wwt Twt +wr dTr d  · VoT,

OUC(€/pax) �
D · Ckm + nV · ST · Ch

NU · ACP · (1 − WLK)
.

(19)

Here, VoT (€/h) is the value of time for the travellers,
Ckm (€/veh km) the distance-related operator cost, Ch (€/veh
h) the hourly driver cost, and ST (h) the total simulation
time. For the first test, VoTwas estimated to be 10 €/h, while
regarding the operator-related costs, we set Ch = 25 €/veh h
and Ckm ranging from 0.5 to 0.1 €/veh km according to the
vehicle size (distance-related operator cost (CKm): auto-
mobile 4 pax 0.1 €/veh km; minivan 6/8 pax 0.25 €/veh km;
minibus 9 seats (20 pax) 0.5 €/veh km.). It is worthy of notice
that in the case of a service performed by automated vehicles,
the second term of the OUC would be equal to zero since no
drivers are considered.

4. Application of the Model with
Different Parameters

)e model described above is programmed in the NetLogo
development environment [45]. )e operation parameters
of the feeder services can be varied, as already depicted in

Figures 2 and 3. )is approach provides the advantage of
obtaining useful insights for a transit agency operating in
different urban contexts and under different demand pat-
terns. Moreover, it is easy to perform a broad range of
sensitivity analyses regarding the main input parameters of
the system, which are outlined as follows:

(i) Geometric: length L and widthW of the service area,
the distance between stops ds (for the FRF) and grid
street spacing dg.

(ii) Service: type of service (FRF/DRF), total simulation
time ST (h), and headway h (min).

(iii) Supply: number of operating vehicles nV, vehicle
average speed S (km/h), the maximum seat capacity
cap of a vehicle.

(iv) Demand: average demand density λ (pax/h), trip
direction coefficient α, demand decay coefficient Λ
(ratio between demand density at x� 0 and at x� L),
probability of having one user per request p1,
maximum waiting time twt,max (min), and maxi-
mum walking distance dwk,max.

(v) Cost: weighting coefficients related to the passenger
wwk, wwt,wr d , and the operator wo.

4.1. First Set of Simulations: Finding the Critical Demand
Density. We first show the effectiveness of the simulation
model and the proposed insertion heuristic by reproducing
the scenarios described by Quadrifoglio and Li [18]. Fol-
lowing this approach, we computed the disutility function
U for the FRF and the DRF services under increasing
demand levels and keeping supply, cost, and geometric
parameters fixed. )e critical demand density λc is calcu-
lated as the one that provides an equal passengers’ disutility
for the two services. )e simulation input parameters are
simulation time ST = 8 h, service area dimensions
L = 3.2 km and W= 0.8 km, grid spacing dg = 0.1 km, trip
direction coefficient α= 0.5, and demand decay coefficient
Λ= 1 (spatially uniform demand). )e input parameters
used for the simulations are listed in Table 3, where the
abbreviation Sc-A1 refers to a one-vehicle case and Sc-A2
to a two-vehicle case. To better reproduce the assumptions
made by Quadrifoglio and Li [18], we chose sufficiently
high values of twt,max and cap to relax the passenger time
windows and to assume an unlimited vehicle capacity,
respectively.

Besides, we set up a new scenario (Table 3, Sc-Base) able
to better exploit the novelty of our methodology and include
the “real-world” constraints of the DRF operations (pas-
senger time windows, vehicle capacity, maximum cycle time,
etc.) that were not considered in [18]. Sc-Base also served as a
reference scenario against which to compare other 10 op-
erational scenarios (as shown in the next subsections) and
thus perform a sensitivity analysis of the most significant
input parameters. For each scenario, 25 simulation runs
have been performed to have a statistic of events.

)e results of the first set of simulations in terms of
average disutility and TUC are reported in Figures 6 and 7.
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Table 3: Input parameters adopted for the first set of simulated scenarios.

Parameter Abbreviation
Values

Sc-A1 Sc-A2 Sc-base
Stop spacing [m] d s 490 490 425
Average demand density [pax/km2h] λ 5–30 20–40 5–60
Pr(Gi � k) group probability p 1 1.0 1.0 0.8
Maximum waiting time [min] tw,max 30 30 10
Walking speed [m/s] vp 0.9 0.9 1.0
Vehicle cruising speed [km/h] v 32.0 32.0 30.0
Vehicle capacity [pax] Cap 50 50 20
Number of vehicles nV 1 2 3

Headway [min] (FRF) h 20 10 7
(DRF) 17–30 10–20 7

Cost coefficients [− ]

wwt 1 1 2
wwk 3 3 2
wrd 2 2 1
wo 0 0 4

Table 2: Description of the operator-related output indicators.

Indicator Abbreviation Description/formulation
Tot. Driven distance [km] D Total distance travelled by the vehicles during the simulation time

Tot. energy consumption
[kWh] TEC

Total energy used by the vehicles during the simulation time (energy consumption (EC):
automobile 4 pax 0.18 kWh/km (range 250 km)-minivan 6/8 pax 0.3 kWh/km (range 200 km)-

minibus 9 seats (20 pax) 0.6 kWh/km (range. 120-150 km) https://www.bluebus.fr/
caracteristiques-techniques-electric bus 50 seats 1 kWh/km (range. 120 km)https://www.

sustainable-bus.com/news/electric-bus-range-focus-on-electricity-consumption-a-sum-up/):
TEC�D∙EC

Avg vehicle occupancy
[pax] AVO Average number of passengers per vehicle

Transport intensity
[km/pax] TI Average distance travelled by the service per transported passenger TI�D/(NU∙ACP)

Commercial speed [km/h] vc vc �D/ST

% Stopping time ST Ratio between the total time spent by vehicles at the terminal or the stops and the simulation
time

Table 1: Description of the user-related output indicators.

Indicator Abbreviation Description/formulation
#Users NU Total number of travellers generated during the simulation
% Walking Users WLK Percentage of users who do not request for the feeder service and walk to/from the terminal
% Accepted
Passengers ACP Percentage of travellers using the feeder service

% Rejected Requests REJ Percentage of travellers whose trip request was rejected
% Delayed
Passengers DEL Percentage of users who are delayed beyond the time windows

Avg pretrip time [s] TPT∗ Average time that elapses between when a user makes the trip request (and is accepted) and starts
walking to the stop

Avg walking time
[s] TWK Average time for a user of the feeder service walking from the origin to the stop or from the stop to the

destination
Avg waiting time [s] TWT Average time that a traveller waits at the stop for the vehicle
Avg ride time [s] TRD Average time that a passenger spends on board a vehicle
Avg total travel time
[s] T Average total travel time, which is the sum of the following components: T�TWK+TWT+TRD

Rejection penalty [s] Trej Total walking time related to rejected travellers divided by the total number of passengers.

Avg time stretch STR Average ratio, for all passengers, between T and the sum of the ride and walking time if using the
shortest path (no waiting time).

Avg disutility [min] U As defined in [18], it is the weighted sum of TWK, TWT, and TRD considering the weighting
coefficients of equation (16)

∗Only for the DRF service.
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Sc-A1 (Figure 6(a)) and Sc-A2 (Figure 6(b)) find the
critical demand density of15 pax/h-km2 for the 1-vehicle case
and 30 pax/h-km2 for the 2-vehicle case, respectively, a little
bit higher than the 12 pax/h-km2 and 28 pax/h-km2 found by
the analytical model of Quadrifoglio and Li [18]. )is is
probably due to the capability of the simulation model to
reproduce amore efficient vehicle dispatching and routing for
the DRF service, thus enlarging its range of performance.

)is is even more clear from the results of the Sc-base
(Figure 7(a)), obtained by removing the constraints corre-
sponding to the analytical model, where the switching point
for the passenger convenience shifts in the range between 45
and 50 pax/h-km2. However, by looking at the TUC
(Figure 7(b)), which is an indicator of system efficiency

including also the operator point of view, the threshold is
lower, between 40 and 45 pax/h-km2. )is is imputable to
the fast increase in the DRF supply cost (distance travelled)
for a higher demand rate.

As expected, the disutility for the FRF travellers, as
opposed to the DRF ones, is not very sensitive to the demand
density variation.)is can be ascribed to the regularity of the
service since the average ride time is almost the same for
travellers, and the headway (affecting the average waiting
time at stops) as well as the walking time, which only de-
pends on W, ds, and vp, is constant. In particular, in
Figure 7(a), one can notice a small increase in U with the
demand density due to the increasing number of passengers
and vehicles causing higher idle times at stops.
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Figure 7: Performance of the Sc-base scenario in terms of user disutility (a) and transport unit cost (b) (bars in (a) showing confidence
intervals).
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Figure 6: Disutility of Sc-A1 (a) and Sc-A2 (b) (bars showing confidence intervals).
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According to the results, we fixed the demand density to
the critical value of 40 pax/h-km2 and performed a second
set of simulations to assess the attractiveness of the two
services by varying the other model parameters.

4.2. Second Set of Simulations: Testing Different Demand/
Service Configurations. Several scenarios have been defined
to reproduce different use cases by varying the following:

(1) Demand spatial distribution (Sc-1): from uniform
(Sc-base) to trapezoidal (Sc-1a) or triangular (Sc-1b);
the first one might represent a residential area,
whereas the other two might mimic a TOD-like
land-use area, where the demand progressively de-
creases from the MRT station to the outskirt.

(2) Demand O/D pattern (Sc-2): from uniform (α� 0.5)
of the Sc-base, to more concentrated demand pat-
terns to/from the MRTstation (α� 0.9, Sc-2a; α� 0.1,
Sc-2b). )is allows mimicking different demand
configurations according to both land use and
temporal demand distribution. Sc-base is more
representative of (i) a mixed land-use area with
balanced trips from and to the MRT station, or (ii) a
mono-functional land-use area during off-peak
hours (e.g., a residential area). Both Sc-2a and Sc-2b
might represent mono-functional land-use areas
during peak hours. )e former is a residential area
during the “morning peak” period or a workplace/
service area during the “evening peak” period and
the opposite applies to the latter.

(3) Area stretching (Sc-3): modifying the ratio L/W from
4 (Sc-base) towards less-/more-stretched areas (L/W
equal to 2 or 3, for Sc-3a and Sc-3b, and 6 for Sc-3c).
)is represents different MRT services according to
the station spacing (from 0.6 km to 1.2 km), for
example, from an urban metro service to a regional
railway service.

(4) Vehicle capacity (Sc-4): increasing the number of
vehicles of smaller capacity, from 3 vehicles of 20
seats (Sc-base) to 5 vehicles of 8 seats (Sc-4a), 10
vehicles of 4 seats (Sc-4b), and 20 vehicles of 2 seats
(Sc-4c). )is allows testing different types of flexible
feeders, from those performed by minibuses or vans
to a ride-sharing service with small vehicles (e.g.,
UberX Share).

)e ten simulated scenarios (each one involving 25
simulation runs) are synthetically described in Table 4
concerning the Sc-base. All the other input parameters
are set equal to those of Sc-base, as reported in Table 3. )e
main results are reported and commented in the next
subsections. )e results of the two services will be first
separately presented; then, a comparison between them is
performed. From the point of view of the demand, we focus
on PUC, from the point of view of the operator on OUC,
whereas TUC encompasses both points of view. An overview
of scenario results with all the output indicators defined in
Tables 1 and 2 is presented in Appendix E.

4.2.1. Fixed-Route Feeder. )e results of the simulations for
the FRF in terms of PUC, OUC, and U are reported in
Figure 8.

As expected, the operator cost OUC is quite constant
over scenarios Sc-1 and Sc-2 because the fixed service is not
affected by the spatiotemporal demand distribution, while
Sc-3a provides a smaller operation cost because of the
shorter travelled distance.

If we look at demand spatial distribution (Sc-1), when
demand is higher near the MRTstation, the TUC of the FRF
remains almost the same (+1%). We report a reduction of
PUC of 3% (SC-1a) and 7% (Sc-1b) when compared to a
uniform demand distribution (Sc-base). )is is mainly due
to shorter passenger ride times since they are more con-
centrated near theMRTstation. On the other hand, the OUC
increases, since fewer travellers are using the feeder service.

Interesting results emerge if we consider different demand
patterns (Sc-2). In particular, there are two opposite trends: a
higher concentration of users directed to the MRT station (Sc-
2a) worsens the performance of the FRF in terms of PUC (+9%)
and, thus, TUC (+7%), whereas the opposite occurs when users
originate mostly at theMRTstation (withmultiple destinations)
(-7%, -5%).)is could be explained in terms of the regularity of
the service. In the first case, bus bunching might occur, thus
worsening the headway regularity and average waiting times.
Conversely, the regularity improves in the opposite case (Sc-2b)
because passengers are generatedmostly at theMRTstation and
board the FRF with scheduled departure times.

A different configuration of the service area (more or less
stretched) leads to different results. In particular, there is a
decreasing trend of PUC (and TUC) from less-stretched to
more-stretched areas with the best result for Sc-3c. )is
outcome was expected as well since walking time is more
relevant for users than the other time components. In this
respect, a more-stretched area implies shorter walking times
and higher ride time.

4.2.2. Demand-Responsive Feeder. Figure 9 reports the re-
sults from DRF simulations, similar to the FRF case.

Demand spatial distribution and, in particular, a demand
concentrated closer to the MRT station (Sc-1) improves the
performance ofDRF compared to Sc-base, also because of better
dispatching of passengers that can be more easily assigned to a
few virtual stops. As in the previous case, the decrease in PUC
(-2% in Sc-1a and -13% in Sc-1b) is compensated by the increase
in OUC (+14% and +28%, respectively).

Interesting and quite different results compared to the
FRF case emerge if we consider different demand patterns
(Sc-2). In particular, it is possible to see a lower performance
of the DRF in Sc-2 compared to the Sc-base. More specifically,
the worst case occurs in Sc-2b, that is, when the demand is
mainly originated at the MRTstation. )is can be ascribed to
higher waiting times at the station, since “waiting” starts once
the demand is generated (vs. the “home”-based demand
where it starts when the user arrives at the virtual stop).
)erefore, demand concentration worsens the DRF. Besides,
in Sc-2a, a higher number of rejected users (+141% higher
than in the Sc-base) occur. )is result can be explained by a
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simpler assignment of passengers to vehicles in the case of one
origin and multiple destinations (one-to-many) than in the
opposite case (many-to-one).

)ree more scenarios are simulated for the DRF case, that
is, by varying the number and capacity of vehicles while
keeping the total seat capacity constant (Sc-4). A clear in-
creasing trend of TUC is visible due to higher OUC once the
number of vehicles and drivers increases. Interestingly, PUC
decreases from Sc-base to Sc-4, but the relative difference
between the subscenarios is very low. )is suggests that it is
neither profitable nor beneficial to use a higher number of
small vehicles (i.e., cars) to perform the DRF service (Sc-4b, Sc-
4c), while vans might represent a good compromise. )ey
would be a suitable solution from the user perspective while
implying higher operator cost (+35%) but resulting in a slightly
lower TUC (− 4%) compared to the minibuses case of Sc-base.

)is result confirms the impact of driver costs on the
total operator cost and suggests the possibility of looking at
automated vehicles (AV) as a potential solution. Figure 10
shows a comparison between TUC with and without the
driver cost for Sc-base and Sc-4 showing how the difference
between the two values increases with the number of

vehicles. Clear savings can be obtained in the case of Sc-4c,
implying 20 vehicles of 2 seats, that is, a Uber-like service.
However, this option should be analysed more in detail by
looking at other important variables like the cost of AVs and
the different operation conditions (e.g., road infrastructure,
commercial speed, increased road congestion) and the
willingness of passengers to use them.

4.2.3. DRF vs. FRF. Figure 11 shows the comparison be-
tween the DRF and the FRF. )is analysis allows finding
what service suits better to each situation.

In general, the DRF performs better in Sc-1b where we
have a decreasing demand from the MRT station to the
outskirts, thanks to the flexibility of the service, which allows
a better matching between passengers and vehicles and lower
driving distances.

)ere is no clear trend in varying the shape of the service
area. )e two services are almost equivalent in Sc-3a, Sc-3b,
and Sc-3c where a better performance for the users is
compensated by higher costs for the operator (and vice
versa). By stretching the area (Sc-3c), thus representing
different catchment areas according to the MRTnetwork (in

Table 4: Description of the second set of simulated scenarios.
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Figure 8: Results of the second set of simulations for the FRF (for
result interpretation; PUC� passenger unit cost; OUC� operator
unit cost; U� utility).
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Figure 9: Results of the second set of simulations for the DRF (for
result interpretation; PUC� passenger unit cost; OUC� operator
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terms of the station and line spacing), the FRF starts be-
coming more attractive than the DRF.

Demand pattern is a critical issue to consider when
planning and designing feeder services (Sc-2). In this respect,

the simulation results suggest adopting the FRF instead of the
DRF when the demand is mainly originated at the MRT
station (to multiple destinations) and vice versa, since this
would imply smaller TUC, especially in the first case (Sc-2b).
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Figure 10: Comparison between transport unit cost (TUC) for traditional and automated vehicles (AV) in Scenario Base (2 vehicles with
capacity� 20 seats) and Scenario 4 (vehicle capacity x number of vehicles� 8× 5, 4×10, 2× 20).
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Figure 13: Possible options of demand consolidation at virtual stops. (For the interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.).
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Avg Ride Time (Trd) [min] 6.10

Avg Total Travel Time (T) [min] 12.99
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Avg Passenger Disutility (Upax) 19.18
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OPERATOR-RELATED
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Operator Unit Cost (OUC) [€/pax] 1.04
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Figure 14: Summarizing table with FRF simulation outputs (for scenarios 1–3, percentage variations are reported with respect to Sc-base).
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)is is due to the regularity of the FRF service, which is higher
compared to the DRF. On the opposite, when the demand is
homogeneously distributed in origin/destination from/to the
MRT station, a DRF service is to be preferred.

5. Conclusions

)is article presented an agent-based model (ABM) for the
mass rapid transit feeder design. Fixed-route feeder (FRF)
and demand-responsive feeder (DRF) services have been
compared to understand their attractiveness under different
conditions, by taking into account both operator and user
perspectives. )e ABM reproduces a parametric synthetic
environment where different variables related to demand,
service area, and service configurations can be easily
modified. )e first set of scenarios allowed a comparison
with the analytical model presented in Quadrifoglio and Li
[18] finding a critical demand density that acts as a switching
point between the two services. )is was performed to show
the effectiveness of the simulation model and the proposed
insertion heuristic by reproducing the same scenarios and
introducing new realistic constraints, allowing to find a
demand density threshold.

)e second set of simulations was performed to re-
produce different use cases by changing the demand/service
configurations while maintaining the same demand density,

mimicking realistic scenarios of different transport services
and land-use areas. )e results of ten scenarios show that a
demand concentrated near the MRT station improves the
performance of both the DRF and FRF services with the DRF
to be preferred due to lower total (user and operator) unit
costs. Stretching the service area improves the performance
of the FRF services because of the lower travellers’ walking
time, while a nonhomogeneous demand pattern may suggest
adopting different service configurations (FRF of DRF)
along the day. Finally, by increasing the DRF fleet while
maintaining the same total capacity (i.e., using smaller ve-
hicles), one can notice that there is no gain in terms of total
unit cost since the increase in the operator cost is not
compensated by an equivalent decrease of user cost. )is
could be changed by considering automated vehicles that
would drastically reduce the operator cost.

In terms of practical implications, the results suggest that
the DRF is to be preferred in TOD-like areas characterized
by a high negative density gradient from the MRT station
(Sc-1b), or in peripheral areas where station spacing is quite
high (Sc-base). Vice versa, the FRF should be preferred in
mono-functional land-use areas (e.g., residential or work-
places) during peak periods. Besides, the same transport
operator might switch services along the day as the demand
pattern changes over time, using an FRF during peak periods
and a DRF during off-peak periods.)is could be carried out
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Figure 15: Summarizing table with DRF simulation outputs (for scenarios 1–4, percentage variations are reported with respect to Sc-base).
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using the same vehicle fleet and staff, just changing the
operation parameters.

In summary, the proposedmodel can be used to optimize a
feeder-trunk transit network, by using variables related toMRT
network topology, its line and station spacing, and spatial and
temporal demand pattern as inputs, and finding the optimal
feeder operation as output. Our dispatching algorithm, based
on insertion heuristics, involves three levels of exploration of
the feasible solutions, that is, the set of vehicles that can serve
the request, the set of locations where the request can be
physically served, and the set of feasible insertions between two
already scheduled stops. )is approach has the advantage of
consolidating passenger requests, reducing detours, and
allowing for a higher shareability of the service. Moreover, it
enables the transit operator to vary the flexibility of the op-
eration from almost a door-to-door service to a point- or route-
deviation service. We believe that such a dynamic procedure
can be applied by real operators in real transit networks,
providing good solutions without high computational burden,
and it can be improved to deal with wider operating context.

)is study comes with some limitations opening future
research. First, the theoretical nature of the model, and the
application to a synthetic case study, while making it gener-
alizable, do not allow to formulate context-based practical
implications. In this respect, the upgraded version of ourmodel
should consider the user-specific (e.g., gender, age, occupation)
and mode-specific differences [46], which reflect the hetero-
geneity of user preferences regarding the different time
components, the value of time, and the service fare. Also,
applying the model to real case studies would imply devoting
particular attention to the demand forecasting and user loyalty
to the DRTservice over time [47], two factors which are crucial
to ensure a proper planning, operation design, and eventually
the viability of the service itself. Accordingly, we would address
the problem of travel demand uncertainty, relying on more
data and use cases. Another attractive issue, which is currently
poorly addressed in literature, is the evaluation of dynamic
pricing schemes for flexible transit, which would help the
service providers improve system performance, maximizing
the profit according to the spatial and temporal variation in
demand. Dynamic pricing strategies [48] can be included in
more sophisticated ABMs, where negotiation mechanisms
between the vehicle fleet and the users and among the vehicles
themselves would be simulated. In future research endeavours,
it will be interesting to compare the performance of DRF and of
parallel FRF services that could be used to serve the service area
with the same operation costs, reducing the walking time of
users while increasing the headway. Finally, the impact of
automated vehicles on service performance should be analysed
more in detail to further explore the potential of this new
technology to provide efficient feeder services.

Appendix

A. Derivation of the Demand Density Function

From a spatial perspective, the base demand density (in
trips/km2h) is modelled as a linear function λ� λ0–m x,
where x is the horizontal distance from the terminal (in

km), λ0 is the demand density at x � 0, and m is the slope
that makes the values decrease. Let us denote with λL the
as the demand density at x � L, with λ the average demand
density (which occurs at x � L/2) and with Λ the ratio
between λL and λ0 (Figure 12). We obtain m � (λ0− λL)/L,
λ� (λ0 + λL)/2, and λL �Λλ0. We can therefore express the
demand function via the two parameters λ and Λ as
follows:

λ �
2

1 + Λ
λ 1 −

1 − Λ
L

x . (A.1)

From Equation (A.1), we derive λ0� 2λ/(1 +Λ) and
λL� 2Λλ/(1 +Λ). )e value Λ� 1 represents the case where
the demand is assumed spatially homogeneous throughout
the service region; thus, from Equation (A.1), we obtain λ�

λ, ∀x.

B. Derivation of the Expected Value of the DRF
Cycle Distance

)e expected cycle distance ECD for the DRF service, that
is, the length of the round route, is given by the sum of a
horizontal component (the vehicle movement from the
left to the right and vice versa) and a vertical component
(the deviations along the vertical direction to serve the
passengers). )e former derives from Section 4.2 of [18]
and generalizes the result to the nonuniform demand
assumption (Appendix C), whereas the latter derives
from Section 4 of [49] and it is improved by a correction
coefficient ξc (Appendix D), which accounts for the
spatial and temporal consolidation of multiple trip re-
quests at the same virtual stop (i.e., served by the same
vehicle at the same time). Assuming we divide the service
area in a large number NL of segments of length Δz � L/NL
and width W, we can express the expected cycle distance
as follows:

ECD

+ ξc

W

2
+(n − 1)

W

3
 .

(B.1)

Unlike the above-cited works, in our simulation model,
backtrackings are allowed. In fact, let us imagine that the
vehicle serves 3 requests ri (i� 1, 2, 3) with coordinates (xi, yi)
and x1< x2< x3.With the no-backtracking policy of [18, 49],
the requests should have been served in the order [r1r2r3],
but the dispatching algorithm (discussed in the next para-
graph) could find that the order [r2r1r3] is a better solution
even though it implies a minor backtracking movement.

C. Derivation of the Expected Value of the
Horizontal Component of the DRF
Cycle Distance

For a random request r, the probability that xr≤ z, being 0≤
z≤ L, is given by the ratio between the red trapezoid and the
light-blue trapezoid (Figure 12), so that we derive
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Pr xr ≤ t( 

�
λ0 + λz

λ0 + λL

z

L

�
2 − (1 − Λ)(z/L)

1 + Λ
z

L

�
2

1 + Λ
z

L
−
1 − Λ
1 + Λ

z
2

L
2,

(C.1)

where Λ is the ratio between λL and λ0.
As in [18], the expected value of the horizontal com-

ponent of the DRF cycle distance can be derived as follows:

� 
L

0
1 − Pr max xr( |r � 1, . . . , n( ≤ z  dz,

� 
L

0
1 − 

n

r�1
Pr xr ≤ z(  

⎧⎨

⎩

⎫⎬

⎭dz

� 
L

0
1 −

2
1 + Λ

z

L
−
1 − Λ
1 + Λ

z2

L2 

n

 dz.

(C.2)

Imagine dividing the length of the service area L in an
adequately large numberNL of segments of length Δz� L/NL
(e.g., Δz≈ 10m). )en, we can approximate Equation (C.2)
as follows:

� 

NL

z�1
1 −

2
1 + Λ

z

NL

−
1 − Λ
1 + Λ

z2

N 2
L

 

n

 Δz.

(C.3)

In the case of uniform demand density (Λ�1), Equation
(C.2) becomes

E max xr( |r � 1, . . . , n 

� L
n

n + 1
,

(C.4)

as in [18].

D. Derivation of the Correction Coefficient ξc
In Section 3.4, we described the set of feasible virtual stops
associatedwith a passenger’s origin or destination. In Figure 13,
the scheme of how passengers can be potentially assigned to the
nearest three stops is depicted: the red dotted arrows indicate
the stops where a single passenger request can be served,
whereas the green dashed arrows indicate the stops where the
consolidation of more than one request can happen.We ignore
in this phase, for computational simplicity, the possibility of
having a fourth virtual stop, which is the nearest one already
scheduled but not yet visited by the vehicle.

Look at the virtual stop O in Figure 13: it is a potential
stop for passengers a, b, and c, where their trip requests can

be consolidated. In general, we can determine an “attrac-
tivity area” around each virtual stop (the light-blue area
around stop O in Figure 13) equal to 3d2

g. )erefore, con-
sidering the whole service region of area LW, the probability
for two random requests of being consolidated in the same
stop is given by the following equation:

pc �
3d

2
g

LW
, (D.1)

fromwhich we derive the probability of no-consolidation for
two requests: pnc � 1–pc.

Let us consider the expected number of trip requests n
that a vehicle should serve along its route (see Equation (6)).
Each new request i+ 1 has a joint probability of no-con-
solidation with respect to each of the i already scheduled
requests, pnc2. )en, considering the n–1 requests after the
first one, we can derive ()e derivation of ξc is based on the
sum of the geometric series 

n
k�1 rk � r(1 − rn)/1 − r) the

correction coefficient ξc, which takes into account the de-
crease in the expected cycle time due to the demand con-
solidation, which is given as follows:

ξc

�
pnc 1 − p

n− 1
nc 

(n − 1) 1 − pnc( 
.

(D.2)

E. Results of the Second Set of Simulations

)e simulation outputs of the base scenario (Sc-base) and
the percentage variations of the outputs of the other sce-
narios with respect to the Sc-base are summarized in Fig-
ure 14 (FRF service) and Figure 15 (DRF service).
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sostenibile: Trasporti” (unique project CODE CUP
E66C180013890007) under the programme “PON Ricerca e
Innovazione 2014-2020–Fondo Sociale Europeo, Azione 1.2
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