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,is paper focuses on how to synchronize network-wide timetables of first trains in an urban metro system, in which the train-
connection-based route can be exactly determined for each first-train-attached origin-destination (OD) demand pair. With the
help of even headway scheduling on each line, the problem is actually to adjust the departure times of first trains and connecting
trains from their origin stations and the departure interval on each line. Subjected to train operation and connection constraints, a
biobjective nonlinear integer programming model is formulated to minimize the total travel time of OD-dependent passenger
demands and the deviation between the known and expected schedules. ,en, the Nondominated Sorted Genetic Algorithm-II
(NSGA-II) is adopted to solve the proposed model, and an improved technique is elaborated to reduce the alternative route
choices. Finally, numerical experiments are conducted to demonstrate the effectiveness and availability of the proposed model
and methods.

1. Introduction

As one of the network-wide train timetabling problems, the
first train timetabling problem seeks to determine the de-
parture times of the first trains in metro networks, to im-
prove the connection efficiency of these first trains at transfer
stations. Compared with the non-first train timetable syn-
chronization problem, the first train timetabling problem is
characterized by a longer train connection time between the
first trains, which typically exceeds the maximum headway
on lines. Such excessive passenger transfer waiting time can
seriously decrease the travel quality of the passengers taking
the first trains. It is necessary to design a high-level first-train
timetable for these passengers. Furthermore, a well-designed
first train synchronization timetable, which can provide
high-quality transfer services to attract more passengers, is a
matter of significant importance for operators.

,e first train timetabling problem is known to be very
complicated, so the existing literature has proposed some
simplistic measures to address this problem. First, transfer
direction-based passenger demand, which is actually the
number of passengers from the feeder line to the connecting

line at transfer stations, is considered to facilitate modeling
and solving [1]. It is undeniable that such a passenger de-
mand pattern is capable of representing passenger transfer
behaviors when passenger travel routes are unique. How-
ever, in large-scale metro networks, passengers typically
have several alternative transfer routes from the origin
stations to designation stations, which means that passen-
gers can flexibly select the transfer direction. ,at is, the
transfer-direction-based demandmay be a rough estimate of
passenger transfer because it lacks a description of passenger
choice behaviors. Second, the simplistic measures are from
the identification of train connections. Based on the given
train timetable, a typical approach is to optimize only the
train connections between the first trains, ignoring the
connections from the first trains to non-first connecting
trains [2]. Although a standard mixed-integer linear pro-
gramming model can be established by the above simpli-
fication, the corresponding first train synchronization
efficiency is bound to be affected by the simplified con-
nections and the given train timetable.

,erefore, this paper addresses passenger demand and
train connection identification to improve the first train
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transfer efficiency. Specifically, we consider transfer pas-
senger origin-destination (OD) demand that takes the first
trains in the metro network and allows them to select flexible
travel routes. Furthermore, all the connections from the first
trains to the corresponding connecting trains are identified,
and the variable headway on each line is considered. ,us, a
biobjective optimization model is established to minimize
the passenger travel times and the deviation times from the
actual schedules. Meanwhile, the Nondominated Sorted
Genetic Algorithm-II (NSGA-II) is designed to generate
Pareto solutions for the problem under consideration.

1.1. Literature Review. ,e network-wide train timetabling
problem has attracted extensive attention from the public
transportation field, and the objective functions of the
problem are diverse. First, much research has focused on
single-objective functions for train timetable synchroniza-
tion. Fleurent et al. [3] established a network flow model to
reduce the deviation between the actual departure interval
and the ideal interval. Cevallos and Zhao [4] presented a
system-wide approach to minimize the total transfer times
by shifting existing timetables. Considering heterogeneous
transfer walking times, Chen et al. [5] proposed a mixed-
integer quadratic programming model to maximize the
number of transfer passengers for last train services on
metro networks. A mixed-integer programming model was
established by Chen et al. [6] to improve passenger acces-
sibility. As for the first train timetabling problem, Guo et al.
[2] proposed a first train timetable optimizationmodel based
on the importance of lines and transfer stations, which can
minimize the total connection time at transfer stations
coupled with the degree of importance of the station. Li et al.
[7] proposed a reference-based piecewise function to
maximize the satisfaction of passengers’ transfer waiting
times.

Second, multiple objective functions are often used to
optimize the train transfer optimization problem. Chung
Min Kwan and Chang [8] proposed a biobjective pro-
gramming model to minimize the total passenger dissatis-
faction index and total deviation index and employed the
Nondominated Sorted Genetic Algorithm-II to generate
Pareto solutions. Tian and Niu [9] considered a biobjective
function with the maximum number of train connections
and the minimum passenger waiting times for the network-
wide train timetable problem. From the perspective of
passengers and operators, Guo et al. [10] developed a
multiobjective optimization model to determine optimal
train service schedules with the maximum transfer events
and the minimum transfer synchronization time. Kang et al.
[11] simultaneously minimized passenger transfer waiting
times, total train running times, and train energy con-
sumption for the last train station-skipping problem. Fur-
thermore, Nie et al. [12] established the last-shift schedule
model to minimize the transfer waiting times and maximize
the network connectivity. Obviously, it is more compre-
hensive to use multiple evaluation criteria to measure the
complicated network-wide train timetabling problems. Note
that, however, the studies associated with first train

synchronization mainly focus on a single objective function
with train connection efficiency.

In the design of train timetables, passenger demand plays
an important role, such as Niu and Zhou [13], Barrena et al.
[14], Niu et al. [15], Tian and Niu [16], and Shang et al. [17].
Due to the inherent complexity of train synchronization,
transfer-direction-based passenger demand is usually con-
sidered to optimize network-wide train timetables. Given
the number of passengers between each transfer direction,
Wong et al. [18] presented a mixed integer programming
optimization model to minimize the interchange waiting
times of all passengers for this schedule synchronization
problem with nonperiodic timetables. Similar to transfer-
direction-based demand, Wang et al. [19] adopted arrival-
rate-based passenger demand to establish a nonlinear in-
teger programming model for the train transfer problem.
Shafahi and Khani [20] formulated a mixed integer pro-
gramming model to minimize the waiting time of station-
based passenger demand for the transit network scheduling
problem. For the first train synchronization problem, Kang
et al. [1] established an optimization model by using the
transfer-direction-based demand and analyzed the con-
nectional regulation of first trains at transfer stations on each
line. Indeed, such passenger demand patterns can effectively
facilitate modeling and computation, but they cannot cap-
ture the travel choice behavior of passengers.

More recently, the passenger OD demand has also been
applied to the network-wide train timetabling problem. For
two interconnected high-speed rail lines, Niu et al. [21]
proposed a nonlinear programming model based on the
time-dependent OD demand to minimize passenger
waiting times at stations and crowding disutility in trains.
Li et al. [22] maximized the total number of passengers
reaching their destinations in a network by using the OD
demand. Zhou et al. [23] paid close attention to the entire
travel process, including multiple transfer behaviors of
passengers and loaded static OD passenger demand on the
traveling path. For the last-train timetable problem, Yang
et al. [24] expected to find a feasible train space-time path
with accessibility for the OD passenger demand. Fur-
thermore, Yin et al. [25] utilized the time-dependent OD
demand pattern to construct a mixed-integer nonlinear
programming model for the train timetabling problem with
the transfer. Although the OD passenger demand has been
considered for some train transfer problems, the first train
timetable problem still lacks the application of the OD
passenger demand.

1.2. Focusof&isStudy. To highlight the contributions of our
proposed approach, Table 1 provides a systematic com-
parison with the most relevant literature. Specifically, we
collaboratively optimize the train timetabling and the pas-
senger routing by using the OD passenger demand instead of
the transfer-direction-based passenger demand. ,en, a
biobjective function is proposed to more comprehensive
formulate this problem. Furthermore, the NSGA-II algo-
rithm is designed to solve the proposed biobjective opti-
mization model. Note that, similar to the existing literature,
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this paper ignores the train capacity constraints to simplify
this problem.

Compared with the existing research, the main contri-
butions of this paper are summarized as follows:

(1) We consider the transfer OD passenger demand in
the first train timetabling problem. Based on this OD
demand, transfer passenger travel behaviors can be
easily formulated during the modeling process,
which is beneficial for designing passenger-oriented
train timetables.

(2) To trade off transfer passenger travel efficiency and
nontransfer passenger service quality, a biobjective
nonlinear programming model is then established to
minimize the transfer waiting times and the devia-
tions between the actual schedule and the expected
schedule on each line. In addition, a train connec-
tion-based route is introduced to calculate the total
travel time of transfer passengers.

(3) An NSGA-II with customized acceleration strategies
is proposed to effectively solve large-scale instances.
,ese strategies are able to generate promising
passenger travel routes and accelerate computational
times by reducing the repetitive calculation of
transfer times for different OD demands.

,e remainder of this paper is organized as follows: the
problem is described in detail in Section 2. In Section 3, a
mixed integer programming model is established to describe
the interest in the problem.,en, in Section 4, the method of
determining the effective route alternative set and the OD
demand classification method are introduced, and the
implementation principle of the NSGA-II algorithm is also
introduced. Section 5 conducts several numerical examples
with different scales, and the authors conclude this study and
provide further research directions in the last section.

2. Problem Statement and Passenger
Travel Times

2.1. Problem Statement. ,is paper focuses on a directed
urban metro network, where the set of lines is denoted by L,
l ∈ L, the set of stations on line l is indicated as Sl, s ∈ Sl, and
the set of trains scheduled on line l is represented by Il, i ∈ Il.
Considering that the same-speed trains are scheduled in
most metro systems, we assume that both the running times
on each segment and dwelling times at each station for all
trains are given.

In the metro network, let K be the set of all transfer OD
demands that need to take the first trains at their origin
stations. For OD demand k ∈ K, let k � (ok, dk, qk), where
ok, dk, and qk represent the origin station, the destination
station, and the number of passengers from ok to dk, re-
spectively. ,e purpose of this paper is to generate high-
quality network-wide train timetables for serving the con-
sidered transfer OD demand.

To facilitate modeling, we do not consider passenger
waiting times at the origin stations and instead pay more
attention to the passenger travel times. Such consideration is
the same as in the existing literature [2], mainly for the
following reasons. Specifically, in practice, the obtained first-
train timetable is usually publicly announced, especially in
China, which means that the passengers taking the first
trains can select a reasonable time to arrive at the origin
stations according to the published first-train timetables,
thereby avoiding long waiting times. Additionally, the
passengers taking the first trains may face a special transfer
time exceeding the maximum headway of all lines due to the
uncoordinated first-train timetables [1]. ,us, these pas-
sengers are typically more concerned about their travel times
than waiting times at the origin stations. Furthermore, we
specify in advance an actual timetable that can provide high-
level service quality for the nontransfer passengers. By

Table 1: Comparison between this paper and the most relevant literature.

Publication Problem
type

Train
capacity Passenger demand Objective function Passenger travel

route Algorithm

Wong et al. [18] All trains No Transfer-direction-
based demand Minimize waiting time No CPLEX-based

heuristic
Shafahi and
Khani [20] All trains No Station-based demand Minimize waiting time No GA

Zhou et al. [23] Last train No Static OD demand Maximize OD accessibility Yes CPLEX

Chen et al. [5] Last train No Station-based demand Maximize the number of
transfer passengers No CPLEX

Chen et al. [6] Last train No Static OD demand Maximize percentage of
accessible OD pairs Yes GA

Yang et al. [24] Last train No Time-dependent OD
demand

Maximize space-time
accessibility Yes LR

Guo et al. [2] First train No Transfer-direction-
based demand Minimize connection time No CPLEX

Kang et al. [1] First train No Transfer-direction-
based demand Minimize waiting time No Heuristic

,is paper First train No Static OD demand Minimize travel time
Minimize schedule deviation Yes NSGA-II
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minimizing the deviation time between the optimized
timetable and the actual timetable, we can indirectly guar-
antee the service quality of the nontransfer passengers.

In practice, the majority of the OD demands have
multiple physical routes from the origin stations to the
destination stations in metro networks. ,ese physical
routes are actually represented by a sequence of stations on
different lines. In this paper, let Rk denote all routes of
demand k (r ∈ Rk), and let Sr be all transfer stations in route
r. At transfer station s ∈ Sr, the corresponding feeder and
connecting lines are indicated by lfeederr,s and lconnectr,s , re-
spectively. As shown in Figure 1, the OD demand from
stations 2 to 9 has two routes, i.e., Rk � {r1, r2}, and the sets of
stations of the two routes are Sr1

� 3, 7{ } and Sr2
� 4, 8{ },

respectively. At transfer station 3 in route r1, we can obtain
lfeederr1 ,3 � 1D and lconnectr1 ,3 � 3U.

To model and solve the first-train timetable synchro-
nization problem as described previously, we integrate
nonlinear modeling techniques, multiobjective optimization
methods, and intelligent evolutionary algorithms. Specifi-
cally, the passenger travel times are used to measure the
level-of-service of train timetables. However, the calculation
of passenger travel times involves inherent nonlinear rela-
tionships caused by train connections between different
lines. ,e nonlinear modeling technique is thus employed to
represent the complicated calculation process of passenger
travel times. ,en, we systematically consider four kinds of
constraints and two objective functions to build a biobjective
first-train timetable synchronization model. Based on the
multiobjective optimization method, an intelligent evolu-
tionary algorithm (i.e., NSAG-II) is finally designed to solve
the proposed biobjective optimization model. An illustrative
description of the research process is shown in Figure 2.

2.2. Passenger Travel Times. Passenger travel times are often
used as an important evaluator for passenger-oriented train
timetabling problems. Generally, the travel times are
composed of train running times, transfer waiting times, and
transfer times. ,e train running times can be easily ob-
tained according to the train operating process. ,e pas-
senger transfer waiting times need to identify the effective
connections between different trains at transfer stations,
which is a more complicated task. Furthermore, the key to
calculating travel times is determining the connection times
between different trains at transfer stations.

For simplicity, we adopt two common assumptions: (1)
the walking times of all passengers at transfer stations are
fixed [18] and (2) the train capacity is not considered so that
passengers can board the first arriving train [26]. ,at is, a
successful train connection must satisfy the requirements

that the difference between the departure time of the con-
necting train and the arrival time of the feeder train is
minimal and not less than the transfer time. As shown in
Figure 3, the connecting train of train 1 on line 1D is only
train 2 on line 3U at transfer station 3.

From the two above-given assumptions, we can obtain
that a feeder train corresponds to the unique connecting
train at the transfer station. Meanwhile, it has been men-
tioned that the transfer OD demand only takes the first train
at the origin station. ,us, the passengers along a given
physical route definitely have unique train trajectories when
the network-wide train timetable is known. In this paper, the
train trajectory is called a train-connection-based route. In
terms of a single passenger, his or her travel time along the
given route is actually the duration of the corresponding
train-connection-based route, which is equal to the differ-
ence between the arrival time of the train serving him or her
at the destination station and the departure time of the first
train from the origin station. For clarity, let TAs

l,i and TDs
l,i

denote the arrival and departure times of train i at station s
on line l, respectively.

Taking route r1 in Figure 1 as an illustrative example, the
given train timetables on the lines involved in route r1 are
shown in Figure 2. Clearly, for the OD demand k from
stations 2 to 9, Figure 2 shows that their travel route along r1
is unique. Specifically, they take the first train at station 2 on
line 1D, then transfer to train 2 on line 3U at station 3, and
finally transfer to train 4 on line 2D at station 7. Further-
more, the travel time is the arrival time of train 4 at station 9
on line 2Dminus the departure time of train 1 at station 2 on
line 1D, i.e., TA9

2D,4 − TD2
1D,1.

As mentioned previouly, many passengers need to
transfer multiple times from their origin stations to the
destination stations. To model the passenger travel process,
it is necessary to record the trains involved in the passenger
travel process. To this end, we introduce the symbol α(r, l, s)

to indicate the corresponding connecting train on line l at
transfer station s in route r. In fact, the identification of
connecting trains at transfer stations is a recursive iterative
process. For example, at transfer station 3 in Figure 2, the
feeder train must be the first train on line 1D; thus, we easily
obtain that train 2 on line 3U is its connecting train because
this train satisfies min TD3

3U,2 − TA3
1D,1 | TD3

3U,2−􏽮 TA3
1D,1 ≥

t31D,3U, 2 ∈ I3U}. Furthermore, at the next transfer station 7,
train 2 on line 3U can be used as the feeder train, so its
connecting train (i.e., train 4 on line 2D) can be recursively
obtained by the same method. By analogy, we can identify
the associated trains on the route. ,us, the symbol α(r, l, s)

can be represented as follows:

α(r, l, s) � argmin
i∈Il

TD
s
l,i − TA

s
l′ ,α r,l′ ,s−( ) | TD

s
l,i − TA

s
l′ ,α r,l′ ,s−( ) ≥ t

s
l′ ,l, l′ � l

feeder
r,s􏼚 􏼛l � l

connect
r,s , s ∈ Sr, r ∈ Rk, (1)

where ts
l′ ,l is the fixed transfer time from lines l′ to l at

transfer station s and α(r, l′, s− ) is the connecting train at the
previous transfer station (denoted by s− ) of station s on line
l′ in route r. Furthermore, the passenger travel time of OD
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demand k along route r, denoted by Trk, can be easily for-
mulated as follows:

Trk � qk · TAdkl,α r,l,r+( ) − TD
ok
l′,1( )

l � lconnectr,r+ ,

l′ � lfeederr,r− , r ∈ Rk, k ∈ K.

(2)

where r− and r+ are the �rst and last transfer stations in
route r, respectively.

From the above-given analysis, it can be seen that the
calculation of passenger travel time is a very complicated
process, which involves the passenger in-train travel times
and the transfer waiting times. �e passenger in-train travel
times depend utterly on the train running time on each
segment. In the metro network, though the train running
time is �xed, the passenger in-train travel times of di�erent
travel routes are distinguishable. Also, the passenger transfer
waiting times can be determined by the corresponding train
connections between the feeder trains and the connecting

Problem statement
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 Network topology
 OD passenger demand
 Train parameters

Analysis for
calculation of

passenger travel times

Optimization model

Constraints

Objective function

 Headway constraints
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 First train departure time constraints
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Figure 2: Illustration of the research process outline.

Time horizon

Station 2Li
ne

 1
D

Station 3

Station 7

Station 9

Li
ne

 3
U

Li
ne

 2
D

Train on line 1D
Train connection

Train 1

Train 1 Train 2 Train 3

Train 1 Train 2 Train 3 Train 4

Train arrival time
Train on line 3U

Train departure time
Train on line 2D

Figure 3: Train-connection-based route.

5

6

13

3 4

8

11

12

109

21

7

14

1D

2D

4U3U

r1

r2

Figure 1: Illustration of the metro network and passenger transfer route.

Journal of Advanced Transportation 5



trains. To exactly calculate the passenger travel time, the
passenger route selection and the train connection identi-
fication must be combined. Note that, such a combination
greatly increases the complexity of this problem so that we
need to explore a very large solution space for finding the
optimal solution.

3. First-Train Timetable
Synchronization Model

3.1. Notations. In this study, we introduce the following two
types of decision variables:

TD
s(l)
l,1 : departure time of the first train on line l at its

starting station s(l)
Hl: headway of two adjacent trains on the line l

For the convenience of readers, the notations used in the
formulation of our problem are listed in Table 2.

3.2. Constraints

3.2.1. Headway Constraints.

Hl � TD
s(l)
l,i+1 − TD

s(l)
l,i i, i + 1 ∈ Il, l ∈ L, (3)

h
min
l ≤Hl ≤ h

max
l l ∈ L. (4)

Constraint (3) can ensure that the time interval of two
adjacent trains is equal to headway Hl. ,at is, using the
decision variables TD

s(l)
l,1 and Hl, we can easily obtain the

departure times of nonfirst trains at the corresponding
starting stations. Constraint (4) requires that the decision
variable Hl satisfy the minimum and maximum restrictions
[27].

3.2.2. Train Operation Constraints.

TA
s
l,i � TD

s−1
l,i + t

run
l,s , s ∈ Sl\ s(l){ }, i ∈ Il, l ∈ L, (5)

TD
s
l,i � TA

s
l,i + t

dwell
l,s , s ∈ Sl\ s(l), e(l){ }, i ∈ Il, l ∈ L. (6)

,ese constraints can determine the arrival and de-
parture times of all trains at each station according to the
given running times and dwell times.

3.2.3. First Train Departure Time Constraints.

t
early
l ≤TD

s(l)
l,1 ≤ t

late
l l ∈ L. (7)

In a metro network, the departure time of the first train
at the starting station on each line is required to satisfy the
earliest and latest departure times. In this paper, the earliest
departure times are equal to the prespecified starting op-
eration times, which can be comprehensively determined by
many factors, such as passenger demand, maintenance
constraints, and station management.

3.2.4. Passenger Travel Time Constraints.

Tk � min
r∈Rk

T
r
k􏼈 􏼉. (8)

Here, Tk denotes the shortest travel time of demand k. As
mentioned previously, OD demand k in the metro network
usually corresponds to several travel routes (Rk). ,us, the
travel time of demand k is equal to the minimum travel time
in Rk, namely, minr∈Rk

Tr
k􏼈 􏼉. Note that, the travel time of each

route (Tr
k) can be determined by (2), which is associated

with the decision variables.

3.3. Objective Functions. In this paper, the optimization
objectives of the first train timetable synchronization
problem are considered from the following two aspects.

First, the minimum total transfer passenger travel time is
regarded as one optimization objective. As mentioned
previously, any OD demand k corresponds to several travel
routes. In general, passengers expect to select the shortest
route for their journey. We use Tk to denote the shortest
travel time of demand k, i.e., Tk � minp∈Pk

T
p

k􏽮 􏽯. ,erefore,
the minimum total transfer passenger travel time, denoted
by Z1, can be represented as follows:

minZ1 � 􏽘
k∈K

Tk. (9)

Second, the minimum deviation between the actual
schedule and the optimized schedule, denoted by Z2, is
used as the other objective function. Similar to Kwan et al.
[8], this paper introduces the actual schedule to guarantee
the service level for nontransfer passengers. Let Hl in-
dicate the actual headway of trains on line l, and Dl in-
dicate the actual departure time of the first train at the
origin station on line l. Furthermore, it is required that the
optimized schedule is as close as possible to the actual
schedule. ,e corresponding objective function can be
written as follows:

minZ2 � 􏽘
l∈L

TD
s(l)
l,1 − Dl

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + Hl − Hl

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼒 􏼓. (10)

3.4. Model Analysis. Furthermore, the above first-train
timetable synchronization model (FTSM) can be summa-
rized as follows:

Model FTSM. Objective function (9) and (10) Con-
straints (1)–(8)

,e above-given model FTSM is a typical biobjective
nonlinear optimization model. Between the two objective
functions (9) and (10), there exists a conflicting relationship
that the deviation times may not be optimal if the passenger
travel times are minimized and vice versa. Such a conflicting
relationship easily causes severe solving difficulty to si-
multaneously minimize these two objectives. Additionally,
the objective function (10) with the absolute value and the
constraints (1), (2), and (8) are nonlinear, which further
increases the complexity of the model FTSM.
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For the multiobjective optimization problem, non-
dominated sorting is a necessary step in the solution process.
To represent the complexity of nondominated sorting in our
proposedmodel, let NDl denote the set of departure times of
the first train at the starting station on line l,
NDl � t

early
l , t

early
l + 1, . . . , tlatel􏽮 􏽯, and NHl indicate the set of

accessible headways on line l, NHl �

hmin
l , hmin

l + 1, . . . , hmax
l􏼈 􏼉. Furthermore, the number of fea-

sible solutions, denoted by N, for the proposed model can be
obtained, namely, N � 􏽑

|L|
l�1(|NDl| · |NHl|). Similar to the

discussion ofWu et al. [28], the computational complexity of
nondominated sorting in our problem can be expressed as
O(2N2). For the rail network with 4 lines shown in Figure 1,
when assuming |NDl| � 5 and |NHl| � 5 for all lines, the
number of feasible solutions is N� 390,625, and then the
computational complexity of nondominated sorting is
305,175,781,250. Obviously, the computational complexity
of nondominated sorting greatly increases the difficulty of
solving this problem.

Based on the above analysis, the considered problem is
very complex. Actually, the train synchronization

optimization problem is known to be NP-hard [18]. It is
difficult to find the optimal solutions in large-scale and
complex instances. ,us, using multiobjective evolutionary
algorithms (e.g., NSGA-II) is a good choice to overcome the
difficulties mentioned previously.

4. Solution Algorithm

4.1. Algorithm Framework. For the above biobjective opti-
mization model, we employ the NSGA-II to generate its
Pareto solutions. During the solution process, the calcula-
tion of objective function Z1 (i.e., minimizing the total travel
time) is more complicated. Specifically, we need to search all
the routes of each OD demand and calculate the corre-
sponding travel times. However, in large-scale urban rail
networks, there are thousands of OD demands, and each OD
demand has a large number of routes. Obviously, the cal-
culation of the travel times in the objective function is a very
time-consuming process.,erefore, a preprocessing method
(see Section 4.2) is embedded in the NSGA-II to speed up the
travel time calculation.

Table 2: Sets, indices, parameters, and variables.

Sets Definition
L Set of lines in the urban rail transit network
Sl Set of stations on line l
Il Set of trains scheduled on line l
K Set of OD demand in the urban rail transit network
Rk Set of transfer routes of OD demand k
Sr Set of transfer stations in route r
Indices
l, l′ Index of lines, l, l′ ∈ L

i Index of trains, i ∈ Il, l ∈ L

s Index of stations, s ∈ Sl , l ∈ L

k Index of OD demand, k ∈K
r Index of transfer route of OD demand k, r ∈ Rk , k ∈ K

Parameters
s(l) Starting station on line l
e(l) Terminal station on line l
ok Origin station of OD demand k
dk Destination station of OD demand k
qk Number of passengers for OD demand k
r− ,e first transfer station in route r of OD demand k
r+ ,e last transfer station in route r of OD demand k
lfeederr,s Feeder line at station s in route r
lconnectr,s Connecting line at station s in route r
t
early
l Earliest departure time of the first train from the starting station online l

tlatel Latest departure time of the first train from the starting station online l
hmax

l Maximum departure interval of two adjacent trains on line l
hmin

l Minimum departure interval of two adjacent trains on line l
trunl,s Train running time from stations s− 1 to s on line l
tdwelll,s Train dwell time at station s on line l
ts
l′ ,l Transfer time from lines l′ to l at transfer station s
Variables
TAs

l,i Arrival time of train i at station s on line l
TDs

l,i Departure time of train i at station s on line l
α(r, l, s) Connecting train on line l at transfer station s in route r
Tr

k Travel time of route r of OD demand k
Tk Minimum travel time of OD demand k
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Furthermore, the overall algorithm framework is shown
in Figure 4. First, we need to input the associated infor-
mation, such as the network topology, OD demand, actual
schedule, and algorithm parameters, in the initialization
stage. Second, we implement the preprocessing method and
randomly generate several feasible solutions to activate the
NSGA-II algorithm. ,en, the key steps and basic genetic
operations of the NSGA-II are executed. Finally, a new
population is generated, and the corresponding objective
value of each chromosome can be rapidly calculated by using
the preprocessing method.

4.2. Preprocessing Method for Accelerating the Travel Time
Calculation. As mentioned previously, each OD demand
corresponds to numerous physical routes in large-scale
metro networks. In practice, many of these routes may be
unfavorable for passenger travel because of their longer
travel times [29]. To save computational time, we select some
promising routes instead of all routes to calculate the ob-
jective function. Specifically, according to the departure time
windows of the first trains at the starting stations and the
actual schedule of each line, we estimate the minimum and
maximum travel times of each physical route using the
enumerate method. ,en, given any two routes r and r’, we
will take route r as the promising route if the maximum
travel of route r is less than the minimum travel time of route
r’.

We continue to take the small-scale metro network
shown in Figure 1 as an example. ,e running time on each
segment is shown in Figure 5. ,e transfer times at all
transfer stations are set as 3min, the dwelling times of all
trains at each station are 1min, and the actual headway of
each line is 7min. Furthermore, the departure time windows
of lines 1D, 2D, 3U, and 4U are [5:50, 6:10], [5:55, 6:15], [5:
55, 6:15], and [6:00, 6:20], respectively. For the OD demand
from stations 1 to 10 in this network, there are two routes,
i.e., r1 � (1⟶ 2⟶ 3⟶ 7⟶ 8⟶ 9⟶10) and
r2 � (1⟶ 2⟶ 3⟶ 4⟶ 8⟶ 9⟶10). Using the
enumeration method, we estimate the minimum and
maximum travel times of the two routes, as shown in Table 3.
Obviously, since the maximum travel time of route r1 is less
than that of route r2, we select route r1 as the promising
route.

In addition, we mentioned previously that the key to the
travel time calculation is to determine the train connection
time at transfer stations. In practice, the routes of many OD
demands have common transfer directions. ,at is, the
travel times of these routes include the same train con-
nection times. ,e OD demands (1, 9), (2, 9), (1, 10), and (2,
10) shown in Figure 4 can complete their journeys along
route r1 (i.e., 1⟶ 2⟶ 3⟶ 7⟶ 8⟶ 9⟶10). Ob-
viously, these OD demands have the same train connections
at transfer stations 3 and 7. ,us, it is necessary to avoid
repeatedly calculating train connection times to accelerate
the computational time. To this end, we first determine the
train connection times of each first train at transfer stations
from the given network-wide timetables and then save the
values of these train connection times to a data pool.

Subsequently, the travel time calculation of each OD de-
mand directly uses the associated connection times from the
data pool.

4.3. NSGA-II. In order to clearly describe the NSGA-II
algorithm, let pop_size denotes the population size, Gen_
max indicates the maximum number of iterations, and
l_num denotes the number of lines in the network. An
integer coding chromosome with a length of 2∗ l_num is
employed in the genetic operation. ,e first l_num genes
express the departure times of the first trains on each line,
and the last l_num genes indicate the headways on each line.

Figure 6 uses a chromosome with 8 genes to denote the
corresponding solution to the problem illustrated in Fig-
ure 1. Specifically, the first four genes represent the de-
parture times of the first trains on four lines, and the
remaining genes denote the headways on all lines. Fur-
thermore, if we assume that the starting timestamp of the
study period is 6:00, then the departure times of the first
trains on lines lD, 2D, 3U, and 4U are 6:10, 6:15, 6:21, and 6:
08, respectively; and the corresponding headways are 8min,
7min, 6min, and 4min on the four lines, respectively.

,e crossover and mutation operations in this paper are
similar to Li et al. [30]. In the crossover operation, two
crossover points are randomly generated in the range of [1,
l_num] and [l_num+ 1, 2∗ l_num], respectively. In addi-
tion, the crossover operation is performed with the given
crossover probability. In the mutation process, two feasible
values are randomly generated for the departure times and
headways, respectively. Likewise, if the randomly generated
floating-point number is less than the mutation probability,
the mutation operation is conducted.

To calculate the crowding distance of different objectives,
the following equation is established:

D
i
w � f

i+1
w − f

i−1
w􏼐 􏼑/ f

max
w − f

min
w􏼐 􏼑. (11)

Here, fmax
w and fmin

w represent the maximum and
minimum values of the wth objective function at this level,
respectively, and fi+1

w and fi−1
w represent the wth objective

function values corresponding to the i+ 1th and i− 1th
individuals at this level, respectively.

In the process of generating a new parent population,
individuals with higher levels are selected from the com-
bined population to enter the new parent population. If the
total number of individuals in the same level exceeds the
population size of the new parent population, the individuals
with a large crowding distance in the level are selected to
enter until the number of individuals reaches the population
size. ,e detailed procedure is represented in Algorithm 1.

5. Numerical Experiments

In this section, different-scale experiments regarding the
Xi’an metro network are conducted to verify the correctness
and effectiveness of the above model and algorithm. All
experiments are implemented by C++ on a PC with an i5-
4590s 3.00GHz CPU and 4GB RAM.
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5.1. Large-Sized Numerical Experiment. We take the Xi’an
urban rail transit network, which includes 16 lines (8 bi-
directional lines) and 153 stations, as the large-sized nu-
merical experiment. In this experiment, each bidirectional
line is used as two unidirectional lines. For example, line 1
represents the up-train and down-train directions as
lines 1U and 1D, respectively. �e lines and stations
are renumbered as shown in Figure 7. �e running times
on each segment and the OD demands are listed at
https://github.com/xpTianLZJT/TTP/blob/main/JAT2021/
FurtherExperiments.zip. �e dwell times of all trains at
each station are 1min, the passenger transfer walking times
at each transfer station are 3min, and the actual headway of

each line is 7min. In addition, according to the actual
operation requirements of the Xi’an metro, we set the
minimum headway and the maximum headway to 2
minutes and 10 minutes, respectively. Table 4 shows the
earliest and latest departure times of the �rst trains on all
lines.

We set the size of the population to 200, the crossover
probability to 0.9, the mutation probability to 0.2, and the
maximum number of iterations to 500. To reduce the in-
�uence of randomness in the NSGA-II algorithm, we re-
peatedly perform the NSGA-II algorithm 50 times for the
large-scale experiment. Furthermore, we select the most
typical 5 groups of Pareto solutions from multiple

Initialization

(i) Input network and OD demand
(ii) Input ideal headway

(iii) Input algorithm parameters

Genetic operation

(i) Selection
(ii) Crossover and mutation

(iii) Generate offspring

NSGA-II key steps

(i) Fast non-dominated sort
(ii) Congestion calculation

(iii) Elite-preserving strategy

Preprocessing method

(i) Travel time accelerated
computing strategy

(ii) Generate initial solution

Figure 4: Algorithm framework.
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Figure 5: Illustration of the running time on each segment.

Table 3: Feasible route of OD demand from stations 1 to 10.

Departure times and travel time Route r1 Route r2
Minimum case Maximum case Minimum case Maximum case

Departure time of the �rst train at the
starting station on each line

1D 5:50 5:50 5:50 5:50
2D 5:56 5:59 5:55 6:00
3U 5:57 6:15 — —
4U — — 6:00 6:06

Travel time 33 57 60 72

10 15 21 8 8 7 6 4

1D 2D

6:00 6:05 6:11 5:58

3U 4U 1D 2D 3U 4U

Departure time Headway

Figure 6: Chromosome structure for four lines.
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calculations, which are shown in Figure 8. For convenience,
each solution is denoted by the corresponding coordinate of
the objective value, i.e., (value of passenger travel time, value
of schedule deviation time). For example, the �rst solution
with a travel time of 5648027min and a deviation time of
36min is represented by (5648027, 36).

To compare the di�erence between the optimized
timetable and the actual timetable, Table 5 lists the departure
times of the �rst trains at the starting stations in the actual
timetable, and the actual headways of all lines are equal to
7min. �e total travel time of transfer passengers is
5729497min.

From the solutions in Figure 8, we can �nd that the
passenger travel time of the solution (5236686, 99) is the
smallest, which is 8.6% less than that of the actual schedule.
�e corresponding headways, the departure times of the �rst
trains, and the deviations from the actual timetable are
shown in Table 6, where the deviation is represented by the
optimized headway (departure time) minus the actual
headway (departure time). For example, the deviation
headway of line 1D is −2 (i.e., −2� 5–7). In addition, for the
solution (5648027, 36) with the minimum deviation, the
total passenger travel time is also the largest, which is re-
duced by 1.4% compared with the actual schedule. In
practice, operators can select a suitable solution according to
practical requirements.

Table 7 lists some train connection relationships from the
possible feeder lines to the connecting lines 1U and 1D in
solution (5236686, 99). At transfer station 14, (1, 2D)⟶(1, 1D)
represents the �rst train on line 2D is connected by the �rst
train on line 1D. Similarly, the passengers on the �rst train of
line 3D can transfer to the third train on line 1U at transfer
station 18. Note that there is a unique transfer direction at
station 23. Among the optimized connection in Table 7, the
“�rst train-�rst train” connection occurs six times, accounting
for 46.2%. From the above-given results, we can further verify
that not all passengers taking the �rst trains transfer to the �rst
train on the connecting line. Also, compared with the actual
train timetable, the connection e¨ciency and transfer waiting
time of the optimized train timetable are improved.

5.2. Further Experiments

5.2.1. Comparison of Di�erent-Sized Experiment Instances.
By using di�erent-sized networks, we further compare the
e¨ciency of the proposed algorithmwith the NSGA-II without
the preprocessing method. �ese di�erent-sized networks are
constructed based on the above-mentioned Xi’an metro net-
work, which is shown in Table 8. �e detailed information of
these instances is available at https://github.com/xpTianLZJT/
TTP/blob/main/JAT2021/FurtherExperiments.zip. Among the
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Figure 7: Map of the Xi’an metro network.
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Step 1: (Initialization)
Step 1.1: Input the number and index of the lines in the network and the number and index of the intermediate stations and

transfer stations on each line;
Step 1.2: Input OD demand set K and promising routes;
Step 1.3: Input the actual schedule of each line in the network and other parameters;
Step 1.4: Input algorithm parameters, such as the population size pop_size, maximum number of iterations Gen_max, crossover

probability, and mutation probability;
Step 2: (Initial population)

For i� 1 to pop_size do
Generate l_num departure times of �rst trains and headways of each individual randomly;

Endfor//i
Generate the parent population;
Gen� 1;

Step 3: (Sorting)
Step 3.1:

For j� 1 to pop_size do
Calculate the nondominated sorting rank of each individual;

Endfor//j
Step 3.2:

Calculate the crowded distance of each individual in the same rank;
Step 4: (Genetic operation)

According to the binary tournament selection rules, pop_size/2 individuals are selected from the parent population and the
pop_size/2 individuals are genetically operated according to the randomly generated crossover probability and mutation probability
until other pop_size/2 individuals are generated;
Step 5: (O�spring population)

�ese pop_size individuals generated in Step 4 compose the o�spring population;
Step 6: (Combined population)

�e parent population generated in Step 7 (ifGen� 1, generated in Step 2) and o�spring population generated in Step 5 compose
the combined population (2∗ pop_size);
Step 7: (New population)

Calculate the nondominated sorting rank of each individual in the combined population and calculate the crowded distance of
each individual in the same rank;

Select pop_size new individuals from the combined population to compose the new parent population;
Step 8: (Solution)

If Gen<Gen_max, then
Go to step 4;

Else
Output �nal solutions, such as the Pareto front, synchronized timetable, and train connection sequence.

Endif

ALGORITHM 1: NSGA-II.
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Figure 8: Pareto solutions of the large-scale experiment.
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Table 6: Optimized headways and departure times of the first trains for solution (5236686, 99).

Line Optimized
headway

Deviation from the actual
headway (min)

,e optimized departure time of
the first train

Deviation from the actual departure time of
the first train (min)

1D 5 −2 5:53 −7
1U 6 −1 6:04 +4
2D 3 −4 6:02 +2
2U 6 −1 6:02 +2
3D 6 −1 6:00 0
3U 4 −3 5:51 −9
4D 2 −5 5:56 −4
4U 2 −5 5:53 −7
5D 6 −1 5:51 −9
5U 3 −4 6:03 +3
6D 10 +3 5:58 −2
6U 2 −5 6:20 +5
7D 5 −2 6:29 −1
7U 8 +1 6:29 −1
8D 7 0 5:58 −2
8U 8 +1 6:02 +2

Table 4: ,e earliest and latest departure times of the first trains.

Line Earliest departure time Latest departure time
1D 5:50 6:10
1U 5:50 6:10
2D 5:50 6:10
2U 5:50 6:10
3D 5:50 6:10
3U 5:50 6:10
4D 5:50 6:10
4U 5:50 6:10
5D 5:50 6:10
5U 5:50 6:10
6D 5:50 6:10
6U 6:05 6:25
7D 6:20 6:40
7U 6:20 6:40
8D 5:50 6:10
8U 5:50 6:10

Table 5: Departure times of the first trains in the actual timetable.

Line Departure time
1D 6:00
1U 6:00
2D 6:00
2U 6:00
3D 6:00
3U 6:00
4D 6:00
4U 6:00
5D 6:00
5U 6:00
6D 6:00
6U 6:15
7D 6:30
7U 6:30
8D 6:00
8U 6:00
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algorithm parameters, we set the population size to 50, the
number of iterations to 50, the crossover probability to 0.9, and
the mutation probability to 0.2.

In general, the physical lines in metro networks are
decreasing, and the corresponding transfer passenger de-
mand is also decreasing.,e opposite also holds. Table 9 lists
the calculation time of solving the model with or without the
preprocessing method. ,e scale of the problem always
affects the calculation speed, and the preprocessing method
can effectively reduce the computation time.

To validate the effectiveness of the proposed approach,
we use statistical analysis to assess the results of different-
scale experiments obtained by the NSGA-II with and
without the preprocessing method. Taking the computation
times in Table 9 as two related samples, we then perform the
Wilcoxon test on the SPSS software to verify the two
methods. ,e verification results are shown in Table 10.
Specifically, the value of normalized Wilcoxon statistics
(denoted by Z) is −2.023, and the asymptotic 2-sided sig-
nificance (denoted by P) is 0.043. Due to P � 0.043< 0.05,
the computation times with and without preprocessing
method are completely different, and the NSGA-II with the
preprocessing method is conducive to improving the so-
lution efficiency.

To further demonstrate the advantage of our proposed
approach, we compare the difference between transfer OD
passenger demand and transfer-direction-based demand.
First, we convert the OD demand to the transfer-direction-
based demand. Similar to Wong et al. [18], we assume that
the path choices of passengers are fixed, and passengers
choose a path with as few interchanges as possible. ,is
assumption allows us to obtain transfer-direction-based
demand by assigning OD demand. Second, we replace
minimizing passenger travel time with minimizing pas-
senger transfer waiting time.,e revised approach is capable
of solving instances with the transfer-direction-based de-
mand. ,en, we use the two approaches (i.e., the proposed
approach for OD demand and the revised approach for
transfer-direction-based demand) to solve five groups of
instances with different-sized networks. For each instance,

we select solutions with the same deviation from the Pareto
solutions obtained by the two approaches, respectively. ,e
comparison results of the two cases are shown in Table 11.

It is well known that a transfer passenger may need to
transfer multiple times to reach his/her destination in a
complex metro network, which can be found in Table 11.
Specifically, the passenger waiting time for the first, second,
and third transfers can be obtained in our proposed ap-
proach, but the approach for the transfer-direction-based
demand only can retrieve the waiting time for the first
transfer.

In other words, the approach for transfer-direction-
based demand cannot measure the multiple transfers of
passengers. As shown in Figure 9, in the solution obtained by
our proposed approach in the instance 1, OD (12, 79)
passenger demand is to transfer from train 1 on line 1D to
train 2 online 2D at station 14, from train 2 on line 2D to
train 2 on line 3U at station 60, and from train 2 on line 3U to
train 3 on line 6U. When using the approach for transfer-
direction-based demand, however, the transfer processes of
OD (12, 79) demand at stations 60 and 57 cannot be
considered.

5.2.2. Analysis of the Actual Headway Hl and the Maximum
Headway hmax

l . To analyze the influence of the actual
headways (Hl) and maximum headways (hmax

l ) on the
optimized solutions, we consider five instances by setting
different Hl and hmax

l on the basis of the above lager-sized
example regarding the Xi’an metro network. Furthermore,
we set the population size to 50, the number of iterations to
50, the crossover probability to 0.9, and the mutation
probability to 0.2. ,e obtained results are shown in Ta-
ble 12, where we calculate the average travel time, deviation
time, and average headway for all the obtained Pareto so-
lutions. Obviously, both the average travel time and average
headway increase with both the maximum and actual
headways.

In addition, we select three solutions (i.e., (5974021, 75),
(5669964, 108), and (5492363, 147)) from Pareto solutions of

Table 7: Connection relationships for the connecting lines 1U and 1D in solution (5236686, 99).

Transfer station Optimized connection
relationship Transfer waiting time (min) Actual connection relationship Transfer waiting time

(min)

14

(1, 2D)⟶ (1, 1D) 0 (1, 2D)⟶ (1, 1D) 10
(1, 2D)⟶ (1, 1U) 0 (1, 2D)⟶ (2, 1U) 3
(1, 2U)⟶ (2, 1D) 0 (1, 2U)⟶ (1, 1D) 5
(1, 2U)⟶ (2, 1U) 1 (1, 2U)⟶ (3, 1U) 5

15

(1, 4D)⟶ (1, 1D) 0 (1, 4D)⟶ (1, 1D) 3
(1, 4D)⟶ (2, 1U) 0 (1, 4D)⟶ (3, 1U) 0
(1, 4U)⟶ (1, 1D) 1 (1, 4U)⟶ (1, 1D) 2
(1, 4U)⟶ (2, 1U) 1 (1, 4U)⟶ (4, 1U) 6

18

(1, 3D)⟶ (1, 1D) 1 (1, 3D)⟶ (1, 1D) 9
(1, 3D)⟶ (4, 1U) 0 (1, 3D)⟶ (5, 1U) 3
(1, 3U)⟶ (1, 1D) 13 (1, 3U)⟶ (1, 1D) 12
(1, 3U)⟶ (2, 1U) 0 (1, 3U)⟶ (5, 1U) 6

23 (1, 7U)⟶ (12, 1U) 0 (1, 7U)⟶ (12, 1U) 6
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Table 8: Instance information.

Instance ID Network Number of lines Number of stations Number of transfer stations
1 Origin network 16 153 13
2 Except 6U and 6D 14 142 11
3 Except 6U, 6D, 8U, and 8D 12 134 10
4 Except 6U, 6D, 8U, 8D, 7U, and 7D 10 120 9
5 Except 6U, 6D, 8U, 8D, 7U, 7D, 3U, and 3D 8 98 5

Table 9: Comparison of the computational e¨ciency under di�erent network sizes.

Instance
ID

Number of OD
pairs

Computational times of the proposed algorithm
without the preprocessing method (min)

Computational times of the proposed algorithmwith
the preprocessing method (min)

1 19559 2.98 0.212
2 16481 2.20 0.153
3 14353 1.63 0.138
4 11021 0.992 0.078
5 6886 0.536 0.034

Table 10: Wilcoxon test results.

With the preprocessing method−without the preprocessing method
Z −2.023
P 0.043
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Figure 9: Transfer process for OD (12, 79) passenger demand.

Table 11: Comparison of the two approaches with di�erent demand patterns.

Instance
ID

Our proposed approach Approach for transfer-direction-based demand

Passenger
waiting time
for the �rst
transfer

Passenger
waiting time

for the
second
transfer

Passenger
waiting time
for the third
transfer

Computational
times (min)

Passenger
waiting time
for the �rst
transfer

Passenger
waiting time

for the
second
transfer

Passenger
waiting time
for the third
transfer

Computational
times (min)

1 367538 122574 74768 0.212 371544 — — 0.052
2 313964 83143 44813 0.153 338915 — — 0.033
3 275089 34666 15227 0.138 289690 — — 0.030
4 211925 27188 0 0.078 211315 — — 0.026
5 100121 23618 0 0.034 102418 — — 0.015
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the instance with hmax
l � 18 and Hl � 13. We count the

number of optimized headways and the number of con-
nections of the first trains, which are shown in Table 13. It
can be found that the average headway of the solution
(5974021, 75) is greater than the actual headway, but the
average headways of the other two solutions are less than the
actual headway. ,at is, the optimized Pareto solutions
provide different train schedules such that operators can
choose the preferred solutions according to their prefer-
ences. Also, although we have optimized the connection
times of the first trains, the connection times of many first
trains are still longer than the headway. Actually, this result
is also the most distinctive feature of the first train time-
tabling problem.

5.2.3. Analysis of Different Departure Time Ranges of the First
Trains at the Starting Stations. To analyze the influence of
different departure time ranges of the first trains at the
starting stations on the optimized solution, we further solve
the 6 groups of instances with the different lengths of
departure time ranges. Specifically, the Xi’an metro net-
work is also used as input, and the length of the departure
time ranges of the first trains are set to 10, 12, 14, 16, 18, and
20 minutes, respectively. ,e other parameters in the al-
gorithm are the same as the setting of the above section, and
Table 14 lists the optimized results. One of the most notable
features is that as the length of the departure time range is
increased, the average deviation time increases because the

longer departure time range inevitably causes a larger
solution space.

5.2.4. Analysis of Different Decision Variables. To analyze
the influence of different decision variables, we propose
the following three approaches: (i) optimizing departure
times of first trains with fixed headways, denoted as FH-
ODT for short, (ii) optimizing headways with fixed de-
parture times of first trains, denoted as FDT-OH, and (iii)
optimizing headways and departure times of first trains
(i.e., our proposed approach). Based on the aforemen-
tioned large-sized instance in Section 5.1, we construct
five instances by setting different headways and departure
times of first trains. For simplicity, we assume that the
headways of all lines are the same and the departure times
of first trains are uniformly increased or decreased on the
basis of Table 5. ,us, each instance is identified by the
headways and the increment of the departure times of the
first trains. For example, instance (5, −5) is that the
headways of all lines are 5 minutes, and the departure
times of the first trains are the departure times in Table 5
minus 5minutes. ,en, we employ the three approaches
to solve each instance. ,e computational results are
shown in Table 15. Compared with approaches FH-ODT
and FDT-OH, our proposed approach can significantly
improve passenger travel time while maintaining small
changes in deviation times.

Table 12: Analysis of different maximum headways and actual headways.

Instance
Average travel time

(min)

Average
deviation
time (min)

Average headway
(min)

Computational
times (min)Maximum headway

(hmax
l )

Actual headway
(Hl)

12 7 5457096 90 6 0.225
14 9 5525758 81 10 0.217
16 11 5566354 113 10 0.223
18 13 5694798 108 14 0.284
20 15 5747981 110 14 0.325

Table 13: Analysis of optimized headway and connection of the first train.

Solution

Optimized headway Connection of the first train
Number of
optimized
headways
(>13min)

Number of
optimized
headways
(�13min)

Number of
optimized
headways
(<13min)

Average
headway
(min)

Number of
connection times
for first trains
(>18min)

Number of
connection times
for first trains
(≤18min)

Average
connection
time (min)

(5974021,
75) 6 5 5 14 19 69 38

(5669964,
108) 2 3 11 10 18 70 36

(5492363,
147) 3 1 12 8 19 69 37
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6. Conclusions

,is paper studies first-train timetable synchronization in
metro networks under passenger OD demand conditions.
,ese passengers only take the first train on each line and
expect to complete their journeys in the minimum travel
times. To minimize the passenger travel times, the flexible
selection of travel routes in the network is permitted for
passengers. Furthermore, the train-connection-based route
is introduced to calculate the passenger travel times. In
addition, to guarantee the service quality of nontransfer
passengers, we minimize the deviation between the actual
schedule and the optimized schedule on each line. ,us, a
biobjective nonlinear integer programming model, which is
subjected to train operation and connection constraints, is
established. ,en, NSGA-II is used to solve the proposed
model, and an effective preprocessing method is proposed to
speed up the computational times. Taking the Xi’an metro
network as the background, several experiments are
implemented to demonstrate the effectiveness and efficiency
of the model and algorithm.

As for this complex first-train timetable synchronization
problem, our future studies will focus on the following
aspects. First, a strict train capacity will be considered to
model passenger travel behaviors. Second, it is necessary to
establish some tractable linear optimization models and
develop high-performance solution algorithms, as well as
mathematical models under uncertain train operation and
passenger travel conditions. Finally, it may be a better re-
search direction to expand the research object from partial
trains to all trains for the construction of full-day network-
wide train timetables.
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