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.is paper developed a mixed multinomial probit (MMNP) model with alternative error specification and random coefficients
(for both generic variables and personal attributes) to accommodate flexible covariance structure and taste variation. .e MMNP
model can be efficiently estimated with analytic approximations of multivariate normal cumulative distribution functions, which
avoid defects of simulation-based integration in the mixed multinomial logit (MMNL) model. .e integral dimension of the
MMNLmodel increases as random coefficients increase, but it only depends on the number of available alternatives in theMMNP
model. Simulation experiments and empirical analysis of Shanghai commuters’ mode choice behavior were undertaken to
examine the performance of MMNP models. Both simulation results and empirical results show that MMNP models can well
accommodate flexible covariance structures and taste variation reflected through random coefficients being associated with both
generic and personal variables. Empirical results indicate that the MMNP model performs better than traditional discrete choice
models, such as the multinomial logit, the cross-nested logit, MMNL, and multinomial probit models. Random coefficients of “in-
vehicle time of car” and “number of companions” indicate taste heterogeneity and the identifiability of random coefficients
associated with both generic and personal attributes. Pairwise positive correlations between car/taxi, bus/metro, and bus/bus and
metro are to be expected. However, the positive correlation between the car and metro modes may be unique to the Chinese city,
Shanghai, because of the developed metro system. Unequal error variances reflect heterogeneities in unspecified factors in
commute modes’ utilities. .e MMNP model will offer an alternative efficient way to accommodate taste heterogeneity and
flexible error covariance structure in discrete choice models. Compared with the MMNL model, the MMNP model can ac-
commodate more random coefficients without increasing computational complexity.

1. Introduction

In general, two methods are being applied to overcome the
limitation of the IIA property in the multinomial logit
(MNL) model by accommodating random taste variation
and correlation among alternatives in a discrete choice
model. .e first method adopts the mixed multinomial logit
(MMNL) model, which combines random coefficients
varying across individuals to represent taste variation with
random error components varying across alternatives to

represent correlation among alternatives [1–4]. .e second
method is a more complex mixed generalized extreme value
(GEV) model, such as using a nested logit (NL) model to
represent correlation among alternatives and random co-
efficients to represent taste variation [5–7]. .e flexibility of
these two methods in representing correlation and random
taste variation comes at a cost that choice probabilities can
no longer be expressed in a closed-form function. Compared
with the first method, the benefit of the second one is that it
has fewer dimensions of integration..e disadvantage is that

Hindawi
Journal of Advanced Transportation
Volume 2022, Article ID 8686584, 13 pages
https://doi.org/10.1155/2022/8686584

mailto:xye@tongji.edu.cn
https://orcid.org/0000-0003-3665-7891
https://orcid.org/0000-0001-9697-6953
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8686584


it has a more complex log-likelihood function. Garrow [8]
compared these two methods using NL mixtures to ap-
proximate an NL model because, theoretically, mixture
analogs can approximate any random utility model [9, 10].
.e results show that the NL model cannot be well ap-
proximated by its mixture analog because it is difficult to
obtain precise correlation estimates from mixture models,
particularly for nests that have small correlations, and the
accuracy of NL mixture coefficients is sensitive to the
number of draws and number of random coefficients in the
simulation. Empirical findings in Garrow [8] recommend
adopting the second method to accommodate the correla-
tion and random taste variation.

Although the second method, the mixed GEV models,
has fewer dimensions of integration, the dimension of in-
tegration is the number of random coefficients in the model.
With the increase of random coefficients, the integration will
be more complicated with higher dimensions. Besides, GEV
estimates are biased when negative correlations appear
between choices [11]. However, modelers usually do not
know the covariance structure in advance. Under this
condition, the use of multinomial probit (MNP) models that
can accommodate negative correlation will not cause the
problem of estimation bias. In addition to negative corre-
lations or covariances, an MNP model can also naturally
accommodate unequal variances in its flexible error co-
variance structure. As well as accounting for random taste
variation, this paper considers using a mixed multinomial
probit (MMNP) model with random coefficients to repre-
sent random taste variation and its error terms to represent a
flexible covariance structure among alternatives.

.eMMNPmodel is rarely applied in the transportation
field because of the difficulty to evaluate its likelihood
function without a closed-form expression. Even if there are
some applications, random error terms are usually assumed
to be independently distributed [12, 13]. .ey only use
correlated random coefficients to capture the correlation
between alternatives. If random error terms are also cor-
related, will these correlations, as well as correlated random
coefficients, be identifiable? Generally, in a mixed model,
generic variables, which vary across alternatives, are as-
sumed to take random coefficients. Are all the elements in a
covariance-variance matrix of random coefficients for a set
of generic variables (e.g., in-vehicle travel times across travel
modes) identifiable? Can personal attributes, which do not
vary across alternatives, take random coefficients? If so, how
can the elements in a covariance-variance matrix of those
random coefficients be identified? Some simulation exper-
iments will be conducted to answer those questions in this
paper.

.e estimation of the MMNP model depends on the
computation of a multivariate normal cumulative distri-
bution (MVNCD) function. As the evaluation method of the
MVNCD function improves, to avoid the above-mentioned
defects of simulation techniques in mixed GEV models,
several analytic approximation techniques have been de-
veloped [14]. Bhat [14] proposed four new analytic MVNCD
approximation methods and compared them with other
existing analytic approximation methods and simulation-

based integration methods. Regardless of the dimensionality
of the MVNCD function, the two-variate bivariate screening
(TVBS) approach performs best in the ability to recover
MNP parameters accurately and quickly. .erefore, we
employed the TVBS analytic approximation evaluation of
the MVNCD function to estimate the MMNPmodel for this
study.

.is paper aims to develop an MMNP model with
correlated random coefficients (for both generic variables
and personal attributes) and correlated error structure to
accommodate a flexible covariance structure and taste
variation, which can be efficiently estimated using analytic
approximations of the MVNCD function. And the MMNP
model will be applied to analyze commute mode choice
behavior in Shanghai, China. .e rest of this paper is or-
ganized as follows. .e second section details the meth-
odology of the MMNP model accommodating random taste
variation and flexible covariance structures. In the third
section, simulation experiments are undertaken to validate
the identifiability when correlated random coefficients are
associated with generic variables and personal characteris-
tics. In the fourth section, an empirical study is conducted to
explore Shanghai residents’ commute mode choice behavior.
Discussions and conclusions will be presented in the last
section.

2. Modeling Methodology

In this section, the MMNP model will be formulated to
accommodate correlated random coefficients and a flexible
error covariance structure. For an I-alternative MMNP
model, the utility function of alternative i (i � 1, 2, . . . , I,
where I denotes the total number of alternatives) is given by

Ui � αi + βixi + εi � αi + 
K

k�1
βikxik + εi, (1)

where xi is a column vector of K explanatory variables, and
βi is a row vector of corresponding coefficients. xik and βik

are the kth elements of vectors xi and βi, respectively.
k � 1, 2, · · · , K. εi is the random error term for an alternative
i. ε � (ε1, ε2, . . . , εI)′ follows a multivariate normal distri-
bution with a mean vector of zeros and variance-covariance

matrix Σ �

ρ11 ρ12 . . . ρ1I

ρ12 ρ22 . . . ρ2I

⋮ ⋮ ⋱ ⋮
ρ1I ρ2I . . . ρII

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, or ε ∼ N(0,Σ).

βik is assumed to be a normally distributed random
coefficient with mean bik and standard deviation σik. .at is,
βik � bik + σikzik, and herein zik follows a standard normal
distribution. .en, Equation (1) can be rewritten as

Ui � αi + 
K

k�1
bik + σikzik( xik + εi

� αi + 
K

k�1
bikxik

⎛⎝ ⎞⎠ + 
K

k�1
σikzikxik + εi 

� Vi + ξi.

(2)
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where Vi � αi + 
K
k�1 bikxik is the systemic utility of alter-

native i, ξi � 
K
k�1 σikzikxik + εi which is the total random

utility combining the random error term εi and the random
utility 

K
k�1 σikzikxik from the random coefficient βi. .e

covariance matrix of zk � (z1k, z2k, . . . , zIk)′ can be

expressed as Λk �

1 r12 . . . r1I

r12 1 . . . r2I

⋮ ⋮ ⋱ ⋮
r1I r2I . . . 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since ξi � 
K
k�1 σikzikxik + εi, mean values of zik and εi

are zeros, the mean value of the total random utility ξi is also
zero, E(ξi) � 0. .en, the variance-covariance matrix of ξ �

(ξ1, ξ2, . . . , ξI)′ can be calculated as

Ω � 
K

k�1
σk · σk′( ∗Λk ∗ xk · xk′(  + Σ, (3)

where σk � (σ1k, σ2k, . . . , σIk)′ and xk � (x1k, x2k, . . . , xIk)’,
which are both column vectors. σk′ and xk′ are the transpose
of σk and xk, respectively. “·” represents the matrix multi-
plication, and “∗ ” represents Hadamard product or ele-
ment-wise multiplication. Since βk � bk + σkzk (where
bk � (b1k, b2k, · · · , bIk)’), the variance-covariance matrix of
random coefficients βk � (β1k, β2k, . . . , βIk)’ can be
expressed as Ψk � (σk · σk′)∗Λk.

Based on the principle of random utility maximum
(RUM), the probability that an alternative m is chosen can be
expressed as

Pm � P Um>Ui(  � P ξi − ξm<Vm − Vi( , i � 1,2, . . . , I; i≠m.

(4)

Let ξim � ξi − ξm, −Vim � Vm − Vi with ∀i≠m. .en, the
probability in Equation (4) can be transformed into

Pm � P ξim < − Vim( 

� 
−V1m

−∞
. . . 

−Vim

−∞
. . . 

−VIm

−∞
f ξ1m, . . . , ξim, . . . , ξIm( 

dξ1m . . . dξim . . . dξIm, i � 1, 2, . . . , I; i≠m.

(5)

where f(·) is the probability density function of an
(I − 1)-dimensional multivariate normal distribution
(MVN).

E(ξim) � E(ξi − ξm) � 0. .e covariance matrix of
ξim (i � 1, 2, . . . , I; i≠m) is calculated as
Ωm � Mm ·Ω · Mm

′ , where Ω is the variance-covariance
matrix of ξ � (ξ1, ξ2, · · · , ξI)′ as shown in Equation (3). And
Mm is an identity matrix of (I − 1) size with an extra column

of −1 added as the mth column [15]. For example, Mm �

1 −1 0
0 −1 1  if m � 2 and I � 3. Mm

′ is the transpose of Mm.

.erefore, the likelihood function of the maximum
likelihood estimation procedure or probability of choosing
an alternative m can be expressed as an (I − 1)-dimen-
sional multivariate normal cumulative distribution
(MVNCD) function of ξim ∼ N(0,Ωm) as shown in

Equation (5). With the development of analytic approx-
imations of the MVNCD function, the two-variate bi-
variate screening (TVBS) approach is adopted to estimate
the MMNP model in this paper. .e TVBS approach can
recover underlying parameters accurately and efficiently,
regardless of the dimensionality involved in the MVNCD
function. For more details of the TVBS approach, one can
refer to Bhat [14].

Additionally, in an I-alternative MMNPmodel, (I(I −

1)/2 − 1) elements in the covariance matrix Σ of correlated
error terms can be identified [15]. If correlated random
coefficients are associated with generic variables, all
means b and all elements in the variance-covariance
matrix Ψk are identifiable. If correlated random coeffi-
cients are associated with a personal attribute that appears
in utility functions of all the available alternatives, similar
to an alternative-specific constant, only (I − 1) means of
random coefficients for this personal attribute are iden-
tifiable. And the covariance matrix of random coefficients
β is similar to that of error terms in identifiability. .at is,
(I(I − 1)/2 − 1) elements in the variance-covariance ma-
trix of random coefficients Ψk can be identified. Simu-
lation experiments will be conducted in the next section to
demonstrate the number of identifiable elements in co-
variance matrices.

3. Simulation Experiments

Correlations among alternatives may exist in both cor-
related error structure and correlated random coefficients.
To verify the identifiability of parameters, two simulation
experiment scenarios were designed when correlated
random coefficients were associated with generic variables
and personal characteristics. .e estimation of a model
with independent random coefficients across alternatives
is a special case of that with correlated random coeffi-
cients. All the correlations can be fixed at 0. Random error
terms are correlated across alternatives in both simulation
experiments.

In simulation experiments, we assume that all alterna-
tives are available for each individual. Explanatory variables
follow IID uniform distributions between 0 and 10. De-
pendent variables yi are determined based on the RUM
principle:

yi � D Ui � Max U1, U2, ..., UI(  , (i � 1, 2, 3, ..., I). (6)

If Ui is the maximum utility among all of the available I

alternatives for an individual, D[·] � 1; otherwise, D[·] � 0.

3.1. Experimental Design

3.1.1. Correlated Random Coefficients Associated with Ge-
neric Variables. For a four-alternative MMNP model, we
assumed that four random coefficients are associated with
four independent generic variables x1, x2, x3, and x4. Utility
functions of four alternatives are given as follows:
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U1 � α1 + β1x1 + ε1 � α1 + b1 + σ1z1( x1 + ε1,

U2 � α2 + β2x2 + ε2 � α2 + b2 + σ2z2( x2 + ε2,

U3 � α3 + β3x3 + ε3 � α3 + b3 + σ3z3( x3 + ε3,

U4 � β4x4 + ε4 � b4 + σ4z4( x4 + ε4.

(7)

where random coefficients β � (β1, β2, β3, β4)′ are normally
distributed with a mean vector b � (b1, b2, b3, b4)′ and a
standard deviation vector σ � (σ1, σ2, σ3, σ4)′. Since
random coefficients are assumed to be correlated across
alternatives, z1, z2, z3, and z4 are correlated and follow a
standard multivariate normal distribution with a mean
vector (0, 0, 0, 0)′ and a covariance matrix

Λ �

1 r12 r13 r14
r12 1 r23 r24
r13 r23 1 r34
r14 r24 r34 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. .en, the variance-covariance

matrix of β � (β1, β2, β3, β4)′ is calculated as
Ψ � (σ · σ′)∗Λ. Random error terms ε1, ε2, ε3, and ε4
follow a standard multivariate normal distribution with a
mean vector (0, 0, 0, 0)′ and covariance matrix

Σ �

ρ11 ρ12 ρ13 ρ14
ρ12 ρ22 ρ23 ρ24
ρ13 ρ23 ρ33 ρ34
ρ14 ρ24 ρ34 ρ44

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

All elements in the covariance matrixΨ can be estimated
in the MMNP model. Since only five elements in the error
term covariance matrix Σ can be identified in a four-al-
ternativeMMNPmodel, we fixed all the diagonal elements at
1 and the correlation ρ34. .us, parameters to be estimated
include all α values, all b values, all elements in the co-
variance matrix Ψ, and five covariance elements
(ρ12, ρ13, ρ23, ρ14, ρ24) in the covariance matrix Σ. ρ13 and ρ23
are set as negative to validate the ability of the MMNPmodel
in accommodating negative correlation.

3.1.2. Correlated Random Coefficients Associated with Per-
sonal Attributes. Generally, in a mixed model, random
coefficients are assumed to be associated with generic var-
iables, such as travel time, cost, or other level-of-service
variables of different travel modes. .e identifiability when
random coefficients are associated with personal attributes
has not been explored in previous studies. In this subsection,
random coefficients of the same personal attribute are as-
sumed to be correlated across alternatives and vary across
individuals and alternatives. A three-alternative MMNP
model with utility functions is considered as follows:

U1 � α1 + β1x1 + ε1 � α1 + b1 + σ1z1( x1 + ε1,

U2 � α2 + β2x1 + ε2 � α2 + b2 + σ2z2( x1 + ε2,

U3 � β3x1 + ε3 � b3 + σ3z3( x1 + ε3.

(8)

where random coefficients β � (β1, β2, β3)′ follow normal
distributions with a mean vector b � (b1, b2, b3)′ and a
standard deviation vector σ � (σ1, σ2, σ3)′. Since random
coefficients β1, β2, β3 are correlated across alternatives, z1, z2
and z3 follow a standard multivariate normal distribution

with a mean vector (0, 0, 0)’ and a covariance matrix

Λ �

1 r12 r13
r12 1 r23
r13 r23 1

⎛⎜⎝ ⎞⎟⎠. .en, the variance-covariance matrix

of β � (β1, β2, β3)′ is calculated as Ψ � (σ · σ′)∗Λ. Random
error terms ε1, ε2, and ε3 follow a standard multivariate
normal distribution with a mean vector (0, 0, 0)′ and a

covariance matrix Σ �

ρ11 ρ12 ρ13
ρ12 ρ22 ρ23
ρ13 ρ23 ρ33

⎛⎜⎝ ⎞⎟⎠.

In this case, randomcoefficients are associatedwith the same
explanatory variable x1 in utility functions of three alternatives.
With consideration of the identification problem, one of the
mean values of random coefficients (b1, b2 or b3) should be fixed
as a reference, similar to an alternative-specific constant. .e
covariance matrix of random coefficients β is similar to that of
error terms in identifiability. In a three-alternative MMNP
model, only two elements in the covariancematrix of error terms
Σ can be identified. .erefore, all parameters to be estimated in
this scenario are all α values, two of b values (b1 was fixed), one
covariance element r23 and one standard deviation σ3 in the
covariance matrixΨ, and two covariance elements (ρ12 and ρ13)
in the covariance matrix of error terms Σ. r23 and ρ13 are set as
negative to validate the ability of the MMNP model in ac-
commodating negative correlation.

3.2. Simulation Results. Simulation results of the MMNP
models with correlated error structure and correlated random
coefficients associated with generic variables and personal
attributes are shown in Tables 1 and 2. Variances in both
covariance matrices of error terms are assumed to be identical
in the two experiments. Parameters are also consistently
estimated for heteroscedastic error terms. For brevity, only
the results of homoscedastic error terms are presented here.

According to significant t-statistics at the 0.01 level
shown in Tables 1 and 2, all identifiable parameters can be
estimated and are seemingly consistent with their true
values, indicating that correlations among alternatives can
be accommodated in both error structure and random
coefficients for generic variables. In empirical studies, if
correlations from only one source are considered, it may
lead to bias in model estimation. Results in Table 2 show
that, in addition to generic variables, personal attributes can
also be specified with random coefficients. In real data,
respondents may have different preferences for the same
generic variables (such as travel time and cost of different
travel modes), and individuals with different characteristics
also have different preferences for alternative modes. And
the MMNP model can well accommodate random taste
variation in both generic variables and personal attributes
through random coefficients. As significant t-statistics at the
0.01 level are shown in Tables 1 and 2, all negative covariance
elements in covariance matrices of random error terms are
correctly estimated, which indicates that the MMNP model
can well accommodate various correlated error structures,
even with negative correlations. It can perfectly avoid defects
in previous MMNP models and mixed GEV models since
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error terms are assumed to be independent in previous
MMNPmodels [12, 13], and negative correlations cannot be
accommodated in the mixed GEV models [15], which may
lead to bias in model estimation [11].

However, the sample size for ensuring the significance of
all the identifiable parameters is great in MMNPmodels. For
the four-alternative MMNP model with random coeffi-
cients associated with generic variables, the sample size is
around 500,000 in our experiment to ensure the signifi-
cance of all the critical coefficients. .e sample size for the
three-alternative MMNP model with random coefficients
of personal attributes is around 5,000,000 to ensure sig-
nificance. Both sample sizes are much larger than those in
usual empirical studies. As per Walker [16], although
model parameters are theoretically identifiable, there are
issues of empirical identification, namely, whether the
data can support the model specification. If the empirical
data cannot allow for estimating all the theoretically
identifiable parameters, some parameters may be fixed,
and only parameters of particular interest need to be
estimated.

To improve the efficiency of estimation and decrease the
required sample size for statistically significant identification,
z1, z2, z3, and z4 in the random coefficients of the four-al-
ternative MMNP model can be set as z1 � z2 � z3 � z4. .at
is, z1, z2, z3, and z4 are linearly correlated with a correlation
coefficient of 1. And they follow the standard normal dis-
tribution..en, the required sample size for identification can
be decreased to 5000. .e simulation results with a sample
size of 5000 observations are shown in Table 3.

4. Empirical Study

To examine the performance of the MMNP model in ac-
commodating random taste variation and correlations
among alternatives, an application is presented in this
section to analyze the commute mode choice behavior of
Shanghai residents.

4.1. Data and Sample Description

4.1.1. Commute Trip Data. .e commute trip data used in
this study were derived from a web-based travel survey of
Shanghai conducted in 2018. .e survey collected detailed
socioeconomic and demographic information, and a com-
plete 24-hour travel diary reported by 2033 individuals. .e
detailed trip data included origin and destination locations,
trip beginning and ending times, travel mode, trip purpose,
and the number of companions. Six travel modes are
considered in this study including car, taxi, metro, bus, a
combination of bus andmetro (hereinafter referred to as Bus
and Metro), and the nonmotorized mode (bicycling and
walking). After data screening to remove records with
missing data for explanatory variables of interest and travel
mode choice, the final sample comprised 1743 commute
trips.

4.1.2. Level-of-Service Data. .e LOS characteristics of
different travel modes were extracted from the zone-to-zone
travel impedance matrices generated from transportation
networks of Shanghai, which were integrated into Trans-
CAD based on the GIS data of roads (links and nodes), bus

Table 1: Simulation results for a four-alternative MMNP model of
500,000 observations when random coefficients are associated with
generic variables.

Parameters True values Estimates Std. err. t-stat
α1 −0.5 −0.498 0.074 −6.776∗∗∗

α2 −0.4 −0.377 0.067 −5.640∗∗∗

α3 −0.3 −0.259 0.047 −5.551∗∗∗

b1 0.5 0.511 0.044 11.732∗∗∗

b2 0.3 0.306 0.027 11.563∗∗∗

b3 0.2 0.202 0.015 13.503∗∗∗

b4 0.1 0.099 0.007 13.431∗∗∗

σ1 0.2 0.206 0.018 11.658∗∗∗

σ2 0.4 0.404 0.035 11.722∗∗∗

σ3 0.6 0.606 0.051 11.833∗∗∗

σ4 0.5 0.528 0.045 11.667∗∗∗

r12 0.2 0.203 0.016 12.396∗∗∗

r13 0.4 0.379 0.015 25.196∗∗∗

r14 0.5 0.541 0.013 40.782∗∗∗

r23 0.6 0.608 0.008 74.205∗∗∗

r24 0.3 0.299 0.011 28.064∗∗∗

r34 0.4 0.401 0.010 42.107∗∗∗

ρ11 1.0 1.000 — —
ρ12 0.5 0.511 0.087 5.843∗∗∗

ρ13 −0.3 −0.341 0.105 −3.250∗∗∗

ρ14 0.6 0.524 0.080 6.521∗∗∗

ρ22 1.0 1.000 — —
ρ23 −0.4 −0.372 0.127 −2.932∗∗∗

ρ24 0.5 0.532 0.096 5.517∗∗∗

ρ33 1.0 1.000 — —
ρ34 0.3 0.300 — —
ρ44 1.0 1.000 — —
Note. “—” the corresponding parameter is fixed; ∗∗∗significant at 0.01 level.

Table 2: Simulation results for a three-alternative MMNPmodel of
5,000,000 observations when random coefficients are associated
with personal attributes.

Parameters True values Estimates Std. err. t-stat
α1 −0.5 −0.490 0.008 −63.097∗∗∗

α2 −0.4 −0.396 0.050 −7.894∗∗∗

b1 0.5 0.500 — —
b2 0.3 0.301 0.018 17.119∗∗∗

b3 0.2 0.205 0.007 30.905∗∗∗

σ1 0.2 0.200 — —
σ2 0.4 0.400 — —
σ3 0.6 0.592 0.029 20.669∗∗∗

r12 0.2 0.200 — —
r13 0.4 0.400 — —
r23 −0.6 −0.605 0.089 −6.768∗∗∗

ρ11 1.0 1.000 — —
ρ12 0.5 0.510 0.075 6.827∗∗∗

ρ13 −0.3 −0.313 0.079 −3.958∗∗∗

ρ22 1.0 1.000 — —
ρ23 0.4 0.400 — —
ρ33 1.0 1.000 — —
Note. “—” the corresponding parameter is fixed; ∗∗∗significant at 0.01 level.
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lines and stops, metro lines and stations, and residential
committees. Travel time calculated from floating car data
was added to each link of the road network [17, 18]. Travel
times, service frequencies, and fares by the time of day were
applied to each trip OD pair in the sample.

4.1.3. Sample Description. Table 4 provides a summary of the
socioeconomic and demographic characteristics of the
sample. Most commuters are 20–40 years old, married, and
well educated, hold a driving license, and live with family.
Personal monthly income mainly falls between 4.5k and 15k
RMB Yuan. More than half (62.2%) of commuters have an
available private car on the travel day. Origin TAZs (or
residential areas) have greater population density and lower
employment density than destination TAZs (or workplaces),
as expected.

Descriptive statistics of LOS characteristics are shown in
Table 5. .e average trip distance of nonmotorized mode is
4.204 km, which indicates that nonmotorized mode can
meet most of the short-distance commute demands. In
terms of average fare, the taxi has the highest fare because
Shanghai taxi has a high starting price. In terms of average
in-vehicle time, car, taxi, and metro are all around
20minutes, while the bus and Bus and Metro rise obviously
to 37.999 and 38.747minutes, respectively. In the Bus and
Metro mode, the in-vehicle time of the metro is longer than

that of the bus, indicating that the bus is a complementary
mode to the metro. .e average initial waiting time and
transfer waiting time of the metro are shorter than those of
bus and Bus and Metro, and they vary much less, meaning
that the metro system provides a higher service frequency,
and the service frequency distribution is more even among
different lines. In terms of average access/egress distance,
bus and Bus and Metro have substantially shorter distances
than the metro because the bus has a higher station coverage
rate. And metro’s average access distance is slightly longer
than the average egress distance presumably due to the
denser distribution of metro stations in workplaces than in
residential areas. .e Bus and Metro mode takes a slightly
greater number of transfers than bus and metro, as expected.

4.2.EmpiricalResults. In this section, the empirical results of
models, including the MNL, CNL (cross-nested logit model,
shown in Figure 1), MMNL, MNP, and MMNP models, are
presented in Table 6. And then, the data fit of the MMNP
model is compared with that of the MNL, CNL, MMNL, and
MNP models.

.eMMNPmodel can accommodate both random taste
heterogeneity and flexible covariance structure among al-
ternatives. Compared to the MMNP model, the MNL, the
CNL, and the MNP models cannot accommodate random
coefficients. Although the MMNL model can capture the
taste variation across individuals by random coefficients, it
cannot accommodate the variance heterogeneity of different
travel modes. .e following paragraph will focus on model
results of the MMNP model because coefficients of ex-
planatory variables have the same signs and similar values.

4.2.1. Model Results of the MMNP Model. (1) Random
Coefficients. In the empirical study, both random coefficients
of a generic variable and a personal attribute appear to be
significant, indicating that there are variations among
commuters’ sensitivities to those variables.

As a generic variable, the in-vehicle time of the car has a
mean coefficient of −2.662 and a standard deviation of 1.050.
.e negative mean value indicates that the utility of the car
will decrease with the increase of in-vehicle time on average
across individuals, as expected. .e value of standard de-
viation is different from zero significantly, implying that
random taste heterogeneity does exist among commuters in
this LOS variable. And the value of standard deviation in this
MMNP model is quite similar to that in MMNL models
[19, 20].

“.e number of companions” has a random coefficient
with a mean value of 0.423 and a standard deviation of 0.828
in the utility function of the car mode. .e positive mean
value indicates that “the number of companions,” on av-
erage, has a positive impact on the choice of car because
commuters can share the cost while enjoying the flexibility
and mobility of the car, which is more cost-effective than
driving alone. .e standard deviation is significantly dif-
ferent from zero. “.e number of companions” is a kind of
personal attribute because the variable remains the same in
all alternatives’ utility functions..erefore, it verifies that the

Table 3: Simulation results for a four-alternative MMNP model of
5,000 observations when random coefficients are associated with
generic variables.

Parameters True values Estimates std. err. t-stat
α1 −0.5 −0.792 0.192 −4.126∗∗∗

α2 −0.4 0.561 0.066 8.481∗∗∗

α3 −0.3 −0.714 0.204 −3.500∗∗∗

b1 0.5 0.326 0.040 8.154∗∗∗

b2 0.3 −0.455 0.218 −2.091∗∗

b3 0.2 0.188 0.034 5.488∗∗∗

b4 0.1 0.062 0.032 1.943∗

σ1 0.2 0.199 0.024 8.410∗∗∗

σ2 0.4 0.443 0.049 8.995∗∗∗

σ3 0.6 0.660 0.069 9.521∗∗∗

σ4 0.5 0.580 0.060 9.746∗∗∗

r12 1.0 1.000 — —
r13 1.0 1.000 — —
r14 1.0 1.000 — —
r23 1.0 1.000 — —
r24 1.0 1.000 — —
r34 1.0 1.000 — —
ρ11 1.0 1.000 — —
ρ12 0.5 0.476 0.159 2.992∗∗∗

ρ13 −0.3 −0.340 0.125 −2.733∗∗∗

ρ14 0.6 0.628 0.137 4.584∗∗∗

ρ22 1.0 1.000 — —
ρ23 −0.4 −1.148 0.441 −2.602∗∗∗

ρ24 0.5 0.430 0.206 2.089∗∗

ρ33 1.0 1.000 — —
ρ34 0.3 0.300 — —
ρ44 1.0 1.000 — —
Note. “—” the corresponding parameter is fixed; ∗∗∗significant at 0.01 level,
∗∗significant at 0.05 level, ∗significant at 0.1 level.
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random coefficient of a personal attribute can also be es-
timated in an empirical study.
(2) Error Covariance Structure. As shown in Table 6, the
CNL, the MNP, and the MMNP models all reveal positive
correlations for the pairwise alternatives of car/taxi, car/
metro, bus/metro, and bus/bus and metro. In the context of
single choice models (that is, when only one alternative can
be chosen), such positive correlations imply a higher level of
substitutability between the corresponding pairs of modes
relative to assuming zero correlation (as in the MNL).

Of the pairwise correlations, those between car/taxi, bus/
metro, and bus/bus and metro are to be expected. Cars and
taxis are characterized by their mobility and flexibility, and
both belong to the category of a private transportationmode.
Meanwhile, bus and metro are both public transportation
modes and have many aspects in common. However, the
positive correlation between the car and metro modes, even
though less than the positive correlations between car/taxi
and bus/metro, is particularly interesting because one is a

private mode, while the other is a public transportation
mode. .is result, though perhaps likely to be unique to
many Chinese cities, is probably because the Shanghai metro
has been well developed and provides a convenient, high-
frequency, and punctual service. Shanghai metro operates on
a strict schedule, making it attractive to most commuters.
.e Shanghai metro operates at a speed (almost 30 km/h)
even faster than the speed of road traffic during peak hours.
In addition, it is difficult to find a temporary parking lot
during peak hours, and it is also highly expensive to reserve a
parking lot because of limited parking spaces around
workplaces. .is finding suggests that improvement in
metro LOS can be effective in attracting commuters away
from private cars to the metro and alleviate traffic congestion
during peak hours.

.e variance of the bus mode is also shown in Table 6.
Due to the limited sample size, not all identifiable param-
eters appear to be significant. Variances of the other modes
(car, taxi, metro, bus and metro, and nonmotorized modes)

Table 4: Sample characteristics (N� 1743).

Categorical variables Categories Percentage (%)

Gender Male 45.439
Female 54.561

Age

Younger than 20 years 2.811
21–30 years 34.079
31–40 years 46.242
41–50 years 13.827

Above 50 years 3.041

Marital status Married 72.060
Unmarried 27.940

Driving license Own 75.961
Does not own 24.039

Residential type
Family 87.722

Dormitory 11.819
Other 0.459

Education attainment

Less than high school 1.549
High school 6.311

Bachelor’s degree 78.543
Graduate degree 13.597

Personal monthly income (RMB yuan)

Less than 2k 2.754
2k–4.5k 8.319
4.5k–6k 14.974
6k–8k 17.843
8k–10k 20.023
10k–15k 20.367
15k–20k 7.975
20k–30k 5.221

Greater than 30 k 2.524

Private vehicles

Car 62.192
Electric bicycle 29.260

Bicycle 30.293
Motorcycle 2.008

Continuous variables Mean S.D.
Personal income(1) (10k RMB Yuan/month) 1.018 0.638

Population density (thousand people per square kilometer) Origin TAZ 2.538 2.178
Destination TAZ 1.252 1.855

Employment density (thousand people per square kilometer) Origin TAZ 1.794 1.994
Destination TAZ 2.367 2.704

(1) .e continuous variable “Personal Income” was generated from the categorical variable “Personal Monthly Income.” .e exchange rate of RMB Yuan to
the US dollar is approximately 6.9 :1.
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are fixed at 1 as a base. Consistent with the results in Bhat
[21], the variance of the bus mode is greater than that of car,
taxi, and metro, indicating that unobserved variables affecting
the choice of bus have greater variances than those affecting car,
taxi, and metro. For example, the comfort level is an unob-
served variable whose values may vary considerably within bus
modes because different kinds of bus services in Shanghai, such
as customized buses (or demand-response transit), bus rapid
transit (BRT), and regular buses, may have different occupancy
rates. However, comfort varies little in the car, taxi, and metro.
.erefore, the random component of the bus mode has greater
variance than that of the other modes.

(3) Level-of-Service Variables. .e in-vehicle time takes
expected negative effects on the choice of car, taxi, metro,
and bus. Taxi has the most negative coefficient value because
the taxi fare ranks first among all the modes. Commuters can
spend their in-vehicle time entertaining and do not have to
focus on traffic conditions when they take public transit. As a
result, coefficients of in-vehicle time for metro and bus are
less than those for cars and taxis.

Access/egress distance reduces utilities of public
transit (metro, bus, and Bus and Metro), indicating that
longer access/egress distance will discourage commuters
from choosing public transit. And the coefficient of ac-
cess/egress distance for the metro is lower than that for
bus, Bus and Metro. Because the bus has a higher station
coverage rate than the metro, and the metro has a much
more comfortable environment than the bus, commuters
are more likely to accept the larger access/egress distance
of the metro.

A negative coefficient of “the number of transfers”
implies that the greater the number of transfers is, the less
likely the commuters are to take the bus. Usually, the bus is
not as punctual as the metro. .e more the number of
transfers is, the greater the probability that commuters will
encounter bus delays. Besides, the transferring environment
at public transit stations is crowded and uncomfortable.
Commuters are usually anxiously waiting or in a hurry.

Table 5: Descriptive statistics of LOS (level-of-service) attributes.

Attribute Mean S.D.

CAR Fare (RMB yuan) 7.065 6.471
In-vehicle time (min) 23.406 16.604

Taxi Fare (RMB yuan) 35.490 28.880
In-vehicle time (min) 23.406 16.604

Metro

Fare (RMB yuan) 3.938 0.948
In-vehicle time (min) 20.469 14.714

Initial waiting time (min) 2.164 0.317
Transfer waiting time (min) 1.226 1.455

Access distance (km) 1.826 1.127
Egress distance (km) 1.327 0.978
Number of transfers 0.568 0.669

Bus

Fare (RMB yuan) 3.458 1.707
In-vehicle time (min) 37.999 29.897

Initial waiting time (min) 4.281 2.751
Transfer waiting time (min) 3.152 4.501

Transfer walking distance (km) 0.110 0.240
Access distance (km) 0.657 0.427
Egress distance (km) 0.638 0.430
Number of transfers 0.729 0.854

Bus and metro

Fare (RMB yuan) 3.610 1.626
Total in-vehicle time (min) 38.747 18.981

In-vehicle time allocated to metro (min) 22.060 14.584
In-vehicle time allocated to bus (min) 16.687 14.436

Initial waiting time (min) 3.599 2.658
Access distance (km) 0.720 0.441
Egress distance (km) 0.679 0.407
Number of transfers 0.994 1.026

Transfer waiting time (min) 2.833 3.556
Transfer walking distance (km) 0.126 0.258

Nonmotorized mode Trip distance (km) 4.204 5.611

Root

Car Taxi Metro Bus Bus & Metro Non-motor

Nest A Nest B

Figure 1: Nesting structure of the CNL model.
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Similarly, the coefficient of “transfer waiting time” is also
negative for Bus and Metro.

While the nonmotorized mode mainly serves short-
distance commute trips as shown in Table 5, “trip distance”
takes a significantly negative coefficient, as expected.

(4) Sociodemographic and Employment Variables. Married
commuters tend to drive a car because they usually need to
drive their spouse to work or drive children to school during
the commute trip. Commuting by car can provide maximum
flexibility and convenience. Likewise, commuters living with
families also prefer to use a car. “Personal monthly income”
has positive coefficients in utilities of car, taxi, and metro
because high-income commuters tend to use high-quality, but
high-cost services. With the emerging car-sharing services,
having a driving license becomes the only requirement for
commuters to drive a car as the commute mode. .erefore,
having a driving license will increase the likelihood of
commuting by car. Compared with using a car-sharing
service, “having available private cars on the trip day” will
encourage commuters to drive a car to commute because
commuters do not have to walk to car-sharing stations from
home and return the car to designated stations. On the other
hand, “having available private cars on the trip day” will
decrease the likelihood of taking public transit. “Having
available private bikes on the trip day” provides a more
convenient opportunity for commuters to commute by the
nonmotorized mode as evidenced by a positive coefficient.
Higher employment densities of workplaces indicate lower
parking facility densities and higher parking fees. Commuters
working in these areas will be less likely to drive to work, and
the likelihood of taking a taxi, bus, and metro will increase.

4.2.2. Comparisons of Data Fit with the MNL, CNL, MMNL,
and MNP Models. To evaluate the data fit of the MMNP
model, other four models were also estimated: a basic six-
alternative MNLmodel, a CNLmodel with nesting structure
shown in Figure 1, an MMNL model with random coeffi-
cients associated with the same variables (in-vehicle time of
the car, and the number of companions) as in the MMNP
model, and an MNP model with the same correlated error
structure as in the MMNP model.

To compare themodel fitting performance of theMMNP
model with those of the other four models, multiple
goodness-of-fit measures are calculated, including ρ2(0),
adjusted ρ2(0), Akaike Information Criteria (AIC), and
Bayesian Information Criterion (BIC):

ρ2(0) � 1 −
LL(β)

LL(0)
,

adj.ρ2(0) � 1 −
LL(β) − R

LL(0)
.

(9)

where LL(0) is the log-likelihood value of the model without
any explanatory variables. LL(β) is the log-likelihood value
at convergence.

AIC � 2(R − LL(β)),

BIC � −2LL(β) + R · ln(N).
(10)

where R is the number of parameters estimated in the model,
and N is the number of observations.

Further, to compare the logit-based models with the
MMNP model using a statistical test, a nonnested test
statistic is applied (see [22–24]). .e adjusted log-likelihood
ratio statistic of each model is first computed:

ρ2 � 1 −
LL(β) − R/2

LL(0)
. (11)

.e nonnested test statistic is

P ρ21 − ρ22 > z ≤Φ(−
�����������
−2 · LL(0) · z


). (12)

where Φ represents the CDF of standard normality, and z

takes a positive value. .at is, the probability that (ρ21 −

ρ22 > z) could have occurred by chance is no larger than
Φ(−

�����������
−2 · LL(0) · z


). A small value for the nonnested test

statistic indicates a small probability of erroneously selecting
the incorrect model. And the model with a higher value for
the adjusted likelihood statistic is preferred. .e nonnested
test is then used to compare the MMNP model with the
other four models.

Based on ρ2(0), adjusted ρ2(0), the model with the
highest value performs best. And the model with the smallest
values of AIC and BIC has the best performance. As shown
in Table 7, all the measures indicate the same result that the
MMNP model performs better than the other four models
with the highest values of ρ2(0) and adjusted ρ2(0), and the
smallest AIC and BIC values. It indicates that the MMNP
can not only accommodate random taste variation and
flexible covariance structures among alternatives, but also
perform better than the traditional discrete choice models.
From the informal nonnested likelihood statistic values
provided in Table 7, it can be inferred that the probability of
erroneously selecting the MMNP model is literally zero.

Table 7: Measures of model performance.

Goodness-of-fit measures MNL CNL MMNL MNP MMNP
LL (β) −1764.631 −1757.368 −1755.445 −1743.360 −1733.051
LL (0) −2659.259 −2659.259 −2659.259 −2659.259 −2659.259
ρ2 (0) 0.336 0.339 0.340 0.344 0.348
Adj. ρ2 (0) 0.326 0.327 0.328 0.332 0.335
AIC 3587.261 3580.736 3572.890 3554.720 3538.103
BIC 3745.699 3761.027 3742.254 3740.474 3734.784
Non-nested test 5.71E-17 3.25E-14 1.89E-11 2.89E-07 --
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5. Discussion and Conclusion

.is paper developed an MMNP model with correlated error
structure and random coefficients for both generic variables and
personal attributes to accommodate flexible covariance structure
and random taste variation. And the MMNP model can be
efficiently estimated with analytic approximations of the multi-
variate normal cumulative distribution (MVNCD) function
proposed by Bhat [14]. Both simulation experiments and em-
pirical analysis of Shanghai commuters’ mode choice behavior
are carried out to examine the performance of theMMNPmodel.

Compared to theMMNPmodel, the MNL, the CNL, and
the MNP model cannot accommodate random coefficients.
Although the MMNL model can capture the taste variation
across individuals by random coefficients, it cannot ac-
commodate the variance heterogeneity of different alter-
natives. Simulation results show that the MMNP model can
accommodate a flexible covariance structure, even with
negative correlations that cannot be accommodated in
mixed GEV models. However, the neglect of negative cor-
relation in mixed GEV models may lead to estimation bias.
Correlations among alternatives can exist in both error
structure and random coefficients for generic variables,
while most previous applications ofMMNPmodels assumed
that random error terms were independent of each other,
which may also lead to bias in model estimation. In addition
to correlated random coefficients for generic variables,
correlated random coefficients for personal attributes can
also be significantly identified.

Empirical results are consistent with simulation results
in the fact that random coefficients can exist in both generic
variables and personal attributes in MMNP models. As a
generic variable, the in-vehicle time of the car has a negative
mean coefficient and a standard deviation being significantly
different from zero. “.e number of companions” remains
the same in all alternatives’ utility functions and can be
regarded as a kind of personal attribute. .e random co-
efficient of “the number of companions” has a positive mean
and a standard deviation being significantly different from
zero. Simulation results show that all theoretically identi-
fiable elements in variance-covariance matrices of correlated
random coefficients can be estimated with a large enough
sample size, while in empirical studies, the real data may not
allow for estimating all these parameters due to limited
sample size or little variation in explanatory variables. In
these cases, some parameters may be fixed, and only pa-
rameters of interest can be estimated. .e variance and
correlation structures from theMMNPmodel provide useful
insights. A greater variance for bus than metro indicates
much higher variability in the quality of bus-related
equipment, bus stop environment, and bus service relative to
the more streamlined and less variable metro rail service.
Interestingly, whenever correlations were allowed in the
models, these turned out to be positive. Of the pairwise
positive correlations, those between car/taxi, bus/metro, and
bus/bus and metro are to be expected. However, the positive
correlation between the car and metro modes, even though
less than the positive correlations between car/taxi, bus/
metro, and bus/bus and metro, is particularly interesting

because one is a private mode, while the other is a public
transportation mode. But this result, though perhaps likely
to be unique to many Chinese cities, suggests that im-
provement in the metro level of service can be effective in
attracting commuters from private cars to the metro and
alleviate traffic congestion during peak hours.

Empirical results also show that the MMNP model has a
better model fit than traditional discrete choice models, such
as the MNL, MMNL, and MNP models, evidenced by the
highest values of ρ2(0) and adjusted ρ2(0), and the smallest
AIC and BIC values. And the nonnested test statistics show
that the probability of erroneously selecting the MMNP
model is literally zero. A model comparison could also be
achieved with a synthetic population of larger size. Re-
searchers and practitioners may not get access to large
samples of available travel data in practice. To better test the
performance of these models in the real world, this paper
uses a small sample of real data.

Combined with analytic approximations of MVNCD
functions, the MMNP model can be estimated more effi-
ciently and quickly and avoid the high-dimensional simu-
lation integration of using the traditional MMNL model or
the mixed NL model with random coefficient to relax the
response homogeneity assumption and the independence
assumption of the MNL model. In summary, the MMNP
model can well accommodate random taste variation and
flexible covariance structure in both simulation experiments
and empirical study and can be efficiently estimated by
employing analytic approximations of MVNCD functions.
.e developed MMNP model will offer researchers and
practitioners another simple and efficient way to accom-
modate taste heterogeneity and flexible covariance structure.
In this paper, random coefficients are assumed to be nor-
mally distributed, but the possibility to develop an MMNP
model based on different distributional assumptions may be
explored in future research.
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