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Transportation system has a close bearing on the prosperity of society. However, transportation infrastructures are highly
vulnerable to extreme events. ,erefore, identifying the most critical component of the transportation system is among the first
priorities of transportation network planners and managers. ,is paper proposes a novel framework to identify the most
vulnerable component for a road transportation system. A key characteristic of vulnerability assessment is the travelers’ response
to the changes in the transportation network topology and capacity after an extreme event. Hence, the problem is formulated as a
nonlinear programmewith equilibrium constraints, considering travelers’ route choice behavior. In themethodology, two types of
vulnerability measures are developed to assess the vulnerability of road transportation system, namely, system travel time-based
vulnerability (STTV) and system emissions-based vulnerability (SEV). ,e former is developed on the basis of short-term
planning, while the latter is put forward on the basis of long-term planning. With these vulnerability measures, the proposed
framework is then demonstrated using an extended Nguyen-Dupuis network under different demand levels and different capacity
degradation levels, taking into account two modes: bus and car. ,e results indicate that different vulnerability measures can
identify similar vulnerable components. Moreover, it is shown that the SEV can find more critical components than the STTV
regardless of capacity degradation or demand growth. Our research helps to create a recovery plan by assigning priority to the
critical transportation infrastructures.

1. Introduction

Transportation system plays a key role in social stability and
economic development, being in addition an important
factor in alleviating the saturation of a single mode [1]. A
wide variety of transportation modes, including bus, car,
subway, and railway constitute a transportation system,
which provides alternative transport services. Trans-
portation infrastructures, however, can be vulnerable to
various kinds of extreme events, which cause travel delays
and induce direct economic loss, as illustrated in Table 1. For
example, the 1994 Northbridge earthquake caused about 140
road closures and a $40 billion monetary loss [2]. Hurricane
Sandy that struck off the NewYork City, US, in October 2012

caused approximately $7.5 billion damage to the trans-
portation system [3]. Also, we cannot forget the devastating
losses due to the 8.0-magnitude earthquake in the Sichuan
region, China, in 2008, resulting in 69,197 deaths, 374,176
injured, 18,222 missing, over $100 billion in economic loss,
and significant damage to 21 highways [4, 5]. In particular,
the heavy rainstorm that struck off Henan Province, China,
in July 2021 caused 302 deaths, with 14.53 million sufferers,
50 missing, and a ¥114 billion monetary loss. Obviously,
extreme events can severely degrade the performance of
transportation network and increase the vulnerability of
infrastructures. ,us, it is important to identify vulnerable
infrastructures and prepare for unpredictable extreme
events.
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Many researchers have studied the vulnerability of a
single transportation mode, but ignoring the relationship
between different modes. Actually, different modes can
provide multimodal transport services. In the event that
some infrastructures on one mode of transportation are
disrupted, travelers can choose another transportation mode
nearby. As a result, this paper considers different modes of
transportation system as a whole and focuses on the vul-
nerability assessment of a transportation system, so as to
provide an effective assessment framework for improving
the system service efficiency.

In proposing the assessment framework for effective
system service efficiency, the first step is to determine the
measures for vulnerability analysis. In this paper, both system
travel time and system emissions are considered as vulner-
ability measures. It is important to note that an extreme event
could cause damage to transportation infrastructures, re-
ducing the capacity and the service level. ,is results in
increased travel time for some travelers compared to normal
days. Furthermore, due to the reduction of capacity and the
increase of travel time, more emissions are generated by a
disrupted transportation system, which has a critical impact
on human health and social sustainable development.

,is paper aims to narrow the research gap in the lit-
erature by proposing a vulnerability assessment framework
for multimodal transportation system to identify the critical
infrastructures that will bring the most serious impact under
extreme events. In the case of an extreme event, travelers
may reroute their travel when the transportation network
topology and capacity change. ,erefore, in this paper, user
equilibrium (UE) traffic assignment is applied to capture the
travelers’ response.

,e remainder of this paper is organized as follows:
Section 2 includes a thorough literature review that focuses
on various vulnerability measures and traffic assignment
methods. Section 3 introduces two types of vulnerability
measures and develops a user equilibrium model for
transportation system. Section 4 presents numerical ex-
amples on an extended Nguyen-Dupuis network to show
how the proposed framework is applied for system vul-
nerability analysis. Finally, Section 5 provides some con-
cluding remarks and future extensions.

2. Literature Review

In real-life scenarios, the service efficiency as well as material
infrastructures of transportation system is affected by ex-
treme events. Infrastructure failures lead to network to-
pology changes and capacity degradation, so travelers need

to reroute their travel to minimize the travel time. Most
obviously, travelers’ travel time may become longer, which
badly affects the service efficiency of the transportation
system. In response to this, this paper mainly deals with the
issue relating to the service efficiency. ,is section is divided
into two subsections, which briefly discuss the literature
related to vulnerability measurement and traffic assignment
methods, respectively.

2.1. Vulnerability Measurement. A key issue in the vulner-
ability analysis of a transportation system is to identify the
critical infrastructures [6], where the failures of the infra-
structures would bring degradations to the system [7]. Once
the critical infrastructures are identified, the robustness of
the network can then be enhanced through reinforcing these
components.

In recent years, a lot of attention has been focused on the
vulnerability analysis of transportation system. Based on
whether considering the congestion effect caused by traffic
flows, vulnerability measures are classified into two types:
topology-based measures and system-based measures [8]. In
terms of topology, many researchers analyzed the vulner-
ability according to efficiency [9], degree [10, 11], be-
tweenness [12, 13], average shortest path [14, 15], etc. In
addition, some researchers use a multiple criteria assessment
to deal with vulnerability analysis. For example, Furno et al.
[16] proposed a novel framework to show the significant
correlation between global efficiency and betweenness
centrality. Yang et al. [17] defined vulnerability indices and
identified the critical node due to the weighted degree and
betweenness. Similarly, Lordan et al. [18] compared the
reduction of the size of the giant component with the
consideration of node degree and betweenness. Other than
the prevailing topology-based measures, more measures
have been introduced, such as accessibility index [13, 19] and
capacity-based index [20, 21]. ,e topology-based measures
are convenient in calculation; however they do not refer to
the significant features of a system in the aftermath of an
extreme event, such as the information of link types and the
distribution of traffic demands.

On the other hand, system-based vulnerability measures
include utility-based index [22], disruption index [23],
network robustness index (NRI) [24–28], travel time
[29–33], unified network performance measure (UNPM)
[34–36], and network efficiency index [7, 37, 38]. As system
travel time is considered to evaluate the vulnerability of
transportation system in this paper, it falls into the system-
based measures category.

Table 1: Consequences associated with extreme events.

Extreme events Year Region Direct economic loss
Earthquake 1994 Los Angeles City, the United States $40 billion
Hurricane 2005 State of Louisiana, the United States $125 billion
Earthquake 2008 Sichuan Province, China $100 billion
Tsunami 2011 Tohoku, Japan $170 billion
Hurricane 2012 NewYork City, the United States $7.5 billion
Heavy rainstorm 2021 Henan Province, China ¥114 billion
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Among these existing system-based vulnerability mea-
sures, the NRI and travel time-based measures are the most
widely applied. Scott et al. [24] employed a NRI that de-
scribes the change in the total travel-time cost of removing a
link to evaluate the network performance, instead of the
traditional volume/capacity ratio. Likewise, both Rupi et al.
[27] and Sullivan et al. [28] extended such an index for
identifying and ranking the most critical components. It
should be noted that the NRI is essentially based on the
travel time. As a result, travel time-based measures are the
most commonly used. For instance, Jenelius et al. [29]
defined vulnerability indices and identified the critical link
due to the weighted origin-destination travel time and
unsatisfied demand. Since then, the travel time has been
widely applied. Both Bagloee et al. [30] and Wang et al. [6]
applied the total travel time to identify critical disruption
scenarios. Meanwhile, Malandri et al. [33] and Hong et al.
[32], in line with Voltes-Dorta et al. [31], analyzed the
vulnerability of transportation networks on the basis of
travel delay. However, only a single transportation mode was
considered, which may not provide a useable strategy for
evaluating the multimodal transportation.

Furthermore, a few studies have focused on topology
feature simultaneously, as well as system performance
feature. In order to better understand the impacts of ex-
treme events, the system emissions-based measure is pro-
posed. To our knowledge, a few studies recently have
examined the relationship between transport network
vulnerability and environmental impact. In order to miti-
gate network vulnerability and reduce traffic emissions,
Nagurney et al. [36] developed environmental impact as-
sessment indies to determine the impacts of capacity
degradation. Zhao et al. [39] developed the land-use ad-
aptation (LUA) model to analyze transportation network
vulnerability. Compared with the NRI results, Reynaud
et al. [40] developed a new emissions-based NRI (ENRI) to
assess network link criticality. Shekar et al. [41] provided a
dynamic traffic simulation approach to evaluate economic
and environmental impacts of transportation network
disruptions. Nevertheless, system emissions have not been
included in the vulnerability analysis of multimodal
transportation system in the literature above. Moreover,
different levels of travel demand and capacity degradation
levels have not been taken into account.

Compared with the single transportation mode above,
network modeling and vulnerability assessment of multi-
modal transportation system have not been studied exten-
sively. ,e highlights of the literature related to vulnerability
analysis of transportation system are shown in Table 2. In the
context of transportation system, Chen et al. [42] introduced
a utility-based measure for assessing the disrupted trans-
portation systems. Burgholzeret et al. [43] developed an
event-driven and agent-based traffic micro simulation
model that uses the network performance indicators to
identify the critical links for the intermodal network and the
criticality of the whole network. Dixit et al. [44] extended the
reliability buffer time by considering multimodal transit
journeys. Ouyang et al. [45] analyzed the vulnerability of
complementary transportation systems consisting of railway

and airline systems, where an accessibility index was de-
veloped from the vulnerability perspective. Likewise, Hong
et al. [46] measured the vulnerability analysis of metro and
high-speed rail systems based on accessibility and proposed
three types of accessibility measures. Morellit and Cunha
[47] proposed two indicators, network continuity and effi-
ciency of alternative, to measure the impacts of extreme
events on urban road traffic, in which the urban trans-
portation networks including walking, cycling, and indi-
vidual motoring were taken into account. Hong et al. [48]
proposed a metric, passengers’ intermodal transfer distance
preference, to describe the complementary relationship in
urban public transportation systems. Wang et al. [49]
evaluated the vulnerability of a dynamic layered road-rail
network by analyzing the node with largest degree. However,
the topology-based measures for transportation system
[45–49] paid no attention to the interdependent relationship
between different modes. ,e system-based measures
[42–44] studied the relationship of multimodal transport
systems, but the equilibrated multimodal route choice be-
havior has not been taken into account.

2.2. Traffic Assignment Method. As previously mentioned,
some travelers may reroute their travel to minimize the
travel time after an extreme event.

,en, the combination of traffic assignment method and
graph theory can be applied to travelers’ route choice model
[50, 51]. As to vulnerability analysis, the most common
traffic assignment methods are system optimal (SO), UE,
and shortest path. Among the family of SO, UE, and shortest
path, SO and UE are equilibrium assignments, while the
shortest path is disequilibrium assignment.

Some researchers have used the shortest path for the
assignment of traffic flow on different modes, including rail
network [10, 14], air traffic network [15, 31], and road
network [25, 35, 37, 41]. Corresponding to topology-based
measures, the shortest path method is applied in these lit-
eratures. In fact, the consideration of service features such as
the changes in travel time caused by the increases of travel
flow should be given more attention because they may in-
crease the vulnerability of transportation system.

In terms of equilibrium assignments, researchers
[30, 35, 36] embraced SO and UE assignment problems in
their vulnerability analysis. Nevertheless, the discrepancy
between the SO and the UE leads to traffic paradoxes. On the
other hand, numerous studies have been conducted to in-
vestigate the UE problem on a single transportation mode
[6, 29, 34, 38, 39], while few on multimodal transportation
system. For example, in the case of a UE problem, Chen et al.
[42] analyzed the vulnerability of transportation systems
consisting of car network and transit network, without
considering the relationship between different modes.

To the best of our knowledge, the UE method has not
been widely used in multimodal transportation system, most
of which do not take into account equilibrium. However, the
framework introduced in this paper is applied to a trans-
portation system, with the objective of evaluating the system
vulnerability and improving the service efficiency.
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To sum up, the main contributions of this paper are as
follows:

(1) Introducing a new framework to assess the vulner-
ability of transportation system, in which travel time
and environmental impact are considered
simultaneously.

(2) Formulating a UE problem on multimodal trans-
portation system based on the impacts of traffic flow
and travelers’ route choice behavior.

(3) Presenting numerical examples on an extended
Nguyen-Dupuis network consisting of car and bus to
illustrate how the proposed framework can be ap-
plied to obtain relevant information.

3. Methods

,is paper presents the framework to evaluate trans-
portation system vulnerability under extreme events. New
measures of vulnerability assessment from the perspective of
short-term planning (i.e., system-based) and from the
perspective of long-term planning (i.e., combination of
system-based and topology-based) are established. ,e UE
model of transportation system is formulated to describe the
travelers’ route choice behavior.

3.1. Network Description of Transportation System.
Transportation system consists of different transportation
modes, such as car, bus, and truck. Obviously, different
modes can provide alternative transportation services for
travelers. Travelers can choose any mode of transport
according to their route selection preference in general;
however when some infrastructures on one mode are un-
available, they can transfer to other transportation modes.
,is relationship can reduce the vulnerability of trans-
portation system and improve travel efficiency.

Specifically, a stochastic transportation system can be
modeled by a network of multiple networks. Consider a
general network modeled by G � (S, C, V, A), where S is the
set of single transportation modes, C is the set of combined
transportation modes, V is the set of subgraph nodes, and A

is the set of subgraph links. ,e nodes denote intersections
and stations, which are connected by the links of various
transportationmodes. On the other hand, the links represent
bus lines, road segments between stations, etc.

In a real network environment, both nodes and links can
be degraded, but any node can be treated as a collection of
nodes with connecting arcs [22]. Hence, node degradation
can be treated as link degradation. ,erefore, this paper
interprets vulnerability associated with an extreme event,
and the vulnerable infrastructure to the extreme event refers
to the link of the network. Moreover, this paper makes the
following assumptions:

(1) For a given extreme event, the travel demand be-
tween each origin and destination (OD) pair is
constant.

(2) ,ere are no additional connections between dif-
ferent modes sharing some nodes and links.

(3) ,e travel time associated with a link is monoton-
ically increasing with respect to the flow on the link.

3.2.Notations. ,enotations in this paper and the respective
units of measurement are listed in Table 3.

3.3. TwoVulnerabilityMeasures. Vulnerability is a relatively
important concept to study the performance of trans-
portation networks during and after an extreme event.
,erefore, transportation vulnerability can be defined as the
extent to which the transportation network is susceptible to
extreme perturbations [52]. In recent years, various vul-
nerability measures have been proposed to evaluate the
consequence component of risk. However, among these
vulnerability measures, the impact on both travel time and
emissions was not taken into account. ,is paper introduces
two types of vulnerability measures to analyze trans-
portation system vulnerability: system travel time-based
vulnerability (STTV) and system emissions-based vulnera-
bility (SEV).

3.3.1. Quantification of STTV. From the viewpoint of short-
term planning, total travel time is the focus of emergency
managers’ attention. As mentioned in Section 3.1, there is a
relationship among the various transportation modes. ,us,
it is necessary to discuss travel time from the perspective of
system in order to appropriately evaluate the vulnerability of
transportation system.

According to the description of total travel time on a
single mode, the performance of transportation system
before the extreme event can be expressed as

Table 2: Studies of multimodal transportation system vulnerability.

References Measures Traffic assignment methods used Relationship Environmental impact
Chen et al. (2007) System-based UE No No
Burgholzeret al. (2013) System-based Simulation No No
Ouyang et al. (2015) Topology-based Not considered Yes No
Hong et al. (2017) Topology-based Not considered Yes No
Morelli and Cunha (2019) Topology-based Shortest path No No
Dixit et al. (2019) System-based Not considered No No
Hong et al. (2020) Topology-based Not considered No No
Wang et al. (2021) Topology-based Not considered No No
,is paper Combination-based UE Yes Yes
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Similarly, the performance of transportation system after
the extreme event can be written as

TG′ � 􏽘
m∈(S+C)

􏽘
a∈A

x
m
a t

m
a c

m
a . (2)

,e vulnerability measure STTV is interpreted as the
ratio of the increment total travel time and the original travel
time, which is

STTV �
TG′ − TG

TG

. (3)

In this paper, the flow dependent travel time is deter-
mined by the Bureau of Public Roads (BPR) function:

t
m
a � t

m
a0 1 + α

xm
a

Cm
a

􏼠 􏼡

β
⎛⎝ ⎞⎠,∀a ∈ A, m ∈ (S + C). (4)

3.3.2. Quantification of SEV. It is well known that the
damaged link may cause travel time delay, which leads to
additional traffic emissions and negative environmental
impacts. Nevertheless, a few studies have been conducted to
investigate the relationship between transportation system

vulnerability and environmental impact. In view of the
above, it is of great significance to explore the relationship
between vulnerability components and emissions. From the
view of long-term planning, total emissions are the focus of
emergency managers’ attention.

Although there are various indicators for evaluating the
degree of atmospheric pollution caused by vehicle traffic,
carbon monoxide (CO) emission has been considered the
most important one [39, 53–55]. ,us, without loss of
generality, the indicators of atmosphere pollution in a
transportation system refer to the CO emissions of the
transportation system in this paper. Following Wallace et al.
[56], we adopt the same emission estimation method as in
transportation software, which is
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,e total CO emissions after the extreme event, EG′ , is
defined by

EG′ � 􏽘
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(6)

Similar to STTV, the SEV of transportation system is
estimated as follows:

Table 3: Sets, parameters, and decision variables.

Notations Units of measurement
Sets
S Set of single transportation modes
C Set of combination modes
V Set of subgraph nodes
A Set of subgraph links
Rs

w Set of routes connecting OD pair w in mode s, w ∈W, s ∈ S

Rc
w Set of routes connecting OD pair w in mode c, w ∈W, c ∈ C

W Set of OD pairs
Parameters
α Constant parameter
β Constant parameter
Cm

a0 Pre-disaster capacity of link a in mode m, a ∈ A, m ∈ (S + C) veh/h
Lm

a Length of link a in mode m, a ∈ A, m ∈ (S + C) km
tm
a0 Free-flow travel time of link a in mode m, a ∈ A, m ∈ (S + C) min

qw Travel demand between OD pair w, w ∈W veh/h
Decision variables
qs

w Travel demand between OD pair w in mode s, w ∈W, s ∈ S veh/h
qc

w Travel demand between OD pair w in mode c, w ∈W, c ∈ C veh/h
xm

a Post-disaster traffic flow of link a in mode m, a ∈ A, m ∈ (S + C) veh/h
tm
a Post-disaster travel time of link a in mode m, a ∈ A, m ∈ (S + C) min

fsr
w Traffic flow on path r between w in mode s, w ∈W, s ∈ S veh/h

fcr
w Traffic flow on path r between w in mode c, w ∈W, c ∈ C veh/h

Cm
a Post-disaster capacity of link a in mode m, a ∈ A, m ∈ (S + C) veh/h

TG Pre-disaster total travel time of transportation system min
TG′ Post-disaster total travel time of transportation system min
EG Pre-disaster total CO emissions of transportation system g/h
EG′

Post-disaster total CO emissions of transportation system g/h
cm

a cm
a � 1, if link a is not completely damaged; otherwise cm

a � 0
δsr

a δsr
a � 1, if link a ∈ A belongs to path r in mode s; otherwise δsr

a � 0
δcr

a δmr
a � 1, if link a ∈ A belongs to path r in mode c; otherwise δcr

a � 0
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SEV �
EG′ − EG

EG

. (7)

Generally speaking, the larger the SEV, the more vul-
nerable the transportation system is. In line with SEV, the
larger STTV implies a more vulnerable system.

3.4. Network Equilibrium. Most currently, existing methods
of vulnerability analysis focus only on operating infra-
structures while ignoring the travelers’ choice behavior after
the change of transportation infrastructures.

In this paper, Wardrop’s first principle is adopted for
modeling the travelers’ route choice behavior in a trans-
portation system. According toWardrop’s first principle, the
UE traffic assignment problem can be mathematically for-
mulated as follows:

min 􏽘
m∈(S+C)

􏽘
a∈A

􏽚
xm

a

0
t
m
a (x)dx, (8)
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f
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s
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􏽘
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w + 􏽘

w∈W
􏽘

r∈Rc
w
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a f

cr
w ,∀a ∈ A, s ∈ S, c ∈ C.

(14)

Equation (8) is the objective function to ensure that
travelers choose a route from their origin to their destination
with the lowest travel cost. Equations (9)–(11) are flow
conservation constraints, and equation (12) and (13) are the
non-negativity constraints. Finally, (14) specifies the relation
between path flow and link flow.

4. Numerical Examples

Numerical examples are performed to demonstrate the ef-
fectiveness of the proposed framework for evaluating the
transportation system vulnerability.,e proposed method is
applied to an extended Nguyen-Dupuis network consisting
of bus network and car network. ,e network topology is
given in Figure 1. Note that (4) applies primarily to road
transportation system, but not to railway system. After all,
compared with road transportation system, railway trans-
portation system has higher punctuality. For the railway
transportation system, its vulnerability grows faster than

that of the road system because there are fewer nodes and
edges.

4.1. Experimental Design and Parameter Setting. ,e ex-
tended Nguyen-Dupuis network comprises 13 nodes, 29
links, and 4 OD pairs. In order to facilitate the analysis, it is
assumed that links-sharing data of different modes are the
same. ,en, the link length, link capacity, and free-flow
travel time under normal condition are listed in Table 4,
while in the BPR function, α and β are set to 0.15 and 4.0 for
car network, and 0.5 and 2.0 for bus network, respectively.
Without loss of generality, we analyzed the component
vulnerability under different demand levels, i.e., normal level
and high level. Table 5 shows the OD demands.

For a stochastic transportation system, links-sharing are
usually the predominant focus of research. As a result, links
with indexes 2, 3, 5, 7, 8, 9, 11, 14, 16, and 17 were chosen as
the research objects of the transportation system vulnera-
bility analysis. After an extreme event, links may be com-
pletely disrupted or partially closed, which forces travelers
on those links to take other less advantageous routes.

4.2.ExperimentResults. In this section, the capacity of all the
links-sharing was assumed to be decreased to 0. We utilized
Frank-Wolf algorithm to compute the equilibrium solutions
and determine the vulnerability rankings of the links-
sharing according to STTV and SEV.

4.2.1. Equilibrium Solutions. Each time, it is set that only
one link can be removed. Accordingly, Figure 2 illustrates
the equilibrium solutions by the Frank-Wolf algorithm.
Figure 2(a) shows the equilibrium link flows when the
damaged link is removed in turn under normal demand
level, while Figure 2(b) for high demand level. It can be seen
from Figure 2 that the equilibrium flows under the two
demand levels are similar in terms of distribution. When the
value of OD demand is large, the network does not become
unreliable from the system point of view. Table 6 displays the
results of the equilibrium flow for multimodal transport

2 3
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5 7 10 13

8 12

1

2

5

18
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3 7 9
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19
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Figure 1: Extended Nguyen-Dupuis network topology.
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network, under normal condition. Comparing the equilib-
rium solutions under normal condition with that under
damaged condition, it is observed that the network seems to
be somewhat sensitive when link with indexes 3, 5, 7, 11, or 16
is removed. It may be because the failures of those links have
significant impacts on the network performance. From Fig-
ure 2 and Table 6, it is also found that the traffic flows via the
links near the disrupted link increase when an extreme event
occurs. Taking the normal demand level as an example, the
traffic flow of link 4 increases from 100 to 400 when link 3 is
disrupted. In this case, traffic congestion appears on link 4;
this is because the capacity of the link is 200. Unfortunately, at
that time, the safety of the transportation system is decreasing
while the vulnerability is increasing. It means that vulnera-
bility is related to safety. After travelers reroute their travel,
the travel demand is redistributed to go to a new equilibrium,
which causes traffic congestion on some road segments.

4.2.2. Vulnerability Assessment. After obtaining the equi-
librium link flows, we can analyze the vulnerability of the
transportation system under different demand levels. As a
means to this end, the STTV referring to (3) and the SEV
referring to (7) were used to measure the system vulnera-
bility. ,e values in vulnerability measures are listed in
Tables 7 and 9. Table 7 also shows the total travel time and
the system status type due to the removal of a link.

It can be seen from Table 7 that the system status shows
two types. ,e negative type means that the damaged link is
a vulnerable component, while the positive one means that
the damaged link can be regard as a Braess Paradox link, as
the total travel time without any disruption is 36,172.85
under normal demand level and 103,514.54 under high
demand level. To facilitate comparison between data under
different demand levels, the three most vulnerable com-
ponents are listed in Table 8. Interestingly, it is found that the
top three critical components and their rankings are exactly
the same. ,is implies that similar vulnerable components
may be identified under different demand levels.

Table 9 presents the total CO emissions and the system
status type due to the removal of a link. It can be found that,
with a higher demand, there are higher SEV values. Such
observation means that the increment in travel demand
improves the vulnerability of the transportation system. In
addition, all the system status types are negative which differ
from that in Table 7. It is likely because the environmental
impact has been considered when planning the road, and the
designed road without any disruption is optimal. Table 10
shows the top three vulnerable components under different
demand levels. Here, we specifically compared the rankings
of link 3, 5, 7, and 9 mentioned in Table 10. It is obvious that
the vulnerability rankings of those links under different
levels are the same, which is caused by the series connection
of the four links. Moreover, the series connection impacts
greatly with the growth of travel demand.

Comparing Table 8 with Table 10, it is found that using
the SEV can discover more vulnerable components that are
not found by using the STTV. After all, the SEV stresses
sustainable development from a long-term planning per-
spective. Furthermore, high demand causes larger vulner-
ability than normal demand, while causing the same top
three vulnerable components.

4.3. Effect of Capacity Degradation Level. As mentioned
above, we investigated the system vulnerability when the
capacity is decreased to 0. Nevertheless, after a given extreme
event, the affected links may still be operational under ca-
pacity degradation. ,erefore, it is necessary to consider the
capacity degradation level for the vulnerability analysis in
the transportation system. Assume that an extreme event
occurs, and the links-sharing capacity decreases to 0.5 of the
original capacity. To test the effect of capacity degradation
level, we took the normal demand level as an example. ,e
top three vulnerable components by the STTV and the SEV
are shown in Table 11. ,e most vulnerable link under
different measures is link 5. As expected, SEV can identify
more vulnerable components, which can be explained as the
synthetic effects of traffic flow and network topology.

In a real-life scenario, multiple links could fail simul-
taneously during an extreme event. As the number of al-
ternative routes decreases, the service efficiency begins to
decrease as well as the safety of the network. ,e problem is
formulated as a combinatorial optimization problem, aim-
ing to determine the most critical combination of vulnerable
links. Additionally, factors such as the probability of

Table 4: Characteristics of link.

Link no.
Car Bus

Lm
a tm

a0 Cm
a0 Lm

a tm
ao Cm

a

1 7 7 300
2 9 9 200 9 9 200
3 9 9 200 9 9 200
4 12 12 200
5 3 3 350 3 3 350
6 9 9 400
7 5 5 500 5 5 500
8 13 13 250 13 13 250
9 5 5 250 5 5 250
10 9 9 300
11 9 9 500 9 9 500
12 10 10 550
13 9 9 200
14 6 6 400 6 6 400
15 9 9 300
16 8 8 300 8 8 300
17 7 7 200 7 7 200
18 14 14 300
19 11 11 200

Table 5: Travel demand of OD pairs.

OD pair
Demand

Normal level High level
(1,12) 100 200
(1,13) 300 600
(2,12) 400 800
(2,13) 200 400
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Figure 2: Equilibrium solutions: (a) under normal demand level; (b) under high demand level.
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Table 6: Equilibrium solutions under normal condition.

Link no.
Equilibrium link flow

Normal demand level High demand level
1 400.01 573.47
2 199.99 626.53
3 300.00 516.97
4 100.00 283.03
5 661.50 967.90
6 38.51 122.55
7 661.60 930.59
8 0.00 270.27
9 300.12 522.06
10 361.49 408.53
11 500.00 915.63
12 0.05 143.74
13 138.46 261.84
14 0.05 414.01
15 0.00 84.37
16 361.54 738.16
17 0.10 232.96
18 199.88 393.57
19 138.46 261.84

Table 7: STTV for the transportation system.

Link no.
Normal demand level High demand level

Type TG′ STTV Type TG′ STTV

2 Positive 35,836.67 −0.0093 Positive 73,160.00 −0.2932
3 Negative 46,558.54 0.2871 Negative 449,273.40 3.3402
5 Negative 38,121.55 0.0539 Positive 92,634.61 −0.1051
7 Negative 37,181.71 0.0279 Positive 89,814.76 −0.1323
8 Positive 36,172.85 0.0000 Positive 73,160.00 −0.2932
9 Negative 36,961.71 0.0218 Positive 81,814.76 −0.2096
11 Negative 43,102.06 0.1916 Negative 233,266.04 1.2535
14 Positive 34,929.02 −0.0344 Positive 73,160.00 −0.2932
16 Negative 93,835.91 1.5941 Negative 2,002,910.57 18.3491
17 Positive 35,836.67 −0.0093 Positive 73,160.00 −0.2932

Table 8: ,e three most vulnerable links considering STTV value.

Ranking
Normal demand level High demand level

Link no. STTV Link no. STTV
1 16 1.5941 16 18.3491
2 3 0.2871 3 3.3402
3 11 0.1916 11 1.2535

Table 9: SEV for the transportation system.

Link no.
Normal demand level High demand level

Type EG′ SEV Type EG′ SEV

2 Negative 21000.41 0.4084 Negative 148,729.47 3.1582
3 Negative 32944.09 1.2094 Negative 661,483.68 17.4938
5 Negative 32944.09 1.2094 Negative 661,483.68 17.4938
7 Negative 32944.09 1.2094 Negative 661,483.68 17.4938
8 Negative 15845.83 0.0627 Negative 148,729.47 3.1582
9 Negative 32944.09 1.2094 Negative 661,483.68 17.4938
11 Negative 45388.32 2.0440 Negative 1,298,908.48 35.3150
14 Negative 15431.80 0.0349 Negative 148,729.47 3.1582
16 Negative 45917.63 2.0795 Negative 443,773.62 11.4071
17 Negative 21000.41 0.4084 Negative 148,729.47 3.1582
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multiple simultaneous disruptions, number of disrupted
links, and their corresponding damage levels should also be
taken into account.

5. Conclusions

,is paper focuses on the vulnerability analysis of trans-
portation system, and the objective is to identify the most
critical component under an extreme event. Particularly, the
vulnerability analysis also considers the travelers’ response
to the changes in the transportation network topology and
capacity after an extreme event. Two types of vulnerability
measures from different perspectives are introduced, in-
cluding system travel time-based vulnerability (STTV) and
system emissions-based vulnerability (SEV). ,e former is a
system-based measure from the perspective of short-term
planning, while the latter also considers the topological
properties from the perspective of long-term planning.
,en, the vulnerability analysis problem is formulated as a
user equilibrium model, which explicitly considers the effect
of travelers’ choice behavior. Finally, the proposed frame-
work is illustrated on the extended Nguyen-Dupuis network
consisting of bus and car to assess the vulnerability. ,e
numerical results indicate the following: (1) the STTV can
identify the same vulnerable components and their rankings
under different demand levels; (2) the SEV can also be used
to determine the rankings of vulnerable links and the im-
pacts of their failures; (3) the SEV can find more critical
components than the STTV regardless of capacity degra-
dation or demand growth; (4) the rankings of vulnerable
links are affected by the traffic flow and network topology,
and it is better to restore the serial links to reduce the
vulnerability of the transportation system. As demonstrated
by the numerical examples, this paper contributes to practice
by shedding light on how to identify the critical components
in the transportation system. According to our findings,
emergency managers can take more measures to reinforce
the vulnerable links to decrease the vulnerability of the
transportation system.

,e proposed framework can be employed to a general
transportation system, but there are still some deficiencies
that need to be improved. A few directions are worthy of
further investigations: (1) the proposed framework assumes

that only one component is damaged, ignoring the proba-
bility of multiple components being damaged simulta-
neously. In future studies, these issues can be addressed by a
combinatorial optimization framework; (2) in this paper, we
only consider the road transportation system. However,
there are other transportation systems. ,erefore, a possible
future research direction is the vulnerability analysis of the
railway system. We will explore other applicable vulnera-
bility measures, taking into account departure frequency,
waiting time, and in-vehicle travel time. In addition, a better
formula for the travel time which can be suitable for the
railway system needs to be proposed to replace the BPR
function; (3) the UE problem is formulated as a traffic as-
signment model with fixed travel demand. In fact, travelers
may cancel their trips after extreme events. ,erefore, one of
the future research directions is to adopt a traffic assignment
model with elastic demand to investigate how the vulner-
ability measure changes; (4) the two proposed vulnerability
measures are considered separately, so it is necessary to pay
attention to the trade-off between travel time and pollutant
emissions.
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