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In today’s world, data has become an asset for businesses. Many sectors use data technology to advance their businesses. Building
management is one of the processes on which numerous studies have been conducted to assist building users. *ailand has
progressed in terms of transportation infrastructure and public transportation.*eMetropolitan Rapid Transit (MRT) system has
more than one hundred million users per year. However, crowding is a concern in the present since crowding creates a problem
and reduces customer pleasure. *e goal of this research is to create a machine learning model for forecasting passenger demand
over time. In addition, standard data collecting equipment was used to collect data from the Metropolitan Rapid Transit (MRT)
Purple Line.*is line has a total of 16 stations. Station name, date, day, month, period, number of passengers, holidays, weekends,
and weather are among the nine factors. Analysis approaches included the analysis phase, classification, and regression algorithm.
However, the regression algorithm’s accuracy is poor and therefore cannot be used. Before using machine learning classification
methods, the K-means was used to cluster the types of passengers. In addition, for this investigation, three classification methods
were used: artificial neural network, random forest, and decision tree. Furthermore, the findings revealed that the artificial neural
network has a high predicting accuracy. *e accuracy value stated is more than 0.85 for demand over time.

1. Introduction

*e fact that infrastructure is improving is rarely news in a
growing country. A beneficial influence of efficiency on
infrastructure output has been shown empirically in nu-
merous research investigations [1].*e essential systems and
citizen services that a country or organization requires to
function efficiently, such as transportation and electricity
supply, are referred to as “infrastructure.” Infrastructure is a
component of the national economy’s territorial structure,
which is made up of the transportation, not just railway
transport [2]. Infrastructure is a vast area with many distinct
components; however, they may all be divided into two
categories. Transportation infrastructure is an essential
component of every city’s or state’s transportation system.
As a consequence of the societal expansion and the increase

of international relations as a result of globalization pro-
cesses, transportation has become a more important com-
ponent for economic and social development [3]. However,
because virtually all infrastructure projects are developed for
public transit, they must be managed properly to ensure
project success.

As a result, project management skill differs from that of
other industries that influence project types like hospital or
railway construction. Project management’s aims are to
complete a project within its scope, budget, quality, and
schedule restrictions [4, 5]. Railway engineering is a big
system project with the following features [6] when con-
trasted to regular industrial and civil building. Currently,
project management focuses on postdelivery project man-
agement, such as zero-waste building management or crowd
control in public facilities such as hospitals and railway
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stations [7]. To enhance building management and deter-
mine the trend’s prospects, many technologies were used.
An approach to analyzing vast volumes of data is machine
learning. It is one of the technologies that have been used to
enhance operations by analyzing data and forecasting user
behaviors [8–11].

*ailand’s 20-Year Transportation System Development
Strategy (2017–2036) [12] is a project that focuses on
building transportation infrastructure, particularly rail
transportation. *e reason for this shift is to escape traffic
congestion and travel with ease, as shown by the growing
number of passengers who use the electric train system in
metropolitan areas each year. Parasuraman et al. argued that
passengers’ or users’ perceived service quality can be
assessed by comparing their needs or expectations to the
actual service received, with perceived quality as an indicator
of passenger satisfaction [13]. Public authorities are now
playing an important role in encouraging sustainable de-
velopment policies and in promoting sustainable urban
mobility practices that aim to minimize the use of private
automobiles and promote the use of sustainable modes of
transportation such as public transportation. *is trans-
portation plan will confront a variety of problems in urban
and peri-urban regions. *ese factors include public
transportation’s regularity, quality of service, and conges-
tion. Estimating and predicting travel demand constitute a
key challenge in this setting [14, 15]. One of the most
common uses of smart card data analysis is to estimate and
anticipate travel demand. Forecasting can help with both
service and travel planning. Prediction can produce average
travel demand depending on the time period examined.
Forecasting can help match transportation supply to de-
mand in real time [16]. Given the volatility and complexity of
passenger flow changes in urban rail transportation, using a
predictionmodel to obtain amore accurate forecast of short-
term passenger flow is both critical and challenging [17].*e
railway is a vital artery for the country’s economic devel-
opment. At the moment, demand for railway passenger
transportation is multi-structured, multi-leveled, and multi-
segmented. A key difficulty is to ensure coordinated growth
of the railway companies and the economy. *e demand for
passenger transportation is diversifying and individuating
[18].

Since the development of intelligent transportation
systems in recent decades, forecasting short-term traffic flow
and projecting traffic conditions in the near future in a
quantitative manner [19] have become a major topic in
transportation research [20]. Accurate short-term traffic
forecasting might, in fact, aid proactive dynamic traffic
control by monitoring existing traffic and estimating its
immediate future. Scholars consider the problem of mini-
mizing road traffic congestion [21, 22]. All of these objectives
and benefits include informing travelers or drivers about
traffic conditions [23, 24], as well as providing real-time
traffic monitoring and management [24]. In fact, forecasting
short-term traffic flow in metro transportation is substan-
tially more challenging, as metro traffic flow is highly
influenced by the heterogeneity and unpredictability of
individual travel behavior, and AFC data does not reflect

traffic conditions promptly. It has previously been attempted
to anticipate short-term passenger flow using AFC data. For
example, Leng et al. [25] suggested a metro-net oriented
probability tree technique for passenger prediction based on
origin and destination (OD) information. Sun et al. [26]
developed a wavelet and support vector machines (SVM)
hybrid method to predict Beijing subway passenger flow,
particularly during morning and evening peak hours.

As a result, service providers assess passenger happiness
in order to improve quality and service standards for sus-
tainable urban electric trains, as these factors can increase
passengers’ quality of life and contentment. Furthermore,
the *ailand Transport System Development Plan considers
and mentions the development of an urban electric train
system that will cover Bangkok and counties, as well as
important cities in every province of *ailand [27]. One of
the essential factors for Smart Cities is the*ai government’s
goals. Urban railroads have recently received a lot of interest
since they are practically the only mode of transportation in
the city that can travel without being stuck in traffic. It also
helps us to predict passenger demand using data technol-
ogies [8, 28].

Consequently, we target collected data that can be used
to train a machine learning model to anticipate passenger
demand at any given time. In addition, in this study, we look
at several machine learning methods that can be determined
with great accuracy. *e work’s contribution was the de-
veloped model of passenger transportation behaviors, which
took into consideration the availability of new urban rail-
roads, such as the MRT Purple Line [29].

2. Background of Study

2.1. Construction Project Management. Construction project
management is different from other industries [4]. Because
there are a lot of dangers and elements that are up for debate.
As well as a variety of project parameters, such as project
kinds. [30, 31]. *ey are challenging and one-of-a-kind in
terms of specifics. A construction project for a hospital, for
example, where the building type provides complexity and
purpose building of a railway and a stadium [5, 32].*ere are
10 knowledge areas of project management, namely, project
integration, project scope management, project time man-
agement, project cost management, project quality man-
agement, project human resource management, project
communication management, project risk management,
project procurement management, and project stakeholder
management. Efforts are now being made to enhance
building management following user operations. Except for
public benefit projects, in order for the building to be efficient
and constantly developed, there are numerous things to
consider, including user demand in the facility. *e research
of rail building projects in *ailand, on the other hand,
represents a significant potential and growth for *ailand’s
development. *e trend of technology and innovation, such
as Big Data technology [8], is one of the most important
factors driving the development of railway construction.
*ese have an impact on numerous infrastructure studies
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that focus on building management using data technology
[9].

2.2. Data-Driven Transportation. In the last decade, data-
driven approaches have become an alternate strategy for a
number of studies in transportation and building man-
agement, such as train delay estimation. Gorman [33] used
linear regression for a first-class freight train (BNSF) in
order to identify the components that cause delays. *e
model is run on nine different districts, each with its own set
of traffic patterns and track layouts. Train delays are cal-
culated for each of the eight districts, taking into account
parameters like horsepower per ton, track geometry, train
priorities, meets, passes, overtakes, and train spacing vari-
ations. It is the first time that regression algorithms have
been used to forecast delays in US freight train data.
Moreover, the number of factors considered in the regres-
sion is significantly smaller, since data on passenger trail is
significantly more limited compared to data available (in-
ternally) to the freight railroad. Kecman and Goverde [34]
offer a microscopic model for railroad networks to forecast
train travel time and delay. To predict train delays, historical
track occupancy data is utilized to train the parameters in the
microscopic model. Hansen et al. are another group that
utilizes a data-driven technique to estimate train delays [35],
where an online model is trained using historical track
occupancy data and then applied to a section of the Dutch
railway route. Railroad track occupation data is not publicly
accessible in the United States. To predict train delays, the
regression models presented in this article employ train
departure time information at stations. Google and Amtrak
have collaborated on a program to track Amtrak trains and
estimate arrival times [36].*ere is, however, no research on
the algorithms or their correctness. As a result, this study is
the first quantitative and data-driven investigation of
strategies for estimating passenger train delays in the United
States [37]. Consequently, there are a few studies on demand
of passengers with ML algorithm for prediction in a short
period.

2.3. Machine Learning Model for Public Transportation.
In the United Kingdom, passenger train services are expe-
riencing a renaissance. Approximately 200 new stations have
opened on publicly operated railroads in the United
Kingdom since 1970. *e key to organization throughout
the operating phase is the quantity of passengers who utilize
it. Many public transportation networks are experiencing
increased congestion and crowding as metropolitan pop-
ulations grow. Growing urban populations cause many
public transit systems to experience increasing congestion
and crowding. Crowding is associated with negative effects
on traveler satisfaction and well-being, including stress,
anxiety, threat to personal safety and security, and loss of
productivity due to lack of seating space [38, 39]. According
to studies, the perceived journey time of passengers increases
when congestion increases [40, 41]. Vehicle stay durations at
stations, as well as passenger waiting times, are affected by
crowding, which increases headway unpredictability and

decreases dependability [42, 43]. As a result, additional
trucks are necessary to meet demand, resulting in consid-
erable operating expenses for the operator. Even during peak
hours, passenger loads on trains and metros can be ex-
tremely unequally distributed across cars, contributing to
crowding concerns [44, 45]. Because of the uneven passenger
loads, the trains’ effective capacity is substantially lower than
the stated capacity predicated on all cars being used equally.
*e periods, dates, capacity of each waiting position,
crowding distribution across train cars, and exit placement
at the destination station are all elements that impact pas-
senger loads [46–48].

Currently, with the advancement of technology, gadgets
are becoming smaller and more powerful, and Internet
access is becoming more affordable and widespread.*is has
resulted in a profusion of linked gadgets on the Internet,
resulting in the fascinating Internet-of-*ings (IoT)
movement [49]. *e fundamental goal of IoT is to connect
smart devices and things, which are critical components of
the Internet. *e fusion of these interesting physical and
digital worlds is providing fascinating development pros-
pects. Logistics, transportation, asset monitoring, smart
homes, smart buildings, energy, defence, and agriculture are
just a few of the prominent sectors where IoT applications
have been effectively proven across industries. *e avail-
ability of data technology may be able to alleviate train
crowding. Researchers have paid a lot of attention to the use
of user data to analyze mobility in public transit. *e initial
study focused on data completeness and enrichment with
the goal of identifying transfers and passenger demand
[14, 15]. Recently, a significant amount of data-driven re-
search on passenger flow forecasting has been conducted
utilizing data mining and machine learning techniques. In
order to anticipate passenger flow in railways, a prediction
model was created [50].

2.4. Algorithm ofMachine Learning. Machine learning (ML)
is a branch of artificial intelligence (AI) that focuses on
enabling computer systems to learn from data about a given
job automatically. Rule-based learning approaches [51],
artificial neural network methods [52–54], case-based rea-
soning strategies [55, 56], and hybrid methodologies [57, 58]
are all used in building to model judicial reasoning and
forecast litigation outcomes.

2.4.1. Regression Algorithm. *e supervised machine
learning approach of regression is concerned with esti-
mating the numerical value of a target variable based on
input data, for example, estimating the cost of a design based
on design specifications. *ere are several forms of re-
gression. *e connection between a dependent variable y
and one explanatory variable x is modeled using basic linear
regression. *e logistic regression is used to evaluate the
probability of a specific class or event occurring, such as
pass/fail, win/lose, alive/dead, or healthy/sick. *is may be
used to represent a wide range of events, such as determining
if a photograph contains a cat, a dog, a lion, or other animals.
A probability of 0 to 1 would be assigned to each detected
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object in the image, with a total of one. *is is a common
regression method [8]. Equation (1) should be used to refer
to them.

Y � β0 + β1X1 + β2X2 + · · · + βpβp + ∈ . (1)

2.4.2. Artificial Neural Network (ANN) Algorithm. Artificial
neural networks (ANNs) are a type of machine learning
analysis. *e methods of artificial neural networks (ANNs)
are ideally adapted to classification and function estimation
issues. *ese algorithms have been widely employed in
tackling difficult industrial issues since their inception. *e
most popular kind of ANN is the multilayer perceptron
(MLP). An input layer, a hidden (intermediate) layer, and an
output layer are the three layers that make up an ANN.
*rough deep learning, ANN algorithms have lately revo-
lutionized machine learning. New ANN algorithms are
being developed to learn from data with large dimensionality
(i.e., Big Data), seeking special attention in all the con-
struction industry applications where ANN is employed [8].
*e neural network model has hidden units as shown in
Figure 1, and they should be referred to as (2)-(3) [59].

f(x) � β0 + 
K

k�1
βkhk(X)

� β0 + 
K

k�1
βkg Wk0 + 

p

j�1
WkjXj

⎛⎝ ⎞⎠.

(2)

It is built up here. *e K activations Ak, k= 1,..., K, in the
hidden layer are computed as functions of the input features
X1,..., Xp:

Ak � hk(X) � g Wk0 + 

p

j�1
WkjXj

⎛⎝ ⎞⎠. (3)

2.4.3. Random Forest Algorithm. *e random forest clas-
sifier is made up of many tree classifiers, each of which is
produced using a random vector sampled separately from
the input vector, and each tree casts a unit vote for the most
popular class to classify an input vector [60].

Random forests outperform bagged trees thanks to a tiny
change in the way the trees are decorated. On bootstrapped
training samples, we create numerous decision trees, similar
to bagging. When creating these decision trees, however, a
random sample of m predictors is picked as split candidates
from the whole set of p predictors each time a split in the tree
is examined. Only one of them predictors can be used in the
split. At each split, a new sample of m predictors is selected,
and we usually pick m p—that is, the number of predictors
examined at each split is about identical.

In other words, while creating a random forest, the al-
gorithm is not even permitted to examine a majority of the
available predictors at each split in the tree. *is may appear
absurd, but there is a good reason behind it. Assume the
dataset contains one extremely strong predictor and a few

more somewhat strong predictors. *e majority, if not all, of
the trees in the bagged tree collection will employ this strong
predictor in the top split. As a result, all of the bagged trees
will have a similar appearance. As a result, the bagged tree
forecasts will be strongly connected. Unfortunately, aver-
aging many highly correlated quantities does not lead to as
large of a reduction in variance as averaging many uncor-
related quantities. In particular, this means that bagging will
not lead to a substantial reduction in variance over a single
tree in this setting.

By forcing each split to evaluate only a subset of the
predictors, random forests are able to avoid this difficulty. As
a result, the strong predictor will be ignored in the vast
majority of splits (p m)/p, giving other forecasters a better
opportunity.*is proceduremay be thought of as decorating
the trees, resulting in a less variable and hence more
trustworthy average of the generated trees. *e size of the
predictor subset m is the primary distinction between
bagging and random forests. For example, ifm� p is used to
construct a random forest, then bagging [59] is the result.

2.4.4. Decision Tree Algorithm. *e contemporary machine
learning approach to predicting qualitative and quantitative
target attributes is decision trees (DTs). *e first step in
creating DT is to locate the decision node, which is followed
by recursively splitting nodes until no further divisions are
allowed. *e robustness of DT is determined by the logic
used to divide nodes, which is measured using terms like
information gain (IG) and entropy reduction [8]. A simple
decision tree model with a single binary goal variable Y (0 or
1) and two continuous variables X1 and X2, all of which span
from 0 to 1, is shown in Figure 2 [59]; the primary com-
ponents of a decision tree model are nodes and branches,
and the most significant processes in developing a model are
splitting, halting, and pruning.

3. Research Methodology

*e data for this study came from the Metropolitan Rapid
Transit (MRT) which provided the authorization to use
the system for data gathering. *e needed data included

Input layer Hidden layer Output layer

Input 1

Input 2

Input 8

Output 1

Output 6

i h1 h2 h14

Figure 1: *e structure of ANN.
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information on nine factors in 2017–2019. *ere are 4
processes of study: regression algorithm modeling,
K-means clustering, classification algorithm modeling,
and validation data with confusion matrix. *e data was
separated into two sections based on the gathering of the
essential data: 80% of the data was used for model
training, and 20% of the data was used for model vali-
dation [61, 62].

3.1. Population of Study. *eMRT Purple Line is Bangkok’s
fifth rapid transit line, which is the population in this study.
*ere are 16 stations of MRT Purple Line: Khlong Bang Phai
(101), Talad Bang Yai (102), Sam Yaek Bang Yai (103), Bang
Phlu (104), Bang Rak Yai (105), Bang Rak Noi *a It (106),
Sai Ma (107), Phra Nang Klao Bridge (108), Yaek Non-
thaburi 1 (109), Bang Krasor (110), Nonthaburi Civic Center
(111), Ministry of Public Health (112), Yaek Tiwanon (113),
Wong Sawang (114), Bang Son (115), and Tao Poon (116).
*is railway line has opened in August 2016. *e data was
collected from 2017 to 2019. *e data was collected with
paper that should be prepared in a CSV file to ensure that
there was nomissing value and unknown category.*ere are
nine factors for input data collected from the government,
namely, station name, date, day, month, period, number of
passengers, holidays, weekends, and weather, as shown in
Tables 1 and 2.

3.2. Regression AlgorithmModel Development. *e collected
data needed to be prepared in a CSV file to ensure that there
was no missing value and unknown category. Moreover, a
computer program was necessary to perform linear re-
gression algorithm and logistic regression [64]. *e com-
puter program was written in Python language and ran on
Anaconda software.

3.3. Clustering with K-Means Technique. Even with huge
datasets, K-means clustering is simple to use, especially
when utilizing heuristics like Lloyd’s method. It has been
utilized successfully in a variety of fields, including market
segmentation, computer vision, and astronomy. It is also

frequently used as a preprocessing step for other algorithms,
such as finding a starting configuration. *e K-means
technique may be used in cluster analysis to split the input
dataset into k parts (clusters). However, the pure K-means
method is not particularly versatile, as it has limitations in
terms of application (except when vector quantization as
above is the desired use case). In particular, the parameter k
is known to be hard to choose (as discussed above) when it is
not given by external constraints. Another limitation is that
it cannot be used with arbitrary distance functions or on
nonnumerical data. For these use cases, many other algo-
rithms are superior [65]. *ey should be referred to as
follows:

d xi, mi(  �

������������



d

j�1
xi1 − mj1 




, (4)

where i� xi and j� yi are two n-dimensional data objects.

3.4.Machine LearningModelDevelopmentwithClassification
Algorithm. *e collected data needed to be prepared in a
CSV file to ensure that there was no missing value and
unknown category. Moreover, a computer program was
necessary to perform KNN, SVM, ANN, and decision tree
algorithm. *e hidden layer size of ANN is 14 [64]. *e
computer program was written in Python language and ran
on Anaconda software.

Table 1: Input data.

Input name Detail Reference

Station name
*ere are 13 stations ofMetropolitan
Rapid Transit (MRT) Purple Line in

*ailand.
[63]

Date *ere are seven days for a week. [16, 27]
Day *is is the number of each month. [16, 27]
Month *ere are 12months for each year. [16]

Period

*e system of the MRT collects the
data of passenger number every
15minutes since its operation

on each day.

[16, 63]

Number of
passengers

*is is the number of passengers in
each period. [16, 18]

Holidays *ese are the holidays in *ailand
calendar. [27]

Weekends *ese are Sundays. [27]

Table 2: Attributes in input data.

No. Attributes Factor Unit
1 Station name 16 Station
2 One day of a week 7 Day
3 Date 30–31 Day
4 Month 12 Month
5 Period 75 Period
6 Number of passengers 6 Group
7 Holidays 2 Case
8 Weekends 2 Case

Y = 0, 1

X1 < 0.5?

X2 < 0.3?

R1 R2

X1 < 0.8?

X2 < 0.7?

Yes No

Yes No

R4 R5

Yes No

R3

Yes No

Figure 2: Sample decision trees based on binary target variable Y.
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3.5. Verifying the Model. *e classification model was ver-
ified for its accuracy, precision, and recall by constructing a
confusion matrix and using the following equations [66]:

accuracy �
(TP − TN)

(TP − TN − FP − FN)
, (5)

precision �
TP

(TP − FP)
, (6)

recall �
TP

(TP − FN)
. (7)

A confusion matrix is also a table that displays the
numbers of true positives, false positives, true negatives, and
false negatives, as stated below:

True positive (TP) is a class label that has been accu-
rately anticipated.
False positive (FP) occurs when a label does not belong
to a class yet is projected to be positive by the classifier.
*e label true negative (TN) does not belong to the class
and is properly predicted.
*e label false negative (FN) belongs to the class, but it
is anticipated to be negative [67, 68].

*e accuracy of a model is defined as the ratio of the total
number of accurate classifications to the total number of
projected classifications. Precision is also described as the
capacity to get consistent findings from several measure-
ments. Random error, a type of observational mistake in

information retrieval, causes precise values to vary from one
another. Recall is sometimes defined as the percentage of
relevant documents successfully recovered [69].

4. Results and Discussion

*e result of this study has included six parts: 1. general
information; 2. linear regression of machine learning model;
3. K-means clustering; 4. classification of machine learning
model; 5. verifying the model; 6. evaluation of forecasting.

Table 3: Percentage of day of a week in this study.

No. Station Frequency Percent Cumulative percent
1 Monday 151,245 14.4 14.4
2 Tuesday 150,937 14.5 28.9
3 Wednesday 148,653 14.2 43.1
4 *ursday 151,162 14.4 57.5
5 Friday 148,833 14.2 71.7
6 Saturday 145,655 13.9 85.6
7 Sunday 150,407 14.4 100.0

Sum 1,046,892 100

Table 4: Percentage of month in this study.

No. Month Frequency Percent Cumulative percent
1 January 73,199 7.0 7.0
2 February 100,783 9.6 16.6
3 March 108,373 10.4 27.0
4 April 106,097 10.1 37.1
5 May 111,223 10.6 47.7
6 June 106,823 10.2 57.9
7 July 74,399 7.1 65.0
8 August 74,397 7.1 72.1
9 September 72,000 6.9 79.0
10 October 73,198 7.0 86.0
11 November 72,000 6.9 92.9
12 December 74,400 7.1 100.0

Sum 1,046,892 100

Table 5: Percentage of date in this data.

No. Date Frequency Percent Cumulative percent
1 1st 13,956 3.3 3.3
2 2nd 13,959 3.3 6.6
3 3rd 13,957 3.4 10.0
4 4th 13,961 3.2 13.2
5 5th 13,957 3.3 16.6
6 6th 13,961 3.3 19.9
7 7th 13,956 3.3 23.2
8 8th 13,960 3.3 26.5
9 9th 13,956 3.3 29.8
10 10th 13,960 3.3 33.1
11 11th 13,957 3.1 36.2
12 12th 13,960 3.2 39.4
13 13th 13,957 3.3 42.7
14 14th 13,959 3.3 46.1
15 15th 13,958 3.2 49.3
16 16th 13,959 3.2 52.5
17 17th 13,959 3.1 55.6
18 18th 13,960 3.3 58.9
19 19th 13,957 3.2 62.1
20 20th 13,960 3.4 65.5
21 21st 13,957 3.1 68.6
22 22nd 13,960 3.3 71.9
23 23rd 13,957 3.2 75.1
24 24th 13,961 3.3 78.4
25 25th 13,957 3.3 81.8
26 26th 13,960 3.3 85.1
27 27th 13,958 3.4 88.5
28 28th 13,958 3.4 92.0
29 29th 13,958 3.1 95.1
30 30th 13,958 3.1 98.2
31 31st 13,960 1.8 100.0

Sum 1,046,892 100

Table 7: Percentage of weekend in this data.

No. Station Frequency Percent Cumulative percent
1 Weekends 881,366 84.2 84.2
2 Weekdays 165,526 15.8 100.0

Sum 1,046,892 100

Table 6: Percentage of holidays in this data.

No. Station Frequency Percent Cumulative percent
1 Holidays 913,993 87.3 87.3
2 Non-holidays 132,899 12.7 100.0

Sum 1,046,892 100
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4.1. General Information. *ere are eight parameters for
input data: station name, one day of a week, day, month,
period, number of passengers, holidays, and weekends. *e
most preferable day of a week for this study is Tuesday,
which accounts for 14.5% but the percentage is near to those
of other days as shown in Table 3. *e most preferable
month of data is the May, which accounts for 10.6% as
shown in Table 4. *e percentage of each date is nearly as
shown in Table 5. *e holidays account for 12.7% and the
weekends account for 15.8% as shown in Tables 6 and 7.

*ere are 16 stations of MRT Purple Line, and we
collected data of every 15 minutes of people usage for each
station. *e data of this study show that the most crowded
station is Tao Poon station (116), with amaximum average of
484 passengers. *e second station is Khlong Bang Phai
(101), with a maximum average of 283 passengers. *e
following station is Talad Bang Yai (102), with a maximum
average of 173 passengers as shown in Figure 3. *e 283-
person average represents a high level of in-station railway
crowding, as measured by the use of available standee spaces,
which is common for trains, metros, and buses [63]. For
nearly every station, the busiest times are 6.15–8.30 AM and

4.00–8.00 PM. According to another study, the morning
peak occurs between the hours of 6 : 00 AM and 9 : 00 AM
[63].

4.2. Regression Model. A linear regression algorithm was
used to develop a model for forecasting the number of
passengers. Table 8 shows that the accuracy of the algorithm
is 55.55 percent, but this accuracy is low and could not be
useful, as shown in detail in Table 9. Accordingly, the stated
accuracy has at most a very small effect on people’s trust in
the model [70].

4.3. K-Means Clustering for Passenger Type. *e results of
K-means clustering show that the passenger behavior could
be separated into six groups. In addition, the initial cluster
center of cluster 1 is zero people, that of cluster 2 is 959
people, that of cluster 3 is 480 people, that of cluster 4 is 720
people, that of cluster 5 is 1,327 people, and that of cluster 6
is 240 people, as shown in Table 10.*e final cluster center of
cluster 1 is 25.87 people, that of cluster 2 is 598.28 people,
that of cluster 3 is 225.12 people, that of cluster 4 is 392.23
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Figure 3: *e average of passengers in each station.

Journal of Advanced Transportation 7



people, that of cluster 5 is 891.80 people, and that of cluster 6
is 110.15 people, as shown in Table 10. Finally, the results
indicate the number of passengers for each cluster as shown
in Table 10. *e ANOVA test is shown in Table 11. *e
length of each cluster is shown in Table 12.

4.4. Classification of Machine Learning Model. *ree algo-
rithms were used to develop a model for passenger behavior
classification in each period: ANN, random forest, and
decision tree. Table 13 shows that the accuracy values of the
algorithms are close to each other, but the highest is that of
the ANN algorithm, being 89.80 percent. In order for the
accuracy to be useful, it has to be more than 80 percent [70].

4.5.Verifying theModel. *e confusionmatrix [68] is used to
calculate the model’s classification accuracy. *e matrix of
ANN model showed that the model made correct prediction
for 188,036 out of 209,379 cases. *erefore, the gray box is
misclassified and the white box is correctly classified as
shown in Figure 4, and the number zero in confusion matrix
table means that the model did not make a mistake in
prediction for each case. Similarly, the ANN model’s pre-
cision can also be calculated by using the confusion matrix.
*e precision can be divided into six cases of passenger
volume (i.e., cluster 1, cluster 2, cluster 3, cluster 4, cluster 5,
and cluster 6), as shown in Table 14. For the first case, cluster
1, the model achieved a precision of 95%. For cluster 2, the
model achieved a precision of 73%. For cluster 3, the model
achieved a precision of 70%. For cluster 4, themodel achieved
a precision of 68%. For cluster 5, the model achieved a
precision of 74%. For cluster 6, the model achieved a pre-
cision of 75%.

*e matrix of random forest model showed that the
model made correct prediction for 184,714 out of 209,379
cases. *erefore, the gray box is misclassified and the white
box is correctly classified as shown in Figure 5. *e random
forest model’s precision can also be calculated by using the
confusion matrix. *e precision can be divided into six cases
of passenger volume (i.e., cluster 1, cluster 2, cluster 3,
cluster 4, cluster 5, and cluster 6), as shown in Table 15. For
the first case, cluster 1, the model achieved a precision of
94%. For cluster 2, the model achieved a precision of 68%.
For cluster 3, the model achieved a precision of 63%. For
cluster 4, the model achieved a precision of 68%. For cluster
5, the model achieved a precision of 38%. For cluster 6, the
model achieved a precision of 70%.

*e confusion matrix is used to calculate the model’s
classification accuracy. *e matrix of decision tree model
showed that the model made correct prediction for 181,092
out of 209,379 cases. *erefore, the gray box is misclassified
and the white box is correctly classified as shown in Figure 6.

*e decision tree model’s precision can also be calculated
by using the confusion matrix. *e precision can be divided
into six cases of passenger volume (i.e., cluster 1, cluster 2,
cluster 3, cluster 4, cluster 5, and cluster 6), as shown in
Table 16. For the first case, cluster 1, the model achieved a
precision of 93%. For cluster 2, the model achieved a pre-
cision of 66%. For cluster 3, the model achieved a precision
of 56%. For cluster 4, the model achieved a precision of 61%.
For cluster 5, the model achieved a precision of 34%. For
cluster 6, the model achieved a precision of 67%.

*e precision of confusion matrix has shown that the
ANN algorithm could show the highest accuracy in all the
cases; however, for cluster 4 behavior prediction, random
forest might outperform ANN with great efficiency. for
cluster 4 (case 4). *is point could prove that the traditional
data have a relation for application data technology [8].

Table 8: Accuracy of linear regression.

Input Accuracy
Linear regression 52.54

Table 9: Validation of statistic model.

Parameter Result
R-squared 0.520
Adj. R-squared 0.520
Skewness 2.815
Kurtosis 26.104

Table 10: K-means result.

Cluster Initial cluster
center

Final cluster
center

Number of
passengers

1 0.00 25.87 796,104
2 959.00 598.28 2,563
3 480.00 225.12 27,608
4 720.00 392.23 9,667
5 1327.00 891.80 277
6 240.00 110.15 190,673

Table 11: ANOVA test.

DF Error mean square F test Sig.
Total 5 515.302 1,817,531.084 0.000

Table 12: Number of passengers in each group.

Cluster Number of passengers
1 0–70
2 513–756
3 176–324
4 325–512
5 >757
6 71–175

Table 13: Accuracy of each algorithm.

Input Accuracy
Artificial neural network 89.80
Random forest 88.21
Decision tree 86.49
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Actual class

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Pr
ed

ic
te

d 
cl

as
s

Cluster 1 153, 321 0 128 4 0 5, 811

Cluster 2 0 286 54 138 8 50

Cluster 3 554 0 5, 428 316 0 3, 285

Cluster 4 16 62 412 1, 040 1 387

Cluster 5 0 42 0 6 25 1

Cluster 6 8, 335 3 1, 708 22 0 27, 936

Figure 4: Confusion matrix table of ANN model.

Table 14: Confusion matrix of ANN model.

Precision Recall F1-score Support
Cluster 1 0.95 0.96 0.95 159,264
Cluster 2 0.73 0.53 0.62 536
Cluster 3 0.70 0.57 0.63 9,583
Cluster 4 0.68 0.54 0.60 1,918
Cluster 5 0.74 0.34 0.46 74
Cluster 6 0.75 0.74 0.74 38,004
Accuracy 0.90 209,379
Macro avg. 0.76 0.61 0.67 209,379
Weighted avg. 0.89 0.90 0.90 209,379

Actual class

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Pr
ed

ic
te

d 
cl

as
s

Cluster 1 152, 232 7 244 9 0 6, 887

Cluster 2 2 256 58 120 6 52

Cluster 3 647 9 4, 806 302 0 3, 789

Cluster 4 22 69 470 1, 016 9 387

Cluster 5 0 30 1 8 10 1

Cluster 6 9, 392 4 2, 091 48 1 26, 394

Figure 5: Confusion matrix table of random forest model.

Table 15: Confusion matrix of random forest model.

Precision Recall F1-score Support
Cluster 1 0.94 0.96 0.95 159,379
Cluster 2 0.68 0.52 0.59 494
Cluster 3 0.63 0.50 0.56 9,553
Cluster 4 0.68 0.51 0.58 1,973
Cluster 5 0.38 0.20 0.26 50
Cluster 6 0.70 0.70 0.70 37,930
Accuracy 0.88 209,379
Macro avg. 0.67 0.56 0.61 209,379
Weighted avg. 0.88 0.88 0.88 209,379
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Classification algorithm performance is normally measured
by assessing classification accuracy. Artificial neural net-
works may be used to produce good results from classifi-
cation algorithms [71] as shown in Table 17.

4.6. Evaluation of Forecasting. In this section, we evaluate
the forecasting performance in terms of forecasting step.
Forecast step refers to granularity of data aggregation, and so
far we use 6 cases of behaviors for train station. Here, we
compare the performance with different forecasting process.
*ere are forecasting for each station and new behaviors
from K-means analysis (three cases for each station, namely,
low, medium, and high). *e behavior of passenger for each
station is shown in Table 18 [59]. We employed an absolute
error metric, i.e., the mean absolute percentage error
(MAPE), defined by (8), to objectively evaluate model
performance [72].

Actual class

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Pr
ed

ic
te

d 
cl

as
s

Cluster 1 150, 731 3 363 11 0 8, 192

Cluster 2 5 249 76 134 26 40

Cluster 3 811 7 4, 732 384 0 3, 602

Cluster 4 35 92 467 930 4 370

Cluster 5 0 17 0 14 17 2

Cluster 6 10, 678 11 2, 876 64 3 24, 433

Figure 6: Confusion matrix table of decision tree.

Table 16: Confusion matrix of decision tree model.

Precision Recall F1-score Support
Cluster 1 0.93 0.95 0.94 159,300
Cluster 2 0.66 0.47 0.55 530
Cluster 3 0.56 0.50 0.52 79,536
Cluster 4 0.61 0.49 0.54 1,898
Cluster 5 0.34 0.34 0.34 50
Cluster 6 0.67 0.64 0.65 38,065
Accuracy 0.86 209,379
Macro avg. 0.63 0.56 0.59 209,379
Weighted avg. 0.86 0.86 0.86 209,379

Table 17: Precision accuracy of each algorithm.

Cases
Machine learning algorithm

ANN (%) Random forest (%) Decision (%)
Cluster 1 95 94 93
Cluster 2 73 68 66
Cluster 3 70 63 56
Cluster 4 68 68 61
Cluster 5 74 38 34
Cluster 6 75 70 67

Table 18: Performance of model with rain data.

Station ID
Cases of passengers in station

Low Medium High
ID01 <439 440–879 >880
ID02 <292 293–586 >587
ID03 <65 66–131 >132
ID04 <107 108–215 >216
ID05 <145 146–331 >332
ID06 <140 141–282 >283
ID07 <184 185–447 >448
ID08 <97 98–196 >197
ID09 <132 133–278 >279
ID10 <131 132–263 >264
ID11 <171 172–345 >346
ID12 <192 193–387 >388
ID13 <116 117–233 >234
ID14 <187 188–376 >377
ID15 <189 190–380 >381
ID16 <662 663–1326 >1327
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Figure 7: Accuracy of model for each station.
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*e accuracy of each model increases as it is processed in
each station, according to the model’s performance. *e
ANN model, on the other hand, has been processed with
greater precision than that of previous methods. *e ANN
model has an accuracy of more than 85% as seen in Figure 7.
Figure 8 shows that *e MAPE of a forecasting model
boosts prediction accuracy, the output of MAPE processing
achieves a number less than 10, and the superior perfor-
mance in each station is that of the ANN model. ANNs are
capable of extracting high degrees of abstraction from raw
data, making them a popular and accurate tool in computer
vision [73]. *e precision of confusion matrix has shown
that the ANN algorithm could show the highest accuracy in

each station. However, because this station has limited data
on this circumstance, only station ID7 could be predicted
with high accuracy with a high passenger case as shown in
Figures 9–11. *e rain becomes the factor for improving
model [74]. Figure 12 shows a comparison of model per-
formance using nonrain data versus rain data. However,
because this study employed a large amount of data from the
user’s everyday activities, this element may boost perfor-
mance a little, as shown in Tables 18 and 19.

*e performance of each algorithm is summarized in
this section. *e ANN processes data with more precision
than previous methods. Station name, date, day, month,
period, number of passengers, holidays, weekends, and
weather are among the ten input variables that have been
chosen. *is finding implies that factor qualities are im-
portant in determining the prevalence and intensity of
passenger behavior [74].
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Figure 9: Precision of model for low passenger in each station.
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*e prediction performance for this study, a multiclass
classification, is encouraging when compared to the binary
classification studies by Zhang et al. [75] and Chou & Lin
[76]. *e accuracy of Zhang et al.’s SVM in predicting
whether a project is of “excellent profitability” or is “less
profitable” ranged from 0.74 to 0.91. However, their dataset
had a class imbalance issue (i.e., the majority of the firms are
“less profitable”), and their simulation results revealed that
the majority class accounted for all of the expected values. In
another study, Chou & Lin [76], using their ensemble model,
were able to attain a prediction accuracy of 0.84 in fore-
casting Public-Private Partnership project conflict, i.e.,
“dispute” or “no disagreement.” In this study, three algo-
rithms are used to assess and forecast performance. “Low
passenger, medium passenger, and high passenger” are the
three classes predicted by the ML models. In this investi-
gation, the ANN performed exceptionally well, with a rel-
atively high accuracy of 0.95 in Station ID7 and a lesser
model with an accuracy of 0.85 in Station ID1. *is research
looked at several forms of prediction mistakes as well as the
dataset’s unbalanced distribution of classes.*e ANNmodel
with previous time variables can be used as a reference
variable in the predictive control system [77].

Furthermore, the study demonstrates that passenger be-
havior does not occur at random. Furthermore, it is shown that
when there is a large amount of passenger data, depending just
on timing data may efficiently anticipate the amount of pas-
senger flow for each station. Nearly half of the 9 input variables
come from passenger daily life indicators, indicating that
project management issues have an impact on accident oc-
currence and severity. *is is said to be comparable to how
some experts would judge passenger behavior.

5. Conclusion

Based on nine characteristics acquired from conventional
data, we present a model for passenger prediction for the
MRT Purple Line using ANN, decision tree, and random
forest. *e government provided eight criteria for evaluating
the machine learning study, namely, station name, date, day,
month, period, passenger number, holidays, and weekends.
*ese markers can be classified with high accuracy using
ANN, decision tree, and random forest. In other circum-
stances, however, the Purple Line predictionmodel has a low
accuracy. *e procedure of upgrading the prediction model
is carried out for each station using the generated model.

In each station, the clustering algorithm was used once
again. *ree examples of passenger behavior are shown in
this paper, all of which are based on past research. *e
procedure could be completed with great precision in each
station, and we do it with the weather on a daily basis.
Finally, because the data in this study is large and has an
impact on the prediction model, the rain data is ineffective
for this framework.*e contribution of this study, data from
previous *ai government work, might be used with data
technologies; however, traditional data collection should be
enhanced.
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