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Cellular data provide a promising way for congestion detection with low cost and high coverage, and the simulation study is a
feasible solution to verify the detection method. +is paper presents a simulation approach that uses cellular data to detect traffic
congestion on urban arterials based on the relationship between cellular data and traffic status. +e virtual testbed, which includes
three main modules, is developed to perform the cellular activities generation, collection, and aggregation process between cell
phones and cell stations.+en, the correlation between cellular data and traffic status data is studied. Finally, three scenarios using
the data from testbed are demonstrated to measure the performance of the proposed method under different conditions. +e
results indicate that the proposed approach is a feasible and efficient way to simulate cellular data generation, collection, and
aggregation process. Also, it can be the base for further analysis to detect traffic congestion on arterials using cellular data.

1. Introduction

Recently, congestion has become a critical road traffic
problem around the world. Detecting traffic status effectively
is a key point to reduce congestion. +ere are a variety of
mature techniques available for gathering raw data for
congestion detection, such as loop detector and probe ve-
hicle. [1–6]. During the last decade, cellular data generated
between cell phones and cellular stations shows the potential
that it is a promising data source to provide features indi-
cating traffic congestion with better coverage and less cost
[7–13].

Using real cellular data to build the congestion detection
model directly without validation may not find the appro-
priate correlation between cellular data and traffic conges-
tion because the complex data collection environment and
the huge data sample size, especially for urban arterials
[14–16]. Traffic simulation is an indispensable instrument in
the field of the transportation research and engineering
[17–20]. +ese techniques are normally used in freeways

with different data resources. Bauza and Gozalvez proposed
a large-scale congestion detection model based on a unique
open-source simulation platform [21]. Cárdenas et al.
published a paper to manage the congestion on freeways
between two cities using VISSIM simulator [22]. +e pre-
vious studies proved that simulation approach can be the
base of congestion detection investigation. Meanwhile, some
researchers also tried to apply the simulation approach to the
cellular data to validate the congestion detection models.
Zhang et al. published a paper to detect traffic congestion on
freeways using the cellular data from freeway segments
under simulation environment [23]. Yang et al. presented a
method to analyze the traffic congestion using a hybrid
traffic-and-wireless simulation network based on handoff
data [24]. However, analyzing the cellular data to detect
traffic congestion on arterials under a microscopic-level
testbed has not been studied. Moreover, the data beside the
handoff in the cellular data, and how to simulate these
cellular data is the critical problem that needs to be
discussed.
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+is paper presents a simulation approach that uses cellular
data to detect traffic congestion on urban arterials based on the
relationship between cellular data and traffic status. In this
study, we first analyze the procedures of generating, collecting,
and aggregating cellular data between cell phones and cell
stations. A virtual testbed is established with the VISSIM traffic
simulation tool.+e traffic data from the city of Taicang (China)
are used as inputs to the virtual test bed, including traffic signal
phase and road geometry. +e virtual testbed, which includes
three main modules, that is, event generator, collector, and
aggregator, is developed using the VISSIM COM APIs. +e
event generatormodule is accountable for generating all cellular
communication activities between the cell phones on vehicles
and the cellular stations in the simulated traffic road network.
+e event collectormodule running in the backgroundwill keep
collecting all the cellular activities generated by the event
generator. An independent event aggregator module aggregates
and persists the desired statistics. +e testbed performs the
cellular activities generation, collection, aggregation process
between cell phones and cell stations. Two kinds of major
activities (i.e., location update and handoff) between cell phones
and cell stations are generated. +e handoff data are generated
when a cell phone is passing the boundary of two adjacent cell
stations, and the location update data are used to describe cell
phone transmit data with the stations which includes location
update, on/off cell phone, and texting/phone call. +en, based
on the data output from the proposed testbed, the correlation
between cellular data and traffic status data to detect traffic
congestion is studied using support vector machine (SVM)
algorithms with joint mutual information (JMI) feature-selec-
tion method. Furthermore, the performances in three scenarios
including recurring traffic congestion, nonrecurring traffic
congestion, and a small penetration rate of cell phones are
measured. To validate these different scenarios, the data from
morning peak hours and evening peak hours are selected for the
recurring traffic congestion condition, one or two lanes will be
closed on a designated arterial road during the certain period for
the nonreccuring traffic congestion condition, and the per-
centage of cell phones that can transmit data with cell stations
will be reduced for the small penetration rate condition. +e
results indicate that the proposed approach is a feasible and
efficient way to simulate cellular data generation, collection, and
aggregation process. Also, it can be the base for further analysis
to detect traffic congestion on arterials using cellular data.

2. Virtual Testbed Design

Traffic simulation is very important in the field of the
transportation research and engineering. In this study, a
VISSIM-based simulation platform was developed to sim-
ulate the traffic network and the cellular communications
among the cellular network. +e platform, which includes
three main modules, that is, event generator, collector, and
aggregator, is developed on top of the VISSIM COM APIs.

2.1. Environment Setup. +e proposed research site is a
subdivision of the urban arterial networks in the city of
Taicang, 30 miles northwest of Shanghai, see Figure 1. More

specifically, research will focus on the two major arterial
roads in Taicang, Xian and Shanghai road, along with the
upstream, downstream, and minor roads. See Table 1 for the
roads in the simulated arterial network.

In total, 12 intersections are chosen as the traffic volume
collecting intersection in the simulation network. +ose in-
teractions are located in the downtown Taicang, which is the
busiest area of the city. To collect traffic volumes, we put a data
collection point on each lane of those intersections. See Ta-
ble 2 for detailed information of the data collection points.

In the examined area, 98 cell stations are allocated
according to the location of real-word cellular stations. See
Figure 2 for the distribution of these cell stations. We map
the cellular stations to a set of road network links. Each link
is covered by one and exactly only one cell station.

2.2. Virtual TestbedWork Flow. +e cellular event generator
is the engine of the simulation, and all business logics reside
there. First, it loads the simulation setup files to initialize the
road and cellular network. Later, it proceeds to start the
VISSIM in discrete simulation mode and generates the
vehicle movements and the cellular events accordingly.

Figure 3 roughly summarizes the simulation process as
follows: it begins with the event generator to generate cel-
lular communication events and randomly assign the events
to vehicles while the vehicle is running on the road network.
+e event collector module is running in the background to
keep collecting and processing the events. Finally, the cel-
lular data aggregator calculates the statistics and persist them
to DB, HDFS, or in-memory storage. For future research, it
could also be used as online aggregation, machine learning,
and visualization.

During the events generation, two types of the cellular
events are randomly generated (i.e., LU or Handoff) and
attached to the running vehicles. +e time step and lifetime
of the events are randomly distributed as well.

+e simulator will simulate 24-hour traffic to cover the
morning and evening peak hour and the night time traffic.
See Table 3 for the hourly traffic volume in different periods
of a day.

VISSIM is a microscopic, behavior-based multipurpose
traffic simulation platform to analyze and optimize traffic

Figure 1: Simulated arterial network in the VISSIM.
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Table 1: Roads included in the simulated arterial network.

North-south roads East-west roads
G204 Zhenghe Road
Renmin Road Xianfu Street
Taiping Road Shanghai Road
Dongcang Road Chaoyang Road
Dongting Road
Loujing Road

Table 2: Data collection points distributed at the examined intersections in the simulated arterial network.

No. Name Data collection points
1 XianFu@204 1–12
2 Shanghai@204 13–24
3 Xianfu@Renmin 25–38
4 Shanghai@Renmin 39–48
5 Xianfu@Taiping 49–63
6 Shanghai@Taiping 64–79
7 XianFu@Dongcang 80–95
8 Shanghai@Dongcang 96–111
9 Xianfu@Dongting 112–127
10 Shanghai@Dongting 128–143
11 Xianfu@Loujiang 156–164
12 Shanghai@Loujiang 144–155

Figure 2: Cell station distribution of Taicang.

Cellular Data Simulator

Cellular Data
Generator

Cellular Data
Collector

Cellular Data
Aggregator

Vehicle
Generator

Event
Generator

Event
Type Time Vehicle

ID
Vehicle

Link

Cell Station
Generator

Location
Area Cell

Figure 3: +e framework of the simulation platform.
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flows. +is simulation platform adapts the lateral and lon-
gitudinal fundamental core models as the underlying vehicle
dynamics mathematical models for the car-following and
lane-change behaviours. Meanwhile, it adapts the dynamic
traffic assignment (DTA) models for the underlying route
choice behaviours.

3. Data Processing Framework

After the simulation, two major data sets (traffic status data
and cellular data) need to be organized as appropriate data
format. Traffic status data need to be labeled as the baseline
to divide the whole data set into three levels, which will be
used to train the simulated cellular data.

3.1. SimulationData Processing. Two data sets are generated
using VISSIM simulation platform—the cellular events that
are collected by the event collector and the traffic volumes
that are collected by the loop detectors. We use the cellular
events as the sole data source for the detection of the traffic
conditions and the traffic volumes as the ground truth to
calibrate and train the statistical models.

3.2. Traffic Volume Data. Traffic volume data generated by
VISSM is the key to help build the ground truth. +e
simulation platform collects the following four fields from
raw traffic volume data, from which the traffic status can be
determined (Table 4). Data collector id represents the unique
id for a data collector. T (Entry) represents the time when the
vehicle enters the collector, and T (Exit) represents the time
when the vehicle leaves the collector. +e last column
represents the unique id for a vehicle.

3.3. Cellular Events Data. Cellular events data are the only
data source for the congestion detection. +e simulation
platform generates the similar format as the real-world
cellular events. See Table 5 as an example.

3.4. Traffic Density Labeling. +e study uses the data col-
lected from each loop detector every 30 minutes as a data
sample; 264 samples were extracted from the original data
for further analysis. To simplify this issue, the study uses the
data from VISSIM simulator convert to the traffic density
parameter. To get the ground truth labels of the traffic
density for each data sample, the traffic data distribution of
the collected data samples was analyzed to categorize each
data sample into the low-, medium-, and high-density
group. Four thresholds were used to categorize the data
samples to determine which one is used to separate traffic

status of the designed classifier, including 10%, 20%, 30%,
and 40%. Using the 20% as an example, if the detected
vehicle number were less than the 20-percentile number, the
data sample would be labeled as low-density (Figure 4).
Otherwise, if the detected vehicle numbers were more than
the 80-percentile number, the data sample would be labeled
as high-density, that is, traffic congestion.

3.5. JMI-BasedSVMClassifier. After the collection of cellular
data, a preliminary data processing is executed to extract
features from the raw cellular data. +e study will use an
optimal feature-selection model to find the most relevant
features among handoff events, location update, text mes-
sage, and phone call. To achieve this goal, a candidate feature
set will be extracted from the original cellular traffic volume
data, and an algorithm based on joint mutual information
(JMI) will be applied to select a subset from the candidate
features. +emethod that proposed by Brown et al. [25]. +e
basic idea of the method is to maximize a conditional
likelihood considering the mutual information between
features.

+en, we use SVM classification in two passes to first
classify the data into low-level traffic condition and other
conditions, and then the second pass classifies the other
cellular data to medium and high condition.

Using the SVM as the classifier in the condition de-
tection on arterials, it yields relatively good accuracy and low
computation cost, in a near real-time manner. Meanwhile,
overfitting is one of the key issues for the statistical machine-
learning models; the next section will address this issue.

4. Scenario Design

Different scenarios of the proposed approach need to be
validated. First, the JMI-based feature extraction and clas-
sification algorithm need to be proved that it can be applied
to traffic condition detection on arterials using cellular data
as the sole data source. Second, the proposed method needs
to be tested to see its performance under different
conditions.

+e study validates the model in three conditions: re-
curring traffic congestion, nonrecurring traffic congestion,
and a small penetration rate of cell phones (Figure 5). To
validate recurring congestion condition, the simulator will
generate data from morning peak hour and evening peak
hour. For the nonrecurring condition, we will simulate it by
closing one or two lanes on a designated arterial road during
the certain period. Finally, with a small penetration rate of
cell phones (a.k.a less cell phone events), the proposedmodel
will be applied to see how it performs.

Table 3: Example vehicle inputs in the VISSIM.

Link Volume (6:00–7:00) Volume (7:00–8:00) Volume (8:00–9:00) Volume (9:00–10:00) Volume (10:00–11:00)
1 1000 1000 1000 750 750
2 1000 1000 1000 500 500
3 1000 1000 1000 500 500
4 500 1000 1000 500 500
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4.1. Recurring Traffic Congestion. Recurring congestion is
generally the consequence of factors that act regularly or
periodically on the traffic system, such as morning peak hour
and weekend out-of-town and back-in-town trips. +e re-
curring congestions happening in the morning and evening
peak hours typically are caused by the traffic demand in-
creasing beyond the supply. +e main characteristics of

recurring congestion are that the location of the congestion
has strong upstream and downstream relations. Meanwhile,
multiple congestion locations can occur simultaneously in
the network.

+e main purpose of this validation is to prove the
correctness and the adaptability of the proposed method.
+e basic setting of the simulation environment is as follows:

Table 4: Example of raw traffic status data from VISSIM.

Data collector ID T (entry) T (exit) Vehicle ID
13 60.37 60.69 1
13 68.58 68.84 43
23 114.56 114.83 16

Table 5: Example of cellular data from VISSIM.

MSID LA_TO CELL_TO LA_FROM CELL_FROM TYPE TIME
1645 20,969 5415 20,969 25,425 LU 10
1761 20,822 54,672 20,822 25,487 LU 10
1983 20,696 54,271 20,969 54,273 HO 10

Traffic volume distribution20 percentile 80 percentile

Low density Medium density High density

Figure 4: An illustration of traffic density labeling.
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Figure 5: Flow chart of model validation process.
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(i) 80% vehicle owns a cell phone and all cell phones are
under the power on situation

(ii) 40% vehicles driving on roads make at least one
phone call

(iii) +e traffic simulation contains both morning peak
hour and evening peak hour

4.2. Nonrecurring Traffic Congestion. Another condition
needs to be discussed is the congestion caused by accidents
in nonpeak hours. +e main reason is that this type of
congestions is different from the peak hours on account of
the underlying mechanisms and network dynamics. Un-
expected, unplanned, or large events cause nonrecurrent
congestion (e.g., work zone and crashes) that will impact
the parts of traffic system randomly and, as such, cannot be
easily predicted or modeled. +ere are many reasons that
are responsible to generate nonrecurring congestion. In-
cidents, of course, have a major role to play in it. Crashes,
vehicle breakdown, bad weather, special events, and work
zones are all examples that can give rise to extreme con-
gestions [26].

Analyzing nonrecurrent congestion is important for
several reasons. First, nonrecurring congestions were de-
fined as unexpected or unusual congestion caused by an
unexpected incident and typically the impact period is
transient, which means the model that is used to handle
recurring congestion may have a problem to deal with the
nonrecurring ones. Second, the share of nonrecurring
congestion is relativity high among all congestions, FHWA
estimates the share as high as 55% [7].+ird, even under low
traffic volume condition, none of the events may result in
congestion but along with the increase of the traffic demand,
congestion can easily result from events. Reducing the
impacts of these unexpected events during moderate to
high-volume conditions is one of the major goals of traffic
management systems [27].

+e congestion caused by accidents is an extension
process that usually spreads from the downstream to the
upstream, from the point to the surface. Good adaptability is
achieved, if the proposed model can capture both the re-
curring and nonrecurring congestions.

4.3. Traffic Congestion in Low Cell Phone Penetration Rate.
+e last condition the study needs to validate is that whether
the model can still perform well in the scenario of small
penetration rate of cell phone usage. +e approach of the
study is the data-driven one, so the quantity and quality of
data heavily affect the model.

Small sample size caused by small penetration rate of a
cell phone or law enforcement that prohibits the usage of the
cell phones on the road may make an impact to the per-
formance of the model. Small sample size may create the
sampling error, a critical problem to the proposed method.
Estimating the impact of random sampling needs to be
considered as well. +is problem is not only associated with
simulated data, it may also occur in real data.

To verify these questions, the study needs to validate
model under small penetration of the cell phone. +e basic
parameters of the condition are as follows:

(i) 50% vehicles own a cell phone, and all cell phones are
under the power on situation

(ii) 10% vehicles driving on roads make at least one
phone call

4.4. Performance Measures. +e result of the congestion
detection based on the SVM algorithm is measured by the
classic confusion matrix (Table 6).

True positive (TP) represents a positive sample that is
correctly classified as a positive one. False negative (FN)
demonstrates a positive data sample that is classified as a
negative one. False positive (FP) means that a negative data
sample is classified as a positive one, and the true negative
(TN) indicates the number of negative cases correctly
classified as negative ones.

+e number of samples that are correctly classified can
be described by a classification rate which is an important
measure to indicate the performance of the classifier.

classification rate �
# of TP cases + # of TN cases

# of all cases
. (1)

+e study also introduces ROC curve to illustrate the
relationship between TPR and FPR at different thresholds.

true positive rate(TPR) �
# of TP cases

# of TP cases + # of FN cases
,

false positive rate(FPR) �
# of FP cases

# of FP cases + #of TN cases
.

(2)

+e more a curve in the ROC space bends to the up-left
corner, the better the classification performance of the
classifier is (Figure 6). To quantitatively describe the ROC
curve, the machine-learning community usually employs the
area under the curve (AUC) statistic for model comparison.
A higher AUC value indicates a closer bending to the up-left
corner of the ROC curve, which proves better performance
of the designed classifier.

+e description on the five-fold cross-validation
method is illustrated in Figure 7. In the five-fold cross-
validation, the samples are divided into five subsets of equal
size. Sequentially, one subset is tested using the classifier
trained on the remaining four subsets. +us, each subset
will be predicted once, so the cross-validation accuracy is
the percentage of data which were classified correctly. +e
cross-validation procedure could prevent the overfitting
problem.

+e performance of an SVM classifier with Gaussian
kernel relies on the selection of regularization parameter C
and kernel spread gamma (c). +e best combination of C
and c was selected using a grid search method. As reported
by Chang and Lin, exponentially growing sequences ofC and
c is a practical method to find a narrower range where the
best pair of (C, c) values may exist (for example,
C � 2−5, 2−3, . . . , 25, c � 2−5, 2−3, . . . , 25) [15]. +is is called
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the loose grid search. When the narrower range is detected,
the grid search method would be applied repeatedly to find
an even narrower range till the best pair of (C, c) values is
found, which is called the fine grid search.

After the best pair of (C, c) values is selected, the study
will process the data using the algorithm to divide the whole
cellular data into three traffic statuses.

5. Results and Discussions

5.1. Recurring Traffic Congestion. To select an optimized
subset from the 294 candidate features, a conditional like-
lihood maximization method based on mutual information
was employed. See Figure 8 for the relationship between the
number of selected features and the classification accuracy
when selecting different labeling thresholds. Results show
that the highest classification accuracies are 88.9%, 94.8%,

85.0%, and 83.7% for the labeling thresholds of 10%, 20%,
30%, and 40%, respectively. Using 20% labeling threshold,
the number of features are five where the classification
accuracy achieved is 94.8%.

+e five selected features include: on-call mobile phone
number (N_Handoff) at the nearest station, power-on
mobile phone number (N_LU) at the nearest station, total
mobile phone number (N_Total) at the second-nearest
station, on-call mobile phone number (N_Handoff) at the
second-nearest station, and power-onmobile phone number
(N_LU) at the third-nearest station. Among the five selected
features, two of them are from the mobile phone traffic
volume features about the nearest station, another two from
the second-nearest station, and the other one from the third-
nearest station.

We will focus on discussing the simulation results with
the labeling threshold at 20% in this paper.

Table 6: +e confusion matrix.

Predicted label
Positive Negative

True label Positive True positive (TP) False negative (FN)
Negative False positive (FP) True negative (TN)

FPR

TP
R

Better performance

Figure 6: An illustration of an ROC curve.
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Based on the selected features, the grid search method is
employed again to find the best pair of (C, c) values. Results
show that when C� 4.5 and c � 0.5 using the 20% labeling
threshold, the classifier achieves its best performance. See
Figure 9 for the fine grid search results on (C, c) values.

See Table 7 for the confusion matrix of the traffic
density classification results based on the selected feature,
labeling with 20% threshold. +e overall classification rate
is 94.8%. +e correct classification rates for the low-,
medium-, and high-density groups are 80.7%, 98.7%, and
97.3%, respectively. About 13.7% of the low-density
samples are classified into the medium group.+e number
of medium-density samples classified into the low group is
four, accounting 1.0% of all the medium samples. As for
the high-density samples, 97.3% of the samples are rec-
ognized correctly.

Taking the low-, medium-, or high-density samples as
positive samples separately, the corresponding TPR and FPR
values could be computed. +e ROC curves and AUC values
are illustrated in Figure 10. +e AUC for the medium-
density group is 0.98. All numbers are 0.99 for the other
traffic density groups. +e high AUC values show that the
classifier performance based on the optimized subfeature set
selected from the 294 features is satisfactory.

5.2. Nonrecurring Traffic Congestion. Nonrecurring is dif-
ferent from the peak hours on account of the underlying
mechanisms and network dynamics. +us, the model that is
used to handle recurring congestion may have a problem to
deal with the nonrecurring ones. +is section discusses the
proposed model performance under nonrecurring traffic
congestion condition.

A conditional likelihood maximization method based on
mutual information is employed. See Figure 11 for the re-
lationship between the number of selected features and the
classification accuracy. Results show that the highest

classification accuracy is 81.8% at the 20% labeling
thresholds, and the number of features is six when the
highest classification accuracy is achieved.

+e six selected features include: total mobile phone
number (N_Total) at the nearest station, power-on mobile
phone number (N_LU) at the nearest station, total mobile
phone number (N_Total) at the third-nearest station, total
mobile phone number (N_Total) at the second-nearest
station, power-on mobile phone number (N_LU) at the
fourth-nearest station, and power-on mobile phone number
(N_LU) at the third-nearest station. Among the six selected
features, three of them are from the nearest two stations.+e
other three are from the stations farther.

Based on the selected traffic volume features, the grid search
method is employed again to find the best pair of (C, c) values.
Results show that whenC� 1 and c � 1.5 using the 20% labeling
threshold, the classifier achieves its best performance. See
Figure 12 for the fine grid search results on (C, c) values.

See Table 8 for the confusion matrix of the traffic density
classification results based on the selected traffic volume
features of mobile phone use when labeling with the 20%
threshold.+e overall classification rate is 81.8%.+e correct
classification rates for the low-, medium-, and high-density
groups are 69.2%, 82.5%, and 92.3%, respectively. About
15.4% of the low-density samples are classified into the
medium group. +e number of medium-density samples
classified into the low group is five, accounting 12.5% of all
the medium samples. As for the high-density samples, 92.3%
of the samples are recognized correctly.

+e result shows that the accuracy is relatively low under
low-density condition. It means higher cellular data may not
represent higher traffic density. It may cause by the in-
creasing of nonvehicle cell phone users. As the penetration
rate of cell phone users in the vehicle is small, it may not
represent the traffic condition status very well. On the
contrary, the proposed model performs well under medium-
and high-density condition. It means higher traffic density
will cause higher cellular data, and the false alarm of the
proposed model is low.
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Compared with results from recurring delay, the overall
accuracy is lower, especially for the low traffic density
condition. +e results prove that the proposed model can
handle medium- and high-density condition well but play
poorly in low-density condition under nonrecurring con-
gestion condition.

Taking the low-, medium-, or high-density samples as
positive samples separately, the corresponding TPR and FPR
values are computed. +e ROC curves and AUC values are
illustrated in Figure 13.+eAUC for the low-, medium-, and
high-density groups are 0.83, 0.94, and 0.96.

5.3. Traffic Congestion in Low Cell Phone Penetration Rate.
+e small sample size may make the sampling error become
a critical problem to the proposed method. Estimating the
impact of random sampling needs to be considered.

A conditional likelihood maximization method based on
mutual information is employed. See Figure 14 for the re-
lationship between the number of selected features and the
classification accuracy when selecting different labeling
thresholds. Results show that the highest classification ac-
curacies are 79.2%, 83.3%, 76.5%, and 72.3% at the labeling
thresholds of 10%, 20%, 30%, and 40%, respectively. Using

Table 7: Confusion matrix of the traffic density classification results based on the selected traffic volume features of mobile phone use.

Predicted density class
Low Medium High

True density class
Low 80.7% (171/212) 13.7% (29/212) 5.6% (12/212)

Medium 1.0% (6/626) 98.7% (618/626) 0.3% (2/626)
High 1.8% (4/218) 0.9% (2/218) 97.3% (212/218)
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Figure 10: ROC curve AUC to describe the performance of the binary classifier for the low-, medium-, and high-density group based on the
selected features.
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and the classification accuracy.
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values based on the selected features.
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the 20% labeling threshold, the number of features are also
five when the highest classification accuracy is achieved.

+e five selected features include: total mobile phone
number (N_Total) at the nearest station, total mobile phone
number (N_Total) at the second-nearest station, power-on
mobile phone number (N_LU) at the fifth-nearest station, on-
call mobile phone number (N_Handoff) at the sixth-nearest
station, and power-on mobile phone number (N_LU) at the

eighth-nearest station. Among the five selected features, two of
them are from the mobile phone traffic volume of the nearest
two stations. +e other three are from the stations farther.

We will focus on discussing the simulation results with
the labeling threshold at 20% in all the subsections within
Section 5.3. Simulation results with other labeling thresholds
will be discussed later.

Based on the selected traffic volume features, the grid search
method is employed again to find the best pair of (C, c) values.
Results show that whenC� 4 and c � 9.5 using the 20% labeling
threshold, the classifier achieves its best performance. See
Figure 15 for the fine grid search results on (C, c) values.

See Table 9 for the confusion matrix of the traffic
density classification results based on the selected traffic
volume features of mobile phone use when labeling with
the 20% threshold. +e overall classification rate is 83.3%.
+e correct classification rates for the low-, medium-, and
high-density groups are 86.8%, 88.6%, and 64.2%, re-
spectively. About 13.2% of the low-density samples are
classified into the medium group. +e number of me-
dium-density samples classified into the low group is 3,
accounting for 7.0% of all the medium samples. As for the
high-density samples, 64.2% of the samples are recog-
nized correctly.

+e result shows that the accuracy is relatively low under
high-density condition. It represents that the false alarm of
the proposed model is relatively high, which means higher
traffic density may not cause higher cellular data. It may
cause by the small penetration of cellular data from on-road
users. +e changing traffic density may not reflect well from
cellular data because the difference between medium density

Table 8: Confusion matrix of the traffic density classification results based on the selected traffic volume features of mobile phone use.

Predicted density class
Low Medium High

True density class
Low 69.2% (9/13) 15.4% (2/13) 15.4% (2/13)

Medium 12.5% (5/40) 82.5% (33/40) 5% (2/40)
High 0.0% (0/13) 7.7% (1/13) 92.3% (12/13)
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Figure 13: ROC curve AUC to describe the performance of the binary classifier for the low-, medium-, and high-density group based on the
selected features.
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and high density may not have enough features to show. On
the contrary, the proposed model performs well under low-
and medium-density condition.

Compared with results from recurring delay, the overall
accuracy is low. Taking the low-, medium-, or high-density
samples as positive samples separately, the corresponding
TPR and FPR values are computed. +e ROC curves and
AUC values are illustrated in Figure 16. +e AUC for the
low-, medium-, and high-density groups are 0.98, 0.89, and
0.93, respectively.

6. Conclusion

+is paper presented a simulation approach to detect traffic
congestion on urban arterials using cellular data. Based on
determining the procedures of cellular data generation,
collection, and aggregation, a microscopic-level virtual
testbed was established. +e correlation between cellular
data and traffic status data generated from testbed was
studied to detect traffic congestion using support vector
machine (SVM) algorithm with joint mutual information

Table 9: Confusion matrix of the traffic density classification results based on the selected traffic volume features of mobile phone use.

Predicted density class
Low Medium High

True density class
Low 86.8% (46/53) 13.2% (7/53) 0.0% (0/53)

Medium 4.4% (7/158) 88.6% (140/158) 7.0% (11/158)
High 0.0% (0/53) 35.8% (19/53) 64.2% (34/53)
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Figure 15: Using the grid search method to find the best pair of (C, c) values based on the selected features.
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Figure 16: ROC curve AUC to describe the performance of the binary classifier for the low-density group based on the selected features.
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(JMI) feature selection method. Some typical scenarios were
selected to validate the designed testbed. +e performances
from different conditions showed that the proposed simu-
lation approach can detect traffic congestion effectively.
Some conclusions are obtained as follows:

(1) A virtual testbed on the VISSIM COM APIs to
simulate cellular data and traffic data of the arterial
networks is developed.+e testbed is useful to output
cellular data and corresponding traffic status data
under microscopic-level condition by considering
the complicated arterial and cellular networks.

(2) +ree scenarios are designed to describe different
conditions of traffic congestion. +e validation pro-
cess proved the proposed testbed can detect traffic
congestion appropriately on urban arterial networks.

(3) +e results show that both LU and HO features from
virtual testbed were effective for traffic status detection,
and the cellular events frommultinearby stations could
be promising indicators for traffic status detection.

Our future work will try to explore more validation
scenarios to improve the performances of the simulation
method. Meanwhile, the detection approach can be extended
to the scenarios of other countries, whereas the real traffic
situations of China are not the same as those in the United
States and Europe. In this case, more refined simulation
framework should be established to model the interaction
behaviour between vehicles and other traffic participants [28].
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