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The paper discusses the problem of probability distribution category identification of train delay data by a genetic programming
algorithm. This train delay frequency function and the probability distribution simply derived from it are significant to train traffic
modelling and management. The genetic programming algorithm was used as an uninformed tool to prevent the influence of a
priori information, which should be biased. The real traffic data were aggregated into predefined bins and then the frequencies of
the individual delays were computed. The genetic programming algorithm was used in the next step as a symbolic regression tool
to discover their frequency function in the form of an algebraic expression. The results concluded that although data has no known
distribution, their distributions are similar to exponential ones.

1. Introduction

Train delays represent inconvenience of the rail transport.
They are unwelcome not only in passenger rail transport but
also in freight rail transport where delays disrupt logistic
chains. The most sensitive is the combination of passenger
and freight rail operations for a large difference in the
passenger and freight train dynamics which results in
complicated train operation scheduling and management.

L.1. Relevant Research. Rail transport delay modelling is
significant for identification of delay causes which is es-
sential for this delay reduction or even elimination. The
delay modelling is also necessary for rail traffic modelling,
control, scheduling, and future rail network state prediction.
It is also necessary to mention that delays are typically
computed for trains, not for passengers [1]. It is significant if
we reason that the preservation of the train change possi-
bility spreads a delay to other trains and can increase the
magnitude of this delay, e.g., for passengers transferring

between lines. A similar situation occurs in freight train
transport if the wagons are switched between different trains.

The train delay models gain different forms. They can be
based on a precise model of the rail network, train dynamics,
and train timetable [2] on one side and a simplified prob-
abilistic model on the other. These simplified probabilistic
models are frequently applied for their easier evaluation and
maintenance. For their application, it is required to identify
probability distribution functions for all variables of the
model. These distribution functions or frequency functions
can be obtained from the model or from the data measured
in real rail traffic. Analysis of the real traffic data represents a
task of large or even Big data size problem. There are many
variables influencing railway related processes and a huge
number of records. To solve the traffic delay problem by
probabilistic techniques, it is necessary to compute train
delay distribution or frequency functions applicable in train
delay management and train delay models.

It is impossible to reason about the development of the
“absolutely” precise model for lack of related data and their
uncertainty caused, e.g., by measurement errors. For herein
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presented research, only the data about delayed trains were
available, but not the data about nondelayed trains, their
load, weather, large sport or cultural activities, and so on,
and especially no data about operational dependencies like
prescribed waiting rules between passenger trains in each
station. Only the common preferences between different
train categories were defined.

The main reason of this research was to find delay
frequency function (FF) for delayed trains of a given cate-
gory. Such a function can be simply transformed into rel-
ative frequency and probability density functions. The
infrastructure owner was using exponential distribution in
its models, but there was suspicion of imprecision of this
model and the possibility that different train categories
should be described by different distribution models due to
different dynamics and operation rules. The genetic pro-
gramming algorithm was chosen to find FFs describing
observed data as objective tools with little a priori
information.

The use of genetic programming algorithm (GPA) was
decided on the basis of the observation in [3] that no
standard probability distribution category FF describes data
perfectly and the closest is an exponential distribution.

1.2. Genetic Programming Algorithm Evolution. Genetic
programming (GP) was developed by J. Koza [4] on the basis
of genetic algorithm (GA). Koza continued research of John
Holland on “Adaptation in Natural and Artificial Systems”
with the idea that programming can be transformed into
optimization of a randomly generated population of indi-
viduals representing instructions and parameters. The state
space of GPA is discrete in view of the change of operators
(called functions) like addition, subtraction, or substitution
during mutation and crossover operations. Latter many
alternatives to GPA were developed like grammar evolution
(GE), gene expression programming (GEP), or Cartesian GP
(CGP). GE tries to reach better efficiency by application of a
user-specified grammar (usually a grammar in Backus-Naur
form) [5]. Gene expression programming (GEP) represents
a different approach suitable to solving the symbolic re-
gression (SR) problems [6], applying not only replication
and mutation operations but also the transposition and
recombination ones. A graph-based Cartesian GP (CGP) [7]
is a GP algorithm where the candidate solutions are rep-
resented as a string of integers of a fixed length that is
mapped to a directed graph. CGP can efficiently represent
such structures as mathematical equations, computer pro-
grams, or neural networks. Another modification of genetic
programming is represented by a hybrid single node genetic
programming (SNGP) [8] [9]. SNGP is a rather new graph-
based GP system that evolves a population of individuals,
each consisting of a single program node. Similarly to CGP,
the evolution is provided by a hill-climbing algorithm using
a single reversible mutation operator. The SNGP represents a
very promising development of GPs. Also, the original GPAs
were widely studied since its introduction, for example, in
([10-12]), and these works have allowed its expansion. A
symbolic regression takes specific position between the GPA
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applications. The goal of SR is to find a function modelling
training data. As a technique of uninformed computer
learning, the GP has large application potential.

SR is also easily verifiable, and thus it serves as a test bed
frequently. Unfortunately, till now, symbolic regression has
had some weaknesses, especially problems with large
training data sets, e.g., in Big data applications and low
efficiency if human comparative quality results are required.
Possible ways of their elimination will be discussed further in
this study. According to the paper [13], genetic program-
ming (GP) is a particularly interesting machine learning
(ML) algorithm when dealing with symbolic regression.

The GPAs directly evolve mathematical expressions [14],
typically represented by a tree structure. While GP is un-
derstood to be capable of generating white-box models, i.e.,
human-interpretable expressions in simple form, the
evolved models are often overcomplicated and far from
being interpretable [15]. These problems tend to improve,
especially in the areas of accurate symbolic regression, hy-
brid evolutionary algorithms, and some other approaches.
Depending on the purpose, any rapidly developed or precise
model is searched. While linear regression means findings of
the coefficients of the chosen function to best fit the data,
symbolic regression searches for a suitable function. If the
linear regression result is not good, it is possible to choose a
different function. The quality of the regression result de-
pends on the selection of this function. Symbolic regression
is capable of going far. Its goal is to find such a function to fit
the data, not only its parameters. Since the first application
of genetic programming [4], many studies and approaches to
solve this problem have been published.

Except the abovementioned problems, many authors
published in their works the need to use large populations of
thousands or more individuals. This is caused by the need to
optimize many constants and the sensitivity of individual
selection on them. If the modelled problem is complicated
and described by training data containing tens or even
hundreds of variables (e.g., Big data problems), it is nec-
essary to reduce this amount to prevent loss of GPA effi-
ciency [16] to keep reasonable processing time. In these
cases, the efficiency of machine learning algorithms in-
cluding GPA significantly decreases and it is better to use a
separate algorithm to identify significant features, e.g., by the
feature selection algorithm [17].

1.3. Hybrid Evolutionary Algorithms. Unpublished work
[11] prefigured small but significant research in an area of
hybrid evolutionary systems combining GPA with other
techniques with the intent to eliminate some of their
weaknesses. This work is continued in the paper [18]. Un-
fortunately, the main research areas of both authors of this
work moved out of evolutionary programming and thus
these papers were not extended by them. Luckily, they found
a continuation in [19]. Raidl assigned multiplication pa-
rameters to each node of the parse tree and optimized their
magnitudes by the method of least squares. The nonlinear
optimization method was used in [18, 20]. The problem of
these early works was in large computational requirements
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which have allow only a few steps of the time-consuming
nonlinear optimization to be applied to each new solution to
keep the total running times acceptable. Particle swarm
optimization (PSO) was used for arbitrary constant mag-
nitudes optimization in [21]. PSO is a population using a
computational optimization method developed by Eberhart
and Kennedy in 1995 [22], inspired by the social behaviour
of bird flocking. The system is initialized with a population of
random solutions and searches space by the coordinated
movement of a particle swarm. Accurate SR tries to elim-
inate well-known problems of original early GPA applica-
tions. They were less efficient, overcomplicated, and
imprecise. The accurate SR as it was described in [23] applies
structural risk minimization based on the Vapnik-Cher-
vonenkis dimension to estimate the difference between the
generalization and the empirical error. The problem of these
algorithms is that they move GPAs close to overfitting
limitation known from the other machine learning algo-
rithms. These works prove that in the hybrid evolutionary
algorithm it is possible to apply in the hybrid algorithm any
optimization tool in combination with GPA. Thus, there
evolutionary strategy of genetic algorithms can be placed
too, as in this work.

2. Materials and Methods

2.1. Analysed Train Delay Data Set. To analyse train delays
on the Czech national railway network, the data describing
train delays within three months of 2011 was used. Origi-
nally, the data were stored in Oracle data warehouse. These
data were analysed in [3] with recommendation to use
exponential distribution in models.

There were problems with trains free of delays because
such trains were not presented in the filtered data provided
for the research. Thus, the number of observations of the
train passing without delay was smaller than in reality, and
they were not used to identify delay FF.

Regardless of the above-described limitations, the
amount of processed data was not totally satisfying the
attributes of Big data, but it was difficult for processing. Big
data are characterised by so called 3 or 4 v’s. They are mean
volume, variety, velocity, and veracity. The meaning of these
terms is described as follows:

Volume—The quantity of generated and stored data. The
Big data applications work with large amount of data that are
hard to process by standard technology.

Variety—Variety means the type and nature of the data.
The data processed by the Big data systems are semi-
structured or unstructured. It makes it difficult to process
them by standard strongly typed relational database man-
agement system (RDBMS).

Velocity—Many Big data applications require high speed
reactions and fast processing because they operate in real
time. There is also the problem of the continuous incoming
of a new data.

Veracity—Referring to data volume and their value, the
data can vary too fast for accurate analysis.

Because only a small, time-limited sample of data
(3 months) was analysed, the volume of analysed data was

relatively small from Big data viewpoint, but its size was still
many gigabytes. The data were also well structured. The
velocity in this off-line analysis is not significant. Never-
theless, with respect to the future possibility of full data
collection analysis, the Big data technology was used. There
it is possible to imagine online analytics (with high re-
quirements on velocity) and processing of full data collection
representing all train movements in the past 20 years.

For the herein presented analysis, the basic programming
model of Big data processing called MapReduce was used
(selection of data related to the analysed category and aggre-
gation on the basis of delay magnitude into the relevant bin).

There it is justifiable to expect distinct results for dif-
ferent train categories (Table 1) due to different operational
rules like maximal speed limit, typical weight and length of
the train limiting maximal acceleration, waiting for con-
nections (and concluding delay propagation) in the case of
passenger trains, and priority in access to railway line. Es-
pecially, the last two influences strongly determine delays.
Figure 1 demonstrates an example of input data for pas-
senger train categories.

2.2. Data Preprocessing. The original data set was trans-
formed from the Oracle database into comma-separated
values (CSVs) dale file and imported into the Apache Spark
application. This application was written in Python using
Jupyter Notebook and served to select data related to the
studied train type and reduce data volume by their trans-
formation into counts of train passes across measurement
points with a specified delay. The following step was appli-
cation of symbolic regression to model FF describing the data.

2.3. Used GPA-ES Evolutionary Algorithm. In this research, a
modification of the hybrid GPA-ES algorithm for algebraic
dependency modelling is used (standard GPA-ES was
designed for symbolic regression of ordinary, linear, or
nonlinear differential equations—e.g., 10, 24, or 25). The
algorithm evolves equations on the basis of the minimization
of residual errors—fitness. This algorithm combines the
standard GP algorithm for solution structure development
and an evolutionary strategy (ES) algorithm for optimization
of parameters of each individual in a GPA population. Such
a design of the hybrid evolutionary algorithm prevents
situations when a well-structured solution (e.g., well-com-
posed equation) but with wrongly estimated constants
(coefficients) is eliminated from the population and replaced
by an individual of worse structure but better fitted con-
stants, which has worse evolutionary potential. A compre-
hensive introduction to GPA can be found in [26]. A
complex review of the hybrid evolutionary algorithms is in
[27], and an explanation of symmetric one-point crossover is
described in [28]. Two different variants of crossover in-
crease the efficiency of the Algorithm 1.

The size of the GPA population and the size of the ES
populations related to each individual related to the GPA
population are the most significant parameters of the GPA-ES
algorithm. The influence of the population size was studied in
many publications, for example the study conducted in [2].
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TaBLE 1: Explanation of the analysed train category abbreviations and the processed amount of data.
Abbreviation No. of records in the analysed database Train category
EC 430228 EuroCity express
Ex 374674 Express train
IC 211926 InterCity express
Lv 1118057 Locomotive train
Nex 612071 Freight fast express
Mn 377838 Service train
Os 8220824 Passenger train
Pn 1271189 Unit freight train
R 2454901 Regional train
Sp 550954 Commuter train
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FIGURE 1: Example of train delay data histograms distinguished by train category.

Small GPA populations forces evolutionary pressure, and in
the case of specific conditions it might speed up evolution. On
one hand, in small populations there is an increased risk of
getting stuck in local optima instead of global ones. Very large
populations have problems with low speed and low efficiency
of evolution frequently. On the other hand, they bring less
dispersion of needed evolutionary cycles and higher reliability
of solution discovery. Because extremely small GPA pop-
ulations bring big dispersion of needed evolutionary cycles, it
is difficult to predict the needed computational time. In the
case of ES populations, analogical reasons are valid only if
there are eliminated random influences of task switching and
other sources.

During the initial stage of processing, the records about
the delays of a selected type of train were reduced into a
vector representing the delay discrete distribution FF by
eliminating temporal and spatial information. There are
present multiplication, exponential, divide, and factorial
functions in the set of GPA functions to allow “discovery” of
exponential or Poisson distribution related frequency
functions (and similar ones), the candidates to possible
solution. The number of reasoned data categories was
limited to 20. In the case of large training data vectors, the
less significant (outlier) data representing large delays were

not reasoned, e.g., in the case of 1-minute delay resolution.
Thus, the training data vector was a vector of 20 pairs (delay
time and frequency).

Larger delay bins, like the extreme 100 minute one,
contain less amount of accumulated noise, but such large
bins also lose information. They lose information about
delay distribution, and thus they might cause wrong results.

The use of grouping many delays, e.g., from interval <1,
30> minutes, can decrease noise caused especially by small
number of samples in the given bin. On the other hand, such
grouping represents a significant loss of information. It
tends to be a simple function to find and in the extreme case,
the linear FF instead of the exponential one can be found.

Because Figure 1 points to functions similar to expo-
nential or Poisson distribution ones, the function set for
GPA contains functions that allows to reconstruct them and
build a class of similar ones. Thus, there has been a present
factorial, but it has a limited scale of argument magnitudes
due to the limitations of number representation in com-
puter. Also, the number of distinguished the most significant
(the smallest) delays from the interval <1, 20> minutes was
reasoned. Exponential or power functions, divide or inverse
functions (1/x), multiplication, addition, and subtraction are
useful in FF regression, and thus they were incorporated
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(5) FOR ALL individuals DO
SELECT Rand() OF

END SELECT;
END FOR;
(6) FOR ALL new_individuals DO

Evaluate() => ES_fitness;
FOR ALL ES_cycles DO
FOR ALL ES_individuals DO
Evaluate() => ES_fitness;
END FOR;
FOR ALL ES_individuals DO

Evaluate() => new_ES_fitness;
END FOR;
FOR ALL ES_individuals DO

ES_fitness =new_ES_fitness;
END IF;
END FOR;
Sort(ES_individuals, ES_fitness);
END FOR;

END FOR;

individual = new_individual;
fitness = new_fitness;
END IF;
END FOR;
(8) GOTO 3);

(1) FOR ALL individuals DO Initialize() END FOR;

(2) FOR ALL individuals DO Evaluate()=>fitness END FOR;
(3) Sort(individuals according to fitness);

(4) IF terminal condition is met THEN STOP END IF;

CASE a DO Mutate()=> new_individuals;

CASE b DO Symmetric_crossover(i-th, (i+1)th individuals) => new_individuals;
CASE ¢ DO One_point_crossover(i-th, (i+1)th individuals) => new_individuals;
CASE d DO Re-generating() => new_individuals;

New ES_algorithm_object with related ES_individuals and ES_fitness arrays
//for each GPA individual new independent parameter optimizer is created
FOR ALL ES_individuals DO Initialize() END FOR;

Intelligent_crossover() => new_ES_individuals

IF new_ES_fitness < ES_fitness THEN
ES_individual = new_ES_individual;

new_individual = ES_individual[0]; new_fitness = ES_fitness[0];

(7) FOR ALL individuals DO IF new_fitness < fitness THEN

ALGORITHM 1: Used GPA-ES algorithm structure.

GPA function set. Herein the presented experiments are
based on ungrouped data measured with 1-minute resolu-
tion containing the first 20 values (delays 1, 2, ..,
20 minutes).

3. Results and Discussion

The GPA-ES algorithm worked with a maximal limit of
10000 GPA evolutionary cycles and 200 ES cycles in each
GPA one, with 100 GPA individuals and 200 individuals in
each ES population. This algorithm was written in the C++
language and it was executed as a single-thread task on a
single core of the 24 HT cores Intel Xeon processor. Exe-
cution times were between 80210 seconds for Sp trains and
274081 seconds for Ex trains due to stochastic character of
the algorithm and resulting function shape.

The experiment majority tend to the presence of power
function ” in the resulting function. Add function ‘+ is the
more useful (the more frequently present) than the divide
function /. Also, the multiplication function **’ was fre-
quently used. Factorial function ‘I’ was never present in
discovered functions. Thus, in future experiments, it can be
left out and large data vectors can be used for probability
density function learning.

The differences between passenger and freight train
behaviour were observed rather in the coefficient magni-
tudes than in the structure of the discovered functions. All
functions described in Table 2 are similar to FF of expo-
nential distribution, but not identical.

Figures 2 and 3 provide examples of results for some
train categories and allows comparing of discovered FF with
original data frequencies.
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TaBLE 2: The FFs discovered by the genetic programming algorithm and residual errors of this estimation.

Train category

Train category delay frequency function

Sum of error squares

EC 2(x —1) +7020.79 * 0.497426*"! 2.40 E+05
Ex (7610.04 + (x —1)%) ((2x)~ ¥76312(x-D)y 1.83E+05
IC 4966.33 (0.686090%) 1.17 E+05
Lv (~3005.93 + (3718.59 (x —1))) (0.491252*71) 3.63 E+05
Mn (1463.47 + 3 (x —1)) * (0.846728%1) 1.49 E+05
Nex 5010.84 (x~ 0130751 (x-1)) 5.96 E+05
Os 134069 (x (x — 1))~ 18808201 4.72 E+07
Pn (10335.4 (x —1))(0.51124 D) 1.03 E+07
R 53062.1 % 506948 0-00965108 (x-1) 4.31 E+07
Sp (x~0461526(x-1)) (116953 + x + (x —1)?) 3.69 E+05

Train delay observations and related frequency function
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FiGure 2: Example of an EC train category delay data histogram
and related frequency function drawn as a continuous one to
demonstrate its shape.

Train delay observations and related frequency function
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FiGuRre 3: Example of Nex train category delay data histogram and
related frequency function drawn as a continuous one to dem-
onstrate its shape.

4. Conclusions

The presented study was devoted to the estimation of data
distribution class by the application of the hybrid evolu-
tionary algorithm GPA-ES and symbolic regression of fre-
quency function equations.

The experiments described in this paper confirmed the
exponential like distribution of train delays on the basis of
FF regression from Czech railway network data. The eval-
uated amount of data was 6 GB and they were preprocessed
by the Apache Spark application written in the Python
language.

Founded FFs are similar to ones related to exponential
distribution, but not identical.

The GPA-ES algorithm is capable to discover algebraic
relations in applicable form for extremely small data vectors
of 20 elements [24, 25].
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