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0is article investigates a long-term optimal spatial pricing strategy for a ride-sourcing platform that serves a particular (possibly
populated) area with profit-driven service providers (i.e., drivers) and time- and price-sensitive customers (i.e., passengers). By
observing that oftentimes, the price strategy is anisotropic and spatial-dependent, both the supply and request are endogenous,
and we build an analytical bi-level optimization mode. In the upper-level formulation, the ride-sourcing platform aims at setting
up the spatially heterogeneous pricing strategy to maximize its total profit. However, in the lower level, we solve the trip
distribution model that characterizes the flow rates among zones given the travel demand rate at each zone. We prove that when
the platform seeks to expand its business, the optimal number of participating drivers and their optimal wages will be influenced
not only by the pricing strategy but also by the level of service of the entire platform. Our further investigation shows that the profit
at a particular zone can be influenced by the potential customers’ service requests from other zones. Finally, we use the real-world
data provided by DiDi Chuxing to numerically illustrate our model and theoretical results.

1. Introduction

0e emergence of ride-sourcing companies such as Uber,
Lyft, and Didi Chuxing has changed daily mobility modes of
transportation in many cities. 0ese transportation network
companies provide internet-based on-demand ride services
platforms that intelligently match ride requests for cus-
tomers (i.e., passengers) at a particular location to the nearby
affiliated service providers (i.e., drivers). Different from
traditional street-hailing taxi, ride-sourcing services are fully
capable of positioning idle vehicles to satisfy unmatched
customers’ requests, making it possible to effectively influ-
ence the behavior of participants (e.g., drivers and pas-
sengers) via economic means (e.g., pricing). 0e online
matching mechanism of e-hailing platforms significantly

decreases the searching friction between potential customers
and drivers and adaptively adjusts the searching radius for a
ride-hailing market. 0e on-demand ride services help
satisfy travel demand of impatient customers. Consequently,
a large number of cities where street hails were previously
unsustainable are now experiencing more efficient ride
services through ride-sourcing platforms [1].

Since customers’ demand is nonstationary and could
vary significantly from time to time; therefore, it is more
beneficial for the on-demand ride-sourcing companies to
hire independent and flexible drivers to satisfy customers’
requests. However, compared with traditional taxi drivers,
ride-sourcing drivers do not have fixed renting cost to pay
(of course, there is the commission rate of each ride order
charged by the platform); thus, their work participation is
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primarily driven by their earnings. In particular, since ride-
sourcing drivers only get compensations by fulling the re-
quests, their earnings are almost proportional to the utili-
zation of their vehicles, which is highly related to the
demand of customers [2]. On the other hand, the customers’
demand is driven by the fare and their waiting time (we
consider the passenger-driver matching time as a part of
waiting time), and in turn, the waiting time is primarily
dependent on the number of vacant vehicles. 0erefore, the
numbers of participating drivers and customers are en-
dogenously dependent on both the wage rate and price rate
decided by the on-demand ride services platform.

In spite of the interplay of driver and customers, the
interaction between zones is also an important issue that
needs to be carefully considered in the ride-hailing market.
0us, this article considers a spatially dependent wage rate.
In fact, suppose that the wage rate stays the same across all
the different zones. 0en if the number of active drivers at a
particular zone drops dramatically, we hope that the utili-
zation of the rest of the active drivers in this zone will in-
crease due to fewer participating drivers. However, the
waiting time of customers will also increase, causing both a
reduction in demand and a decrease in the utilization of the
active drivers.0erefore, in order to maximize the profit, the
on-demand ride services platform needs to have a funda-
mental understanding of supply (i.e., drivers) and demand
(e.g., customers) to determine the optimal wage and price.
0erefore, it must frequently coordinate the supply with the
demand in different zones by (a) deciding the proper spa-
tially heterogeneous wage rates based on the potential zonal
supply (i.e., the total number of active drivers) and (b)
setting up a proper spatially dependent pricing scheme based
on potential demand (i.e., the total number of customers).

To address the complex relationship between spatial
supply and demand, this article develops an analytical
framework for an on-demand ride services platform to
determine its price rate and wage rate for customers and
drivers, respectively. In this framework, we make the fol-
lowing assumptions:

(a) We divide a large-scale transportation network into
zones, while the exogenous parameters vary from
zone to zone. Drivers can deliver customers from
one zone to another, and then, they can be used in
the zone at the end of their trip. Recall Bimpikis et al.
[3]; we also assume that in a long term, the average
number of drivers in a particular zone cannot exceed
the number of registered drivers in the zone.

(b) We consider a long-term equilibrium service net-
work, where each zone’s inflow rate and outflow rate
are balanced; that is to say, after a long-term process,
the market clears up the imbalance of supply, so that
each zone’s total inflow rate is equal to its total
outflow rate. As a result, the driver moves completely
with the order without the need for additional empty
dispatch or cruise. Importantly, the long-term de-
mand characteristics (i.e., flow rate between different

zones) are endogenously determined through a trip
distribution model, which is also related to interzone
distance and speed.

(c) 0e price rate and wage rate are zone-dependent in
our analytical framework and are determined by the
platform before requests are sent by customers.

(d) At each zone, since the customers’ waiting time is
related to both supply (i.e., the number of partici-
pating drivers) and demand (i.e., the customers’
arrival rate), we propose a double queuing model to
deductively replicate the matching process within
each zone.

(e) Finally, we assume that each driver is not willing to
participate unless her/his wage rate is larger than the
reservation rate [4], that is, opportunity cost; simi-
larly, customers will choose the ride-sourcing service
only if their utilities are above a certain level.

With these aforementioned assumptions, we formulate a
bi-level optimization model, where the upper level is to
maximize the total profit of an on-demand ride service
platform, and the lower level is trip distribution model. Our
results show that at each zone, its optimal price rate is highly
related to the service quality, which are summarized below.

We first consider the situation where an emerging on-
demand ride service platform aims to expand its market
penetration at the market entry stage and ensure its levels of
service (i.e., the ratio of served requests to potential ones) for
each zone to be homogeneous.0at is a simple case when the
levels of service are meant to be equal across all zones. Under
this setting, we are able to characterize the optimal pricing
rate for each zone.

We also conduct a series of sensitivity analyses on the
optimal price rate, wage rate, and other implicit variables
(i.e., the number of participating drivers, and customers’
service requests). Our derived analytical results show that
the increase in the driving speed at a given zone will reduce
the number of its participating drivers and also shorten the
average waiting time. 0e increase in the number of po-
tential drivers at a given zone will result in an increase in the
number of its participating drivers but a decrease in the
average waiting time.

However, the increase in either the driving speed or
number of potential drivers at a given zone will reduce its
optimal wage rate but improve the optimal level of service.
Consequently, the increased level of service will further
increase the number of participating drivers and wage rates
of other zones. It suggests that if the platform adopts the
spatial price rate, they should set a lower wage rate when the
supply increases at a particular zone and raise the wage rate
in other zones to keep the similar level of service for the
entire ride-hailing market.

On the other hand, the increase in the customers’ value
of waiting time at a zone will lead to a raise in its corre-
sponding optimal wage rate but a reduction in the total profit
and level of service. As a result, the reduction in the level of
service reduces the number of participating drivers and the
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wage rate in other zones. It suggests that the platform should
raise the wage rate to attract more drivers to mitigate the
longer waiting time. 0e increase in travel distances will also
increase the wage and price rates as well as the waiting time.
0erefore, for instance, the platform should increase the
wage rate if some arterial roads are under construction in a
zone. Our numerical experiments using the real-world data
provided by Didi Chuxing justify these theoretical results.

Next, we extend our model to a more flexible setting
under which the levels of service may differ across different
zones to maximize total profit. We prove that the optimal
number of drivers is concave in the level of service. But the
optimal level of service may not be unique. Besides, the local
profit of zone A decreases in the level of service of zone B if
the travel distance between them is larger than the average
travel distance in zone A and the average travel time between
them is shorter than the average travel time in zone A.

0e remaining of the article is organized as follows.
Section 2 presents a brief review of the related literature. In
Section 3, we present our modeling framework, including
the behavior modeling of drivers and customers, double
queuing model, and trip distribution model. In Section 4, we
develop the spatial pricing model for analyzing a situation in
which the on-demand ride services platform expects to
maximize its profit with an identical level of service from
zone to zone. We analyze the sensitivity of the optimal price
and wage rates. We further extend our model to a more
general setting where the levels of service can be spatially
heterogeneous. In Section 5, the numerical experiments
based on real-world data from Didi Chuxing (the largest on-
demand ride service platform in China) have been con-
ducted to illustrate our theoretical derivations. Section 6
concludes the article. Appendix A provides notation, and
Appendix B presents the mathematical proofs for all
propositions.

2. Literature Review

0e emerging ride-sourcing platforms (e.g., Uber, Lyft in the
US, and DiDi in China) have a profound impact on urban
mobility and transportation sectors by matching the supply
of drivers with the travel demand in a real-time manner.
0ese on-demand ride services platforms can be regarded as
a special form of emerging sharing economy enterprises. In
the literature, there are many studies investigating the op-
erational strategies on the sharing economy from various
industries, for example, resource, item, bicycle, car, and
parking spot sharing. Wang et al. [5] proposed a two-phase
optimization model in resource sharing pickup and delivery
process. Wang et al. [6] analyzed the collaboration among
service providers in a logistics network. Behrend and Meisel
[7] analyzed a setting under which a platform operated both
item-sharing and crowd-shipping. Çelebi et al. [8] presented
a bicycle sharing system design, which incorporated both
capacity allocation and location decisions. Lu et al. [9] built a
two-stage stochastic integer programmingmodel, which was
to maximize the profit of the car sharing platform. Hara and
Hato [10] proposed a Vickrey Clarke Groves mechanism for
a car sharing system. 0ey found that the negative price (or

benefit) could encourage the relocation of vehicles under the
auction mechanism. Xiao et al. [11] solved a shared parking
problem by designing double-auction mechanisms under
the parking spot allocation rule and the transaction payment
rule. Instead of public parking spot sharing problem, Xu
et al. [12] investigated the sharing problem for the private
parking spots and showed the mechanism would signifi-
cantly increase the social welfare and also the budget balance
of the company. However, on-demand ride services are
different from most of the other sharing services. In a ride-
sharing system, the requests need to be served in time to
prevent customers from opting in the other transportation
modes. Other on-demand services usually reserve the service
in advance. 0is feature results in a very different customer
decision-making process and also a different timing of
service requests. Next, we will present a review on the
relevant literature of on-demand ride services.

0e development of on-demand ride services platforms
has motivated researchers to discuss various operational
issues. Dong et al. [13] studied the dual sourcing problem of
drivers in the ride-sourcing market, where some platforms
recruit contractual drivers to cope with the uncertainty of
labor supply from freelance/self-scheduling drivers. Ke et al.
[14] investigated the regulatory outcomes of various rep-
resentative government regulations, including price-cap
regulation, vehicle fleet size control, wage regulation, income
regulation, car utilization rate regulation, commission
charge regulation, etc. Yu et al. [15] investigated three
scenarios of Chinese government policies on on-demand
ride services companies by introducing a two-period game
theoretical model. By assuming that both the customers’
valuation for the service and the providers’ reservation wage
rate followed a Bernoulli distribution, Taylor [2] discovered
that agent independence would lower the price, while delay
sensitivity increased the optimal price even if customers’
valuation uncertainty was moderate. Bai et al. [4] expanded
the work of Taylor [2] to a continuous distribution and
presented a new mathematical model based on the M/M/k
queuing theory. 0eir study suggested the on-demand ride
services platform increased price and wage rates. Further-
more, when customers are more sensitive to the waiting
time, the platform should increase the wage rate. Recently,
Ma and Zhang [16] have studied the traffic flow rate patterns
of a dynamic ride-sharing service in a single bottleneck
corridor. Masoud and Jayakrishnan [17] investigated the
ride-matching problem and solved it with the “Ellipsoid
Spatiotemporal Accessibility Method.” Qian et al. [18] ex-
amined two essential problems (i.e., optimal assignment and
behaviors of participants) on the operation strategy and
policy-making of the ride-sharing service by formulating the
problem as an integer linear programming problem. Stiglic
et al. [19] studied the benefits of introducing the meeting
points in a ride-sharing platform. 0eir simulation results
indicated that meeting points could significantly increase the
number of matched participants.

0e impact of dynamic pricing (also known as surge
pricing) of on-demand ride services has drawn much at-
tention recently. Some studies investigated this issue by
analyzing historical data of a large-scale road network. For
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example, Chen and Sheldon [20] analyzed a subset of Uber
data (about 25 million trips). 0eir study showed that in
contrast to the income-target behavior, more drivers tended
to participate when the surge pricing was high. Chen et al.
[21] analyzed data from Uber App and found that surge
pricing would motivate a new supply of drivers, but suppress
the demand of passengers. However, its impact on existing
supply (i.e., existing drivers) is still unknown.

Some studies focus on theoretical analyses on dynamic
pricing. Hu and Zhou [22] assumed that the demand and
supply were only determined by price and wage rates, re-
spectively. 0ey showed that the optimal price is a U-shape
function of the exogenous wage. Riquelme et al. [23]
characterized the waiting time using an M/M/k queuing
model. 0eir study concluded that the performance of any
dynamic pricing strategies could not exceed that of the
optimal static pricing policy; however, dynamic pricing was
more robust when system parameters changed. Cachon et al.
[24] studied several pricing schemes and found that dynamic
pricing usually achieved the near-optimal profit compared
to the fixed price or fixed wage. Chen andWang [25] studied
the pricing problem for a last-mile transportation system
with various customer types, which was numerically tested
by the real data in Singapore. Lei et al. [26] presented a
multiperiod model that solved the problems of dynamic
pricing and vehicle dispatching in the on-demand ride-
sharing system. 0ey formulated a dynamic mathematical
programming with equilibrium constraints and applied an
approximate dynamic programming (ADP) algorithm to
solve the overall problem. Xu et al. [27] formulated a double-
ended queuing model to prove that the supply curve in a
ridesharing system with limited matching radius was always
backward bending, while a smaller matching radius caused a
weaker bend.

0is article aims at the spatial pricing problem for on-
demand ride-sourcing service. 0ere are several studies
focusing on the spatial pricing in traditional modes of
transportation, for example, Chao and Friesz [28] and Fisk
[29]. To the best of our knowledge, there are only a few
studies related to the topic. Chen et al. [30] proposed a
reinforcement learning enhanced agent-based modeling and
simulation framework to solve the spatial-temporal pricing
problem for a ride-sourcing platform. In theoretical analysis,
Bimpikis et al. [3] investigated how the spatial demand
pattern affected the optimal spatial pricing, profits, and
consumer surplus in a network. By assuming that (a) the
arrivals of idle vehicles followed the spatial Poisson point
process; and (b) spatial pricing was not allowed, Zha et al.
[31] found that the on-demand platform might increase the
price rate to avoid the inefficiency of supply. Furthermore,
the platform might set a price rate higher than the level of
price rate, which guaranteed market clearing. In spite of the
insightful conclusion of this stream of studies, they assumed
that the customer demand was irrelevant to the queuing time
and supply was irrelevant to the system utilization. Different
from all the previous works, our model based on the queuing
theory captures the change of the total waiting time of
customers and the overall system’s utilization related to the
ratio between supply and demand. Moreover, we describe

the dynamic demand characteristics by using the Wilson
entropy model [32, 33].

Finally, note that our work is closely related to Bai et al.
[4], where the authors only considered a single-zone pricing
problem. In their model, the waiting time was approximated
by the M/M/k queuing model, and the earning rate was
relevant to the supply and demand ratio. Differently, this
article studies the spatial pricing problem, which is much
more complicated and flexible than that studied in Bai et al.
[4]. In addition, our work differs from Bai et al. [4] in the
following aspects: (a) we use a more realistic double-ended
queue to estimate the waiting time, which has a better
characterization of the interaction between drivers and
passengers; (b) we extend the original single-zone model
into a spatial pricing model by introducing the trip distri-
bution model; and (c) our model enables that every zone
differs in exogenous parameters as well as decisions of
customers and drivers.

3. Modeling Framework

0is section presents the modeling framework about indi-
vidual drivers’ and customers’ behavior, queuing model, and
trip distribution model for the strategic analysis of the on-
demand ride services platform. 0e requests can only be
served by drivers in the same zone, and drivers and cus-
tomers are both assumed to be heterogeneous within the
zone. 0e queuing model captures the interaction between
the number of participating drivers and the arrival rate of
effective ride requests. 0e interaction between zones is
captured by the trip distribution model. 0e model aims at
maximizing the platform profit under different scenarios,
while the demand and supply reach the spatial equilibrium
in a representative ride-sourcing market.

In this section, we consider a network G(V,E), where
V denotes a set of nodes (i.e., regions) andE denotes a set of
links. A node here means a zone rather than a specific lo-
cation. For simplicity, we assume thatG is a complete graph,
which includes all the self-loops, that is,, E � V × V. For
each link (i, j) ∈ E, let Lij denote the average unit of the
service distance from region i to region j, Vij denotes the
average service speed from region i to region j, and q∗ij
denotes the customers’ demand rate (i.e., flow rate) from
region i to region j. We also suppose that the flow rate
variables q∗ will be determined by the trip distribution
model.

0e rest of notation will be introduced in the subsequent
subsections. For ease of reference, Appendix A lists the basic
notation used in this section.

3.1. Demand Side: Utility of Passengers. In this section, we
present a customer behavior model in which the customer is
sensitive to the price and waiting time. 0e model integrates
the price and waiting time with the service rate. Considering
a long-term equilibrium service network, inflow rate and
outflow rate of zone i ∈V remain equivalent.

Arbitrary zone i bears a maximum potential customer
demand rate λi, i ∈ V (e.g., the number of customers’ ride
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requests per minute). It is assumed the platform sets price
rate pi, i ∈ V per service unit (e.g., dollar per kilometer) in
zone i.0e average travel distance per trip di(q∗) is related to
the travel flow rate distribution among zones, which is
formulated as

di q
∗

(  �
j∈VLijq

∗
ij

j∈Vq
∗
ij

, ∀i ∈ V, (1)

where qij is the flow rate from zone i to j, and Lij is the
distance between zone i and j. To model heterogeneous
customers, we assume that the service valuation per service
unit, that is, vi, varies among customers. According to the
notation in the appendix, the expected customer surplus
without waiting equals to (vi − pi)di(q∗). To capture the
waiting time sensitivity, we define the expected utility
function of a customer in zone i as

Ui vi(  � vi − pi( di q
∗

(  − ciWi, (2)

where ci denotes the cost of waiting per unit time, Wi

represents the expected waiting time, and Ui(vi) represents
the surplus or utility function for customers in zone i. We
assume that customers will choose other transportation
modes if their demands are not satisfied by ride-sharing
services, which means that customers with utility function
Ui(vi) lower than 0 will choose other transportation modes,
and with Ui(vi) higher than 0 will choose ride-sharing
service. 0us, the effective demand rate (i.e., the realized
customer request rate) λi is determined by the distribution of
Ui(vi). It assumes that a customer will choose the service
only if their surplus (utility function) satisfies Ui(vi)≥ 0, that
is,

λi � Prob Ui vi( ≥ 0 λi � Prob vi ≥pi +
ciWi

di q
∗

( 
 λi. (3)

Let us define the proportion of served requests to the
total number of requests as the level of service, that is,
si � Prob vi ≥pi + ciWi/di(q∗) . 0en, the effective cus-
tomer request rate λi is given by

λi � siλi. (4)

According to Bai et al. [4], we assume the the service
valuation per service unit v is uniformly distributed from 0
to 1. From equation (3), we can derive that price rate pi

satisfies

pi � 1 − si −
ciWi

di q
∗

( 
. (5)

3.2. SupplySide:Ride-SourcingDrivers. Let Ki be the number
of potential drivers who may provide ride services in zone i.
Generally, Ki represents the number of registered providers
on the platform. Assume that the platform sets the wage rate
in zone i as wi (e.g., dollars per hour). Given zone price pi,
denote ki as the corresponding number of effective service
providers who are willing to participate the platform, in
which ki ≤Ki. Denote μi(q∗) as the average service speed

(e.g., km/h) in zone i, which is related to the travel flow rate
distribution among zones. It can be formulated by

μi q
∗

(  �
j∈VVijq

∗
ij

j∈Vq
∗
ij

, ∀i ∈ V. (6)

0us, μi(q∗)/di(q∗) represents the expected service rate
of drivers in zone i (i.e., the number of requests served per
minute). Given the effective customer request rate λi and the
number of participating drivers ki mentioned above, the
utilization of these ki participating providers equals to
λidi(q∗)/kiμi(q∗). We know that ki must follow the con-
straint kiμi(q∗)/di(q∗)> λi as the realized request rate
cannot exceed the service rate. 0e expected wage per unit
time for a participating driver equals to the wage per service
unit wi multiplied by the average service speed μi(q∗).
Hence, the wage per unit time of a participating provider
equals to

wiμi q
∗

( 
λidi q

∗
( 

kiμi q
∗

( 
�

wiλidi q
∗

( 

ki

. (7)

To model drivers’ heterogeneity, drivers are assumed to
have a random reservation earning rate r per unit time,
corresponding to their outside options. We denote the
cumulative distribution function of reservation rate r as
G(·). A registered driver with reservation rate r will only
offer service if the average participating earning rate
wiλidi(q∗)/ki is larger than or at least equal to r. Let βi

denote the ratio of providers who are willing to offer ride
service with the wage per unit time wiλidi(q∗)/ki. 0us,
βi � Prob r≤wiλidi(q∗)/ki  � G(wiλidi(q∗)/ki), the corre-
sponding number of participating drivers ki can be calcu-
lated by

ki � βiKi (8)

According to Bai et al. [4], we assume the reservation rate
r is uniformly distributed from 0 to 1. 0us, we have

βi �
wiλidi q

∗
( 

ki

. (9)

Combining equations (8) and (9), we can express the
wage rate wi as a function of the number of participating
providers ki as follows:

wi � βi

ki

λidi q
∗

( 
�

k
2
i

Kiλidi q
∗

( 
. (10)

3.3. Waiting Time Estimation: A Double Queuing Model.
In practice, ride-sourcing platforms, such as Didi Chuxing,
segment space into bordered matching blocks. Within each
block, the platform organizes requests into a virtual queue
and then matches them sequentially with idle drivers ar-
riving in the block. Inspired by Matsushima and Kobayashi
[34], Shi and Lian [35, 36], and Xu et al. [27], we formulate
the waiting mechanism between customers and drivers as a
double queuing model, in which we assume that ride re-
quests arrive following a Poisson process with rate λi (i.e.,
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requests per unit time). Each request may consist of one to
four passengers, who can be taken by a vehicle. Vacant
vehicles (drivers) also arrive following a Poisson process
with rate kiμi(q∗)/di(q∗).0e onlinematching time between
drivers and ride requests can be negligible compared with
the waiting time. 0us, we assume that the matching is
instantaneous. 0e requests and drivers are arranged based
on a first-come-first-served discipline.

With the assumption that the matching process between
a driver and a ride request is instantaneous, at any time,
there are either ride requests or drivers waiting to be
matched in the queue. We define a Markov process
Ni(t); t> 0  to model the system, where Ni(t)> 0  rep-
resents the number of ride requests waiting to be matched in
the queue at time t, Ni(t)> 0  represents the number of
drivers waiting at time t, and Ni(t) � 0 represents that all
drivers have been matched with all requests at time t.

Denote the state space Si � −ki, −ki + 1, . . . ,

−1, 0, 1, . . . , +∞}. 0erefore, Ni(t)> 0  is a one-dimen-
sional birth-and-death process with state space Si. Figure 1
illustrates the waiting process where row represents the
waiting process in a zone and each circle represents a certain
state.

According to Little’s law [37], the average queuing length
Li, Lv

i , and expected waiting time Wi, Wv
i of passengers and

drivers are as follows:

Li �
kiμi q

∗
(  λidi q

∗
( /kiμi q

∗
( ( 

ki+1

kiμi q
∗

(  − λidi q
∗

( 
. (11a)

Wi �
di q
∗

(  λidi q
∗

( /kiμi q
∗

( ( 
ki

kiμi q
∗

(  − λidi q
∗

( 
. (11b)

L
v
i � ki + λidi q

∗
( 

λidi q∗( 

kiμi q∗( 
 

ki

·
1 − kiμi q

∗
( /λidi q

∗
( ( 

ki

kiμi q
∗

(  − λidi q
∗

( 
⎛⎝ ⎞⎠.

(11c)

W
v
i �

di q
∗

( 

μi q
∗

( 
+ di q

∗
( 

λidi q∗( 

kiμi q∗( 
 

ki

·
1 − kiμi q

∗
( /λidi q

∗
( ( 

ki

kiμi q
∗

(  − λidi q
∗

( 
⎛⎝ ⎞⎠.

(11d)

3.4. Bi-Level Optimization Model. 0e flow rate among
different zones affects the spatial price and wage set by the
platform, which in turn influences the travel demand at each
zone, as well as the flow rates among different zones. To
model the systematic dynamics, we formulate a bi-level
optimization model, where in the upper level, the platform
aims at maximizing its profit given the flow rates, and the
lower level is the trip distribution model that characterizes
the optimal flow rates among zones given the travel demand
rate at each zone.

We present our bi-level optimization model as follows:

max
k,s

π(k, s) � 
i∈V

pi − wi( λidi q
∗

( 

� 
i∈V

λidi q
∗

( si 1 − si(  − ciλisidi q
∗

( 

·
λisidi q

∗
( /μi q

∗
( ki 

ki

μi q
∗

( ki − λisidi q
∗

( 
−

k
2
i

Ki

⎤⎥⎥⎥⎥⎦.

(12a)

s.t. Ki ≥ ki ≥
siλidi q∗( 

μi q∗( 
, ∀i ∈ V, (12b)

1≥ si ≥ 0, ∀i ∈ V, (12c)

where the trip flow rate matrix q∗ equals the optimal so-
lution to the lower-level trip distribution optimization
model, formulated by

q∗ ∈ argmin
q


i∈V


j∈V

qijlnqij − qij .
(13a)

s.t. siλi � 
j∈V

qij, ∀i ∈ V,
(13b)


m∈V

qjm � 
i∈V

qij, ∀j ∈ V, (13c)

qij ≥ 0, ∀i, j ∈ V. (13d)

For the upper-level model, the objective of the platform
in equation (12a) is to maximize the overall profit, where at
zone i ∈V, pi − wi represents the net profit (i.e., the dif-
ference between price and wage) with pi defined in equation
(5) and wi is defined in equation (10), and λidi(q∗) repre-
sents the total travel distance per unit time with λi defined in
equation (4) and di(q∗) defined in equation (1). 0e con-
straints in equation (12b) indicate that (a) the number of
participating drivers cannot exceed the number of registered
drivers; and (b) the service rate must be no smaller than the
realized request rate. 0e constraints in equation (12c)
ensure that the service rate must be between 0 and 1.

For the convenience of derivation, we formulate the
lower-level model () according to the Wilson entropy model
[32], which has an explicit form of the optimal solution. In
the lower-level model, flow rate qij from zone i to zone j

should satisfy constraints in equations (13b) and (13c),
which show that (a) the outflow rate of zone i equals to the
summation of all the flow rates leaving from it; and (b) the
summation of all flow rate out from zone j equals to the
summation of all flow rates into j. We use the second
constraint since we only consider long-term optimal opti-
mization rather than short-term; thus, the outflow rate of a
zone is equal to its inflow rate.

0e following proposition shows that we can obtain the
closed-form solution of the lower-level model ().

Proposition 1. Let q∗ be the optimal solution to lower-level
model in Eq.() for a given service vector s. �en,
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q
∗
ij �

sisjλiλj

τ∈Vsτλτ
, ∀i, j ∈V. (14)

By subscribe flow rate matrix q∗ in (14) into the upper-
level model (12a)–(12c), we can simplify it as follows:

max
k,s

π(k, s) � 
i∈V

j∈VLijλjsj

j∈Vλjsj

λisi 1 − si(  − ci

λisi/kij∈VLijλjsj/j∈VVijλjsj 
ki+1

1 − λisi/kij∈VLijλjsj/j∈VVijλjsj

−
k
2
i

Ki

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (15a)

s.t. λisi

j∈VLijλjsj

j∈VVijλjsj

≤ ki ≤Ki, ∀i ∈V. (15b)

0≤ si ≤ 1, ∀i ∈V. (15c)

4. Analytical Results

We analyze the bi-level optimization model under two
special cases. In the first case, we consider the situation
where an emerging on-demand ride service platform aims to
expand its market penetration at the market entry stage and
ensure its level of service for each zone to be homogeneous.
In the other case, we study that the platform has been at a
stable stage or has dominated the ride-sourcing market and
targets at the highest profit regardless of heterogeneous
levels of service. 0roughout this article, we use superscript
∗ to denote the optimal solutions and optimal profit.

4.1. Case 1: Spatial Homogeneity—Identical Level of Service.
In this subsection, we suppose that the on-demand ride
services platform is at the entry stage of a competitive ride-
sourcing market environment and is devoted to expanding
its penetration by maintaining an identical level of service
across all zones. More formally, we make the following
assumption.

Assumption 1. In upper-level models (15a)–(15c), we as-
sume that si � s for all i ∈ V; that is, the platform would like
to choose a homogeneous level of service in Case 1.
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Figure 1: 0e state transition process of a double queuing model.
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Under Assumption 1, upper-level models (15a)–(15c)
become

max
k,s

π(k, s) � 
i∈V

j∈VLijλj

j∈Vλj

λis(1 − s) − ci

λis/kij∈VLijλj/j∈VVijλj 
ki+1

1 − λis/kij∈VLijλj/j∈VVijλj

−
k
2
i

Ki

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (16a)

s.t. λis
j∈vLijλj

j∈vVijλj

≤ ki ≤Ki, ∀i ∈ v (16b)

0≤ si ≤ 1, ∀i ∈ V. (16c)

We can derive the following mathematical properties of
models (16a)–(16c).

Proposition 2. Under Assumption 1, models (16a)–(16c)
exhibit the following properties:

(1) �e objective function π(k, s) is biconcave in k and s;
that is, it is concave in s for any fixed k and concave in
k for any fixed s;

(2) Let (k∗, s∗) denote the optimal solution of model ().
�en, we have 0< s∗ < 1 and sλij∈VLijλj/
j∈VVijλj < k∗i ≤Ki, ∀i ∈V.

Proposition 3. Under Assumption 1, let the payout ratio,
that is, the proportion of wage to price that the platform sets,
be flexible among different zones. Denote ρ∗i as the optimal
proportion of the realized demand rate to service rate
sλij∈VLijλj/j∈VVijλj < k∗i ≤Ki at zone i; then,

(1) When Ki increases, k∗i , s∗, and π∗ increase; if k∗i is a
boundary solution (i.e., k∗i � Ki), then w∗i increases in
Ki; if −1/ρ∗n + 2 + log(1/ρ∗n )≥ 0(1≥ ρ∗n ≥ 0.3178),
∀n ∈ V, then both k∗n and w∗n increase;

(2) When Vij increases, both k∗i and w∗i decrease, and
both s∗ and π∗ increase; if −1/ρ∗n +

2 + log(1/ρ∗n )≥ 0(1≥ ρ∗n ≥ 0.3178), ∀n ∈ V, n≠ i,
then both k∗n and w∗n increase;

(3) When ci increases, both k∗i and w∗i increase, and both
s∗ and π∗ decrease; if −1/ρ∗n + 2+

log(1/ρ∗n )≥ 0(1≥ ρ∗n ≥ 0.3178), ∀n ∈ V, n≠ i, then
both k∗n and w∗n decrease;

(4) When Lij increases, k∗i increases and s∗ decreases; if
−1/ρ∗n + 2 + log(1/ρ∗n )≥ 0(1≥ ρ∗n ≥ 0.3178), then
k∗n , w∗n , ∀n ∈ V, n≠ i decrease.

All proofs are relegated to the appendix. Based on the
analytical results of Proposition 3, we summarize these
monotonicity properties in Table 1.0emain insights for the
spatial model in the scenario of spatial homogeneity under
Assumption 1 are as follows.

First, the platform should reduce the local wage rate w∗i
as the number of available service providers Ki or service
speed Vij increases. 0e reason is that with an increase in

registered drivers or travel speed, the service rate could be
raised even if the wage rate stays constant.0us, the platform
could relatively reduce wage rate wi to achieve greater profit
without reducing the service rate. It indicates that both a
greater number of registered drivers and better road in-
frastructure help the platform achieve their higher profit.
However, the optimal price p∗i is not monotonic in Ki. 0e
behavior occurs because the expected waiting time increases
convexly in the system utilization.

When the number of potentially participating drivers Ki

or travel speed Vij is not large or fast enough that drivers
serve with high utilization, the bottleneck for the profit
growth is mainly on the supply side. 0e platform operates
in high utilization, and waiting time Wi accounts for a large
proportion in the custom utility function. In this case, an
increase in supply from a higher Ki can significantly increase
the number of operating drivers ki and reduce waiting time
Wi.0us, the platform can afford to rise the optimal price p∗i
and decrease the optimal wage rate w∗i , while still main-
taining a higher realized customer request rate λi and
achieving a higher profit π∗. On the other hand, when the
number of registered driver Ki is too large that drivers serve
with low utilization, the bottleneck is mainly on the demand
side. 0e system operates in low utilization. In this case, an
increase in Ki would slightly reduce waiting time Wi since
the waiting time is already short. As Wi only accounts for a
slight part of the customer utility function, a decrease in the
optimal wage rate w∗i will not influence much of the waiting
time, while a decrease in price p∗i would significantly in-
crease the real customer demand rate λi. 0e platform
should reduce the optimal price p∗i to incentivize a higher λi

and reduce w∗i to achieve a higher profit π∗. Overall, we
explain that the queuing effect results in the nonmonotony
of the optimal price p∗i . 0e nonmonotonic property of p∗i is
obviously due to the nonlinear effect of utilization on waiting
time. If the effect of waiting time cost on customer demand is
not captured (i.e., ci � 0), apparently both p∗i and w∗i de-
crease in Ki.

0e increase in the overall level of service s∗ will affect
the parameters in all zones. In order to keep the identical
level of service, the increase/decrease in s∗ needs the in-
crease/decrease in the driver number in the rest of zones.
0us, k∗n , ∀n ∈ V, always changes in the same direction as s∗.
Similarly, in order to raise/reduce the driver number, the
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wage rate w∗n , ∀n ∈ V should be set higher/lower, which
explains the result that w∗n always changes in the same di-
rection as s∗, too.

Second, we find that when the waiting cost ci increases,
the platform should offer a higher wage ratew∗i .0is strategy
attracts more drivers k∗i to join the platform and reduces the
optimal profit of the platform π∗. An increase in ci would
increase the waiting time cost if the demand rate is constant.
Consequently, the platform should increase the optimal
wage w∗i to reduce the demand rate. 0erefore, it helps
achieve a lower utilization and reduce the waiting time.

Finally, the increase in Lij will cause an increase in the
optimal number of drivers k∗i and decrease in the level of
service s∗. 0e increase in Lij increases the waiting time, if ki

and s stay constant. 0us, the optimal number of drivers k∗i
should be raised to save the waiting time, but s∗ would
decrease.

4.2. Spatial Heterogeneity: Flexible Level of Service

Assumption 2. 0e on-demand ride services platform stays
on the stable stage in a monopoly ride-sourcing market
environment and aims at maximizing its profit by allowing
spatially heterogeneous or flexible levels of service s among
all zones.

Under this assumption, the optimal levels of services s∗

might not be unique, but the optimal k∗ is unique for any
fixed s∗.

Proposition 4. Under Assumption 2, the objective function π
is concave in k for any fixed s, but is not necessarily concave in
s for any fixed k. Given s∗, the optimal solution k∗ uniquely
exists, and k∗i , ∀i ∈ V, is either the solution of zπ/zki � 0 or
equals Ki. �e sensitivity analyses in terms of ki in Proposition
3 still hold.

Proposition 5. Under Assumption 2, let the payout ratio,
that is, the proportion of wage to price that the platform sets,
be flexible among different zones. Given any s, then

(1) �e profit πi decreases in si, if si > 1/2, ∀i ∈V
(2) �e profit πj decreases in si, if Lji > dj and

Ljiμj <Vjidj, and increases in si, if Lji < dj and
Ljiμj >Vjidj

Based on the analytical results of Propositions 4 and 5,
we summarize the main insights for the spatial model in the

scenario of spatial heterogeneity under Assumption 2 as
follows:

First, the partial derivative of k is consistent with
Proposition 3 under Assumption 1, and the objective
function is still concave in k for any fixed s. However, the
model is no longer concave in s for any fixed k, which
complicates the analytical results. 0us, it is difficult to reach
more insightful analytical results under Assumption 2. To
numerically solve this problem, we use alternating projec-
tion to reach a near-optimal solution, which satisfies the
well-known KKT conditions.

Second, under the assumption that the valuation per
service unit v is uniformly distributed following [0, 1], we
suggest the platform not pursuit a level of service higher than
1/2. It might be intuitive for us that a higher level of service
usually results in the higher profit in the multi-enterprise
environment. But in a monopoly ride-sourcing market, a
high level of service requires the low price as well as short
waiting time, which requires the high wage rate to attract an
enough number of drivers.0us, a high level of service might
not help the platform gain the maximum profit. In some
circumstances, the platform keeps the service under a not
very high level to maximize its profit.

Finally, travel speed as well as travel distance is de-
pendent on the travel flow rate distribution among zones;
that is, a zone’s state would be affected by the states of other
zones. We can interpret Proposition 5 as follows. Once a
zone’s demand rate increases, the proportion of its flow rate
to the overall flow rate is enlarged. 0us, a zone’s average
distance di tends to be enlarged/lessen if the distance be-
tween two zones is greater/less than the original average
distance di. 0us, the increase of si would increase the av-
erage local travel distance di. Analogously, if travel time
Lji/Vji between the two zones j and i is less than the original
average travel time, then the increase of si would reduce local
travel time di/μi. For instance, there might be an expressway
connecting two regions, which are far from each other.
Overall, if the increase in the local request arrival rate in zone
i helps increase distance dj and reduce travel time di/μi in
zone j, the local profit πj will be enlarged. On the contrary, if
the increase in the local request arrival rate in zone i de-
creases distance dj and increases travel time di/μi in zone j,
the optimal local profit πj will decrease.

5. Numerical Illustrations

5.1. Parameters. In this section, we present some numerical
experiments with parameters calibrated by using the DiDi
Chuxing data in Hangzhou, China. In the experiments, we
divide Hangzhou into 7 × 7 zones. Each zone is a square with

Table 1: Summary of sensitivity analysis in Proposition 3.

Increasing parameter Wage w∗i Drivers k∗i Service level s∗i Drivers, wage k∗n , w∗n Profit π∗

Potential providers Ki Not monotone ↓ ↑ ↑ ↑
Service speed Vij Not monotone ↓ ↓ ↑ ↑
Service distance Lij Not monotone ↓ ↑ ↓ ↑
Waiting cost ci Not monotone ↑ ↑ ↓ ↓
Here, ↓� decrease and ↑� increase.
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the side length of about 5 km, which is approximately the
margin of a driver’s service radius. We analyze the one-week
sampling order data between March 6, 2017 and March 12,
2017 from DiDi Chuxing. 0e average demand and number
of available drivers per day are shown in Figures 2 and 3,
respectively. As can be seen, both the numbers of drivers and
ride requests are much more active in the urban center than
suburbs, and the ride request calling even drops to 38 times
per day in the margin zones. It is worthy to note that it is the
sampling dataset that we analyze, and the sample data
consist of 50% of total requests, so the real requests exceed
the values shown in the figures, but the spatial distribution
pattern maintains the same.

We examine the average income for citizens in Hang-
zhou in 2018. 0e majority of citizens earn 2,000 to 8,000
CNY (US $100 is approximate CNY 670) per month, in-
cluding 18.3% earn 2,000 CNY to 3,000 CNY, 17.4% earn
3,000 CNY to 4,500 CNY, 18.6% earn 4,500 CNY to 6,000
CNY, 15.9% earn 6,000 CNY to 8,000 CNY, and 8.7% earn

8000 CNY to 10,000 CNY. Considering that the drivers need
bear expenses of car insurance, fuel cost, and car mainte-
nance, we estimate that a hourly wage rate of 35 CNY is
required for a ride-sourcing driver to provide service. 0us,
the hourly wage reservation r is assumed to be distributed
uniformly between 35 CNY and 45 CNY.

We also investigate the price that DiDi charges from the
customers in 2017. Although the dynamic pricing strategy
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Figure 2: 0e spatial distribution of drivers and passengers’ ride requests in zones. (a) 0e number of registered drivers (Ki) in Hangzhou.
(b) 0e number of requests in Hangzhou.
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Figure 3: Spatial distribution of on-demand ride requests in Hangzhou, China.

Table 2: Summary of parameters based on empirical data statistics.

Parameter Max Min Mean Source
Ki 622 2 106 Data
λi 930 h− 1 1.58 h− 1 134 h− 1 Data
Vij 68.29 km/h 9.66 km/h 34.38 km/h Data
Lij 64.20 km 1.70 km 22.07 km Data
ci — — 200 CNY/h Assumption
v 4 CNY/km 1 CNY/km 2.5 CNY/km Assumption
r 45 CNY/h 35 CNY/h 40 CNY/h Assumption
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DiDi takes in the rush hour, the price is 3.2 CNY/km from 11
PM to 6 AM in the midnight or early morning, 2.4 CNY/km
from 6 AM to 7 AM, 2.5 CNY/km from 7 AM to 9:30 AM
and from 4 PM to 7 PM, and 2.3 CNY/km for the rest of time
periods. Since most orders focus on the daytime, we set the
customer valuation per kilometer v be uniformly distributed
between 2 CNY and 4 CNY. 0e value of time c is a difficult
parameter to accurately estimate. 0us, we roughly set ci as
200 CNY for all zones.

0e parameters of customer demand rate λi and the
number of potential drivers Ki are estimated from the real
data. We set demand rate λi as the average demand rate per
hour from the dataset and Ki as the average number of
different driver IDs that appear in the dataset. Travel

distance Lij and speed Vij between zone i and j are estimated
from the average value of travel distance and speed from
zone i to j in the real dataset. Table 2 summarizes the pa-
rameters and corresponding sources used in the numerical
experiments.

5.2. Illustration Based on Real Data. We numerically solve
the model under Assumption 1 with the interior point
method in MATLAB 2017b. Let us denote the average price
as p, average wage as w, and average number of drivers as k.
Figure 4 illustrates the changes in the average optimal price
p∗, wage w∗, number of drivers k∗, and level of service s∗, as
the waiting cost c increases from 10 CNY to 1,000 CNY. As
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Figure 4: Sensitivity analysis of endogenous variables in terms of c. (a) p∗, w∗, and k∗. (b) s∗.
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can be observed, both the average w∗ and k∗ increase as c

increases, the optimal level of service s∗ (and the effective
service rate λ∗) decreases, and the optimal price p∗ slightly
decreases. 0e result is caused for the waiting time cost
increases as the waiting cost c increases, which decreases the
customer demand rate. 0e platform should raise the wage
rate w∗ to attract more drivers and then reduce waiting time.
0e optimal price p∗ should also be slightly reduced to
attract more customers.

Figure 5 illustrates the sensitivity of optimal variables as
total Ki increases, which we denote as the increase in K.
Intuitively, the average wage w∗ decreases and average
participating drivers k∗ increases as K increases, both the
optimal level of service s∗ and effective service rate λ∗ in-
crease. As shown in Figure 6, the sensitivity of those optimal
endogenous variables as Vij increases, which we denote as
the increase of V, is similar to Figure 5. Both the average
wage w∗ and k∗ decrease as V increases, and both the
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optimal level of service s∗ and effective service rate λ∗ in-
crease. 0e increase of either K or V causes the increase in
the service rate, decrease in the waiting time, and attracts
more customers. 0us, to some extent, both either the in-
crease of K or V results in the analogous effect.

Figure 7 shows the change of local k∗i among all zones
with the increase of K3 in which Δk∗ represents the dif-
ference of k∗i between the original one when K3 � 10. 0e
results show that with the increase in the level of service, k∗n ,
∀n ∈ V, n≠ i, increases. 0e trend is similar to the increase
of K17. We choose regions 3 and 17 because they are the
suburb area and the center area, respectively. Figure 8 shows
the change of local k∗i among all zones with the increase of a

specific V4,24. Similarly, the increase in travel speed helps
increase s∗, which increases k∗n , ∀n ∈ V, n≠ i. 0e trend is
similar to the increase of V25,24.We choose regions 4 and 25
because they are the suburb area and the center area,
respectively.

Figures 9 and 10 show the change of parameters with the
increase of total λi and Lij, which we denote as the increase of
λ and L. 0e increase of either λ or L increases the demand
rate. With the increased request rate, the number of effective
drivers k∗i increases. 0e level of service s∗ decreases to
inhibit the excessive demand. And the platform could
correspondingly reduce the wage rate w∗i . Figure 11 illus-
trates the change of local k∗i among all zones with the
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increase of L4,24 in which Δk∗ represents the difference of k∗i
between the original one when L4,24 � 22 km. As can be seen,
in spite of zone 4, k∗i increases among the rest of zones. 0e
trend is similar to the increase of L25,24.We choose regions 4
and 25 because they are the suburb area and the center area,
respectively.

Finally, we compared the platform profit under three
different scenarios, that is, the flexible level of service and
flexible payout ratio, identical level of service and flexible

payout ratio, and identical level of service and identical
payout ratio in Figure 12.0emodel is no longer a biconcave
optimization problem when the on-demand ride services
platform aims at maximizing its profit by allowing spatial
heterogeneity or flexible levels of service among all zones. To
numerically solve this problem, we use alternating projec-
tion to reach the optimal solution. Obviously, the most
flexible case reaches the greatest profit, while the identical
payout ratio significantly reduces platform revenue.
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Figure 10: Sensitivity analysis of endogenous variables in terms of L. (a)p∗, w∗, and k∗. (b)s∗.
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Conversely, the negative effect of identical level of service on
profits is weak, and the platform guarantees service level in
areas with low demand at the expense of profit.

6. Conclusions

0is article investigates the long-term effects of spatial
pricing and its regulation for a ride-sourcing platform. In
our model, we divide the study area into zones and suppose
that drivers are heterogeneous in their reservation earning
rate, while customers are heterogeneous in valuation of
service. We further assume that the actual earning rate of
drivers is related to the wage set by the platform as well as the
arrival rate of ride requests. 0e cost of customers are as-
sumed to be related to the prices set by the platform as well as
the waiting time, which is in turn dependent on the number
of drivers and the arrival rate of ride requests. More im-
portantly, the model endogenously determines the long-
term demand characteristics, which change dynamically.
0us, the platformmust take the interaction between drivers
and customers and the changing demand characteristics into
account to maximize its profit.

We conduct analysis of supply and request rates in two
different cases. In the first case, we consider that the on-
demand ride services platform is just entering a competitive
market environment and is devoted to expanding its market
penetration by maintaining its level of service to be identical
across all of the zones. We first prove that in this case, our
model is a biconcave problem, which can be solved by the
alternating projection method. Our analytical results show
that at a particular service zone, the platform should reduce
the wage of local drivers as the number of available local
drivers or service speed increases. 0is strategy will further
help increase the optimal level of service as well as the
participating number of drivers in the other zones and thus
will help increase the optimal profit. We also show that at a
given zone, when the local waiting time increases, the

platform should offer a higher local wage rate to attract more
drivers to join the platform. 0is decision will decrease the
optimal level of service as well as the number of drivers at the
other zones and thus will decrease the optimal profit. 0e
numerical experiments with real-world data from DiDi
coincide with the theoretical results.

In the second case, the on-demand ride services platform
is on the stable stage of a monopoly market environment and
aims at maximizing its profit by allowing spatial heteroge-
neity or flexible levels of service across all of the zones. In this
case, our model becomes much more complicated and is no
longer biconcave. Our further investigation shows that the
optimal level of service should be less than 1/2. 0is is
because a higher service level requires a higher wage rate,
which results in a lower profit. We also show that once a
zone’s service level increases, the flow rate from the zone to
other zones will increase. As a result, other zones’ average
speed tends to increase (decrease) if the speed between two
zones is greater (less) than the original average speed. 0e
same result also holds for the average travel distance. 0us,
these changes (i.e., the changes in a particular zone’s average
speed and average travel distance) will further affect the the
profit. It is worthy to mention that the profit of a particular
zone increases as its average travel distance grows and av-
erage travel time drops. For instance, there might be an
expressway connecting two regions, which are far from each
other.

Finally, we numerically compared the platform profit
under three different scenarios, that is, the flexible level of
service and flexible payout ratio, identical level of service and
flexible payout ratio, and identical level of service and
identical payout ratio. 0e result shows that most flexible
case is always the most profitable. We also show that the on-
demand ride services platform has the potential to choose to
expand its penetration by maintaining the same level of
service across all geographies while ensuring flexible pay-
ment ratios, as it only loses a small portion of profits.

0ere are several limitations in this article. 0e cruising
behavior of drivers is ignored, and correspondingly, the
platform subsidy and more complex strategies are not ex-
amined. Besides, the OD-based pricing or path-based
pricing is not taken into consideration. 0erefore, there are
two possible future directions. First, it would be interesting
to investigate the short-term pricing strategy where the trip
distribution equilibrium no longer exists and the number of
customers and drivers in each time period will be affected by
the strategies taken in the earlier period. Secondly, we also
suggest theoretical and numerical comparisons between
OD-based pricing and path-based pricing.

Appendix

A. Notation

Sets

(1) G(V,E): network with the set of nodesV and set of
edges E. Here, we assume G is a complete graph,
which includes all the self-loops, that is, E � V × V
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(2) Si: the set of state of double queuing model at zone i

Variables

(1) βi: the proportion of participating drivers to reg-
istered drivers

(2) di(q): average amount of service units per service
request at zone i

(3) k: the average driver number of all zones
(4) ki: actual number of participating service providers

at zone i

(5) λi: customer demand rate at zone i

(6) Li: the average queuing length at zone i

(7) μi(q): average service speed of the service providers
at zone i ∈V

(8) p: the average price of all zones
(9) pi: price rate (price per service unit) charged from

customers at zone i

(10) πi: platform profit in zone i

(11) π: overall platform profit, which equals to the
summation of πi, ∀i ∈ V

(12) qij: customer demand rate from origin zone i to
destination zone j

(13) ri: reservation (earning) rate of service providers at
zone i

(14) ρi: the ratio of λidi/kiμi at zone i

(15) si: target level of service at zone i

(16) vi: value rate per service unit of a customer at zone i

(17) Wi: average queuing time for customers at zone i

(18) wi: wage rate (wage per service unit) paid to service
providers at zone i

(19) w: the average wage of all zones

Functions

(1) Ni(t): the one-dimensional birth-and-death process
representing the queuing process at zone i

(2) Ui(·): the surplus or utility function for customers in
zone i

Parameters

(1) ci: unit waiting cost of customers at zone i

(2) Lij: average service unit from origin zone i to des-
tination zone j

(3) λi: customer demand rate who may opt to use the
platform to request for service at zone i

(4) Ki: maximum number of potential service providers
who may opt to participate at zone i ∈V

(5) Vij: average service speed from origin zone i to
destination zone j, i, j ∈ V

B. Proofs of Propositions

Proof of Proposition 1. Note that model equations
(13a)–(13d) are a strictly convex minimization problem
subject to compact linear feasible region. 0us, there exists a
unique optimal solution and strong duality holds Boyd et al.
[38]. Let ci i∈V, βj 

j∈V be dual multipliers associated with
constraints equations (13b) and (13c). 0en, the Lagrangian
function can be written as

L(q, c, β) � 
i∈V


j∈V

qij ln qij − qij 

+ 
i∈V

ci 
j∈V

qij − siλi
⎛⎝ ⎞⎠ + 

j∈V
βj 

i∈V
qij − sjλj

⎛⎝ ⎞⎠.

(B.1)

0us, the first-order condition yields that

zL

zqij

(q, c, β) � ln qij + ci + βj � 0,∀i, j ∈V. (B.2)

0us, the authors have

q
∗
ij � e

− ci− βj , (B.3)

for each i, j ∈V.
By substituting equation (B.3) into equations (13b) and

(13c), the authors have

siλi � e
− ci 

j∈V
e

− βj ,∀i ∈V, sjλj � e
− βj 

i∈V
e

− ci ,∀j ∈ V,

(B.4)

which implies that


i∈V

e
− ci 

j∈V
e

− βj � 
i∈V

siλi. (B.5)

0us, from equation (B.3), the authors arrive at

q
∗
ij � e

− ci− βj �
sisjλiλj

l∈Ve
−cl τ∈Ve

−βτ
�

sisjλiλj

τ∈Vsτλτ
. (B.6)

□
Proof of Proposition 2. 0e bi-level optimization model
established in Section 3.4 is a constrained optimization
problem. 0e existence of the optimal solution needs to be
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validated. 0e first-order partial derivative of objective
function equation (12a) for ki is

zπ
zki

� −ciλidi

λidi

μiki

 

ki log λidi/μiki(  − 1(  μiki − λidi(  − μi

μiki − λidi( 
2 −

2ki

Ki

. (B.7)

z
2π

zk
2
i

� −ciλidi

λidi

μiki

 

ki log λidi/μiki(  − 1( 
2

μiki − λidi

+
λidi/ki(  − 2μilog λidi/μiki(  + μi

μiki − λidi( 
2 +

2μ2i
μiki − λidi( 

3
⎡⎣ ⎤⎦ −

2
Ki

< 0. (B.8)

0e authors now analyze the value of the first-order
partial derivative when ki is close to λidi/μi. Let us denote
kiμi � λidi + ε, where ε is a tiny positive number. Hence, the

value of equation (B.7) is positive infinity. Since the second-
order partial derivative is negative, the optimal ki must be
larger than λidi/μi.

lim
ki⟶ λidi/μi( )

+

zπ
zki

� lim
ε⟶0

zπ
zki

� −ciλidi

λidi

μiki

 

ki log λidi/μiki(  − 1
ε

−
μi

ε2
  −

2λidi

μiKi

� +∞. (B.9)

lim
ki⟶ K−

i

zπ
zki

� −ciλidi

λidi

μiKi

 

Ki log λidi/μiKi(  − 1
μiKi − λidi

−
μi

μiKi − λidi( 
2

⎛⎝ ⎞⎠ − 2. (B.10)

When ki approaches the upper bound Ki, zπ/zki could
be either negative (e.g., given λi � 100 h− 1, di � 6 km, μi �

20 km/h, ci � 500 h− 1, Ki � 200) or positive (e.g., when Ki is
close to λidi/μi). Hence, the optimal value of ki is either the
solution of zπ/zki � 0 or Ki.

Based on the above analysis, the existence of k∗i has been
proven. When the arriving rate of requests is large and the

drivers supply is not adequate for the demand, all available
drivers should be attended, that is,, k∗i � Ki. But k∗i is smaller
than Ki under the general condition. Overall, k∗i is either Ki

or the solution to zπ/zki � 0.
Under the scenario that all si are equal, the first- and

second-order partial derivatives of the objective function are

zπ
zs

� 
i∈V

λidi(1 − 2s) − ciλidiki

λidi

μiki

 

kiμiki + μi − λidi

μiki − λidi( 
2

⎡⎣ ⎤⎦. (B.11)

z
2π

zs
2 � 

i∈V
−2λidi − ciλidiki

λidi

μiki

 

ki kiμi + μi − λi

λidi μiki − λidi( 
2 +

1
μiki − λidi( 

2 +
2μi

μiki − λidi( 
3

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦< 0. (B.12)

When s⟶ 0, the first-order partial derivative is pos-
itive, because

lim
s⟶0

zπ
zs

� 
i∈V

λidi > 0. (B.13)

Hence, s∗ must be larger than 0. When s⟶ 1, the
authors have

lim
s⟶1

zπ
zs

� − 
i∈V

λidi + ciλiki

λidi

μiki

 

kiμiki + μi − λidi

μiki − λidi( 
2

⎡⎢⎢⎣ ⎤⎥⎥⎦< 0.

(B.14)

Hence, when s∗ � 1, the first-order partial derivative
must be negative. 0e unconstrained s∗ might be smaller
than 1, which implies that s∗ exists between 0 and 1.

Since z2π/zk2
i < 0, z2π/zk2

i < 0, it is obvious that the
objective function is concave in ki and s, which indicates that
the optimal k∗ can be easily determined once s∗ is fixed and
the optimal s∗ can be easily determined once k∗ is fixed. □

Proof of Proposition 3. (1) Suppose that the optimal k∗i is an
optimal interior solution of the model, that is, 0< k∗i <Ki.
For simplicity, let us denote k0 as the optimal value k∗i when
Ki � K0. According to equation (B.7), the authors have
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zπ k
0

 

zki

� −ciλi

zWi

zki

|ki�k0 −
2k

0

K
0 � 0. (B.15)

Clearly, zπ/zki increases with Ki. Let us denote
K1 � K0 + ϵ, in which ϵ is positive and arbitrarily small, and
then, the authors have

zπ k
0

 

zki

� −ciλi

zWi

zki

|ki�k0 −
2k

0

K
1 > 0. (B.16)

According to equation (B.8), z2π/zk2
i < 0, and thus, the

optimal ki must be greater than k0 when Ki � K1 to keep
zπ/zki zero, which indicates that k∗i increases in Ki.

0e authors then analyze the optimal value of s∗, which
satisfies zπ/zs � 0, that is,

zπ
zs

� 
i∈V

λidi(1 − 2s) − ciλidiki

λidi

μiki

 

kiμiki + μi − λidi

μiki − λidi( 
2

⎡⎣ ⎤⎦ � 0.

(B.17)

Clearly, the right side of equation (B.17) increases in ki.
0us, if k∗i increases and s is constant, zπ/zs becomes larger
than 0. With the condition described in equation (B.12),
z2π/zk2

i < 0, the authors can conclude that s∗ must increase
with ki to keep zπ/zs zero. Since k∗i increases with Ki, s∗

increases with Ki too. According to equation (12a), profit π
increases with Ki even if ki and s stay constant, and hence,
the optimal profit π∗ must increase with Ki.

0e authors can derive that the waiting time Wi has the
following properties:

z
2
Wi

zk
2
i

� di

λidi

μiki

 

ki log λidi/μiki(  − 1( 
2

μiki − λidi

+
λidi/ki(  − 2μilog λidi/μiki(  + μi

μiki − λidi( 
2 +

2μ2i
μiki − λidi( 

3
⎡⎣ ⎤⎦> 0. (B.18)

z
2
Wi

zkizui

� di

λidi

μiki

 

ki

−
log λidi/μiki(  − 1

μiki − λidi

ki

μi

+
−μikilog λidi/μiki(  − 1/μiki − λidi + λidi

μi μiki − λidi( 
2 +

μiki + λidi

μiki − λidi( 
3

⎛⎝ ⎞⎠> 0. (B.19)

z
2
Wi

zkizdi

�
λidi

μiki

 

ki

ki

log λidi/μiki(  − 1
μiki − λidi

+
λidilog λidi/μiki(  − 2λidi

μiki − λidi( 
2 −

2λidiμi

μiki − λidi( 
3

⎡⎣ ⎤⎦< 0. (B.20)

z
2
Wi

zkizλi

� d
2
i

λidi

μiki

 

ki ki + 1( log λidi/μiki(  − ki

μiki − λidi

+
λidi log λidi/μiki(  − 1(  − μi ki + 1( 

μiki − λidi( 
2 −

2λidiμi

μiki − λidi( 
3

⎡⎣ ⎤⎦< 0. (B.21)

Since z2Wi/zk2
i > 0, zWi/zki increases as ki grows. To-

gether with zWi/zki < 0 (since the waiting time decrease with
driver number), the first term in the following equation
decreases with ki. With the condition zπ(k∗)/zki � 0, the
authors have that the k∗i /Ki decreases in Ki:

zπ
zki

� −ciλi

zWi

zki

−
2ki

Ki

. (B.22)

In order to explore the interaction between zones, the
authors have analyzed the partial derivative zπ/zkn, n≠ i, as
follows:

zπ
zkn

� −cnλndn

λndn

μnkn

 

kn log λidi/μiki(  − 1(  μnkn − λndn(  − μn

μnkn − λndn( 
2 −

2kn

Kn

� cnλndn ρn( 
kn

log 1/ρn(  + 1
μnkn − λndn

+
μn

μnkn − λndn( 
2

⎛⎝ ⎞⎠ −
2kn

Kn

.

(B.23)

Clearly, both items cnλndn(ρn)kn and μn/(μnkn − λndn)2

increase with s, and 2kn/Kn is independent with s. Hence, if
log(1/ρn) + 1/μnkn − λndn increases or is independent of s,
the authors can infer that zπ/zkn increases with s. By taking
the partial derivative, the authors have

zlog 1/ρn(  + 1/μnkn − λndn

zs
� λndn

−1/ρn + 2 + log 1/ρn( 

μnkn − λndn( 
2 .

(B.24)
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If the numerator is not less than 0, that is, if
−1/ρn + 2 + log(1/ρn)≥ 0, then zπ/zkn increases with s. Since
the authors have deduced that s∗ increases with Ki, com-
bined with equation (B.8), the authors can indicate that as Ki

increases, k∗n ,∀n ∈V, n≠ i, must increase. 0us, as Ki in-
creases, k∗n ,∀n ∈V, must increase.

kn

λndn

zπ
zkn

� cnkn ρn( 
kn

log 1/ρn(  + 1
μnkn − λndn

+
μn

μnkn − λndn( 
2

⎛⎝ ⎞⎠

− 2wn.

(B.25)

To explore the sensitivity of wage in other regions, the
authors formulated equation (B.25). If
−1/ρn + 2 + log(1/ρn)≥ 0, according to equation (B.24),
log(1/ρn) + 1/μnkn − λndn increases in s. It is obvious that
μn/(μnkn − λndn)2 increases with s too. With the first term in
equation (B.25) increasing in s, the optimal wage w∗n must
increase in s to keep equation (B.25) zero. 0us, the optimal
wage w∗n ,∀n ∈ V, n≠ i, increases in Ki, if
−1/ρn + 2 + log(1/ρn)≥ 0.

Suppose that the optimal k∗i is an optimal boundary
solution of the model. 0e authors have k∗i � Ki; hence, k∗i
increases when Ki increases. Similarly, with equation (B.17),
the authors can infer that the s∗ increases in Ki and the
μiki/λidi must increase in Ki too. According to equation (10)
and k∗i � Ki, the optimal wage w∗i equals to

wi �
k
2
i

Kiλidi q
∗

( 
�

Ki

λidi q
∗

( 
. (B.26)

Since μiki/λidi increases in Ki, the wage w∗i must increase
in Ki.

According to equations (B.23) and (B.24), if
−1/ρn + 2 + log(1/ρn)≥ 0, then zπ/zkn increases with s. Since
the authors have deduced that s∗ increases with Ki, com-
bined with equation (B.8), the authors can indicate that as Ki

increases, k∗n ,∀n ∈ V, n≠ i, must increase. Similarly, with
equation (B.25), the optimal wage w∗n ,∀n ∈ V, n≠ i, in-
creases in Ki, if −1/ρn + 2 + log(1/ρn)≥ 0

(2) If Vij increases, then μi increases. Denote k0 as the
optimal solution k∗i when μi � μ0. As proved above,
z2Wi/zkizui > 0.0erefore, for any μ1 � μ0 + ϵ (ϵ is positive),
the authors have

zπ k
0

 

zki

� −ciλi

zWi

zki

|ki�k0 ,μi�μ1 −
2ki

Ki

< 0. (B.27)

Since π is concave in ki, the optimal ki must be less than
k0, which indicates that k∗i decreases in μi.

According to formulation equation (B.17), zπ/zs de-
creases in μi. Hence, the following equation holds:

zπ s
0

 

zs
� 

i∈V
λidi 1 − 2s

0
 ⎡⎣

− ciλidiki

λ0i di

μ1i ki

 

kiμ1i ki + μ1i − λ0i di

μ1i ki − λ0i di 
2

⎤⎥⎥⎥⎥⎦> 0.

(B.28)

Since z2π/zs2 < 0, the authors know s∗ must increase in
μi. 0e first term of equation (B.17) decreases in s, and the
second term increases in μiki/λidi; thus, the optimal μiki/λidi

must increase, while waiting time Wi decreases (since Wi

decreases with μiki/λidi).
0e wage wi � k2

i /Kλidi increases in ki and decreases in
s; hence, the optimal wage w∗i must decrease in Vij. Clearly,
the objective function increases in Vij, while profit π∗
increases.

According to equations (B.23) and (B.24), if
−1/ρn + 2 + log(1/ρn)≥ 0, zπ/zkn increases with s. Since the
authors have deduced that s∗ increases with μi, combined
with equation (B.8), the authors can indicate that as Vij

increases, k∗n ,∀n ∈V, n≠ i, must increase. Similarly, with
equation (B.25), the optimal wage w∗n ,∀n ∈V, n≠ i, in-
creases in μi, if −1/ρn + 2 + log(1/ρn)≥ 0.

(3) Let us denote the optimal k∗i as k0
i , when ci � c0; and

as k1
i , when ci � c0 + ϵ. 0e authors have

zπ k
0
i 

zki

� −c
0λi

zWi

zki

|ki�k0 −
2k

0
i

Ki

> 0. (B.29)

Hence, k1
i must be greater than k0

i in order to make the
equation zero, indicating k∗i increases in ci.

According to equation (B.17), zπ/zs decreases in ci.
Hence, the following equation holds:

zπ s
0

 

zs
� 

i∈V
λidi 1 − 2s

0
 ⎡⎣

− c
1
i λidiki

λ0i di

μiki

 

kiμiki + μi − λ0i di

μiki − λ0i di 
2

⎤⎥⎥⎥⎥⎦< 0.

(B.30)

Since z2π/zs2 < 0, s∗ must decrease in ci. With the in-
crease of k∗i and decrease of s∗, the authors can further infer
that the optimal wage w∗ � k∗i 2/Kiλis

∗di must increase in ci.
And waiting time W∗i , which decreases with k∗i and increases
with s∗, must decrease in ci. From equation (12a), the op-
timal profit decreases with ci.

According to equations (B.23) and (B.24), if
−1/ρn + 2 + log(1/ρn)≥ 0, zπ/zkn increases with s. Since the
authors have deduced that s∗ decreases with ci, combined
with equation (B.8), the authors can indicate that as ci in-
creases, k∗n ,∀n ∈ V, n≠ i, must decrease. Similarly, with
equation (B.25), the optimal wage w∗n ,∀n ∈ V, n≠ i, de-
crease in ci, if −1/ρn + 2 + log(1/ρn)≥ 0.
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(4) If Lij increases, then di increases. Suppose that k0

denotes the optimal value of ki, when di � d0. When
d1 � d0 + ϵ, from equation (B.20), the authors have

zπ k
0

 

zki

� −ciλi

zWi

zki

|ki�k0 ,di�d1 −
2k

0

Ki

> 0. (B.31)

Since π is concave in ki, the optimal ki must be greater
than k0, which indicates that k∗i increases in Lij.

Let us denote s0 as the optimal s∗, when di � d0; as s1,
when di � d1. According to equation (B.17), zπ/zs decreases
in μi. Hence, the following equation holds:

zπ s
0

 

zs
� 

i∈V
λid

1
i 1 − 2s

0
  − ciλid

1
i ki

λ0i d1
i

μiki

 

kiμiki + μi − λ0i d
1
i

μiki − λ0i d
1
i 

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦< 0. (B.32)

Since z2π/zs2 < 0, s∗ must decrease in Lij. From equation
(12a), the optimal profit increases with Lij.

According to equations (B.23) and (B.24), if
−1/ρn + 2 + log(1/ρn)≥ 0, zπ/zkn increases with s. Since the
authors have deduced that s∗ decreases with Lij, combined
with equation (B.8), the authors can indicate that as Lij

increases, k∗n ,∀n ∈V, n≠ i, must decrease. Similarly, with
equation (B.25), the optimal wage w∗n ,∀n ∈ V, n≠ i, de-
creases in Lij, if −1/ρn + 2 + log(1/ρn)≥ 0. □

Proof of Proposition 4. Since the second-order partial de-
rivative of π with respect to ki remains negative, the objective
function under Assumption 2 is concave in ki with any fixed
s. 0e first-order partial derivative of π with respect to ki is
unchanged; hence, the properties about ki in Proposition 3
still hold.

z
2π

zk
2
i

� −ciλidi

λidi

μiki

 

ki log λidi/μiki(  − 1( 
2

μiki − λidi

+
λidi/ki(  − 2μilog λidi/μiki(  + μi

μiki − λidi( 
2 +

2μ2i
μiki − λidi( 

3
⎡⎣ ⎤⎦ −

2
Ki

< 0. (B.33)

zπ
zki

� −ciλidi

λidi

μiki

 

ki log λidi/μiki(  − 1(  μiki − λidi(  − μi

μiki − λidi( 
2 −

2ki

Ki

� 0. (B.34)

□
Proof of Proposition 5. For the conciseness of deduction, the
profit is divided into the zone-based profit. 0e authors
analyze the impact of si on zone i and other zones separately.

Since distance di and travel speed μi are related to si, they are
considered parameters, too. Let us denote the profit of zone i

as πi, μiki/λidi as ρi.

zπi

zsi

� 1 − 2si( λidi +
λi 1 − si( 


τ∈V

λτ Lii − di(  − ci

ρki

i

μiki 1 − ρi( 
ki + 1 +

ρi

1 − ρi

  
τ ≠ i

Viτλτ
 Liτλτ
 Viτλτ( 

2 +
Liiλi

 Viτλτ
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(B.35)

zπj

zsi

� λi λj − sjλj 
Lji − dj


i∈V

λi − cjλi

ρkj

j

μjkj 1 − ρj 

Lji − Vjidj/μj

 Viτλτ
 .

(B.36)

Since 0< si < 1, the third term of zπj/zsi is negative. 0e
authors already know the travel distance inside zone i is
certainly less than the distance to other zones, that is,
Lii − di < 0, and then, the second term is negative, too. If
1 − 2si < 0, i.e., si > 1/2, zπj/zsi < 0, the profit of zone i is
decreasing with si. Hence, si must be greater than 1/2, if the
valuation per service unit v is evenly distributed between
[0, 1].

0e sign of zπj/zsi depends on Lji, that is, travel distance
from zone j to i; Vji, that is, travel speed from zone j to i; dj,
that is, average travel distance of zone j; and μj, that is,
average travel speed of zone j. 0us, from equation (B.36),
the authors can infer that if Lji >dj and Lji >Vjidj/μj, that is,
Lji/Vji > dj/μj, then zπj/zsi < 0. 0e authors can conclude
that the value of profit in zone j increases in λi, if Lji >dj and
Lji/Vji > dj/μj.
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Correspondingly, if Lji <dj and Lji >Vjidj/μj, that is,
Lji/Vji >dj/μj, then zπj/zsi < 0. 0e authors can conclude
that the value of profit in zone j decreases in si, if Lji <dj and
Lji/Vji >dj/μj. □
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