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As reported by the United Nations in 2021, road accidents cause 1.3 million deaths and 50 million injuries worldwide each year.
Detecting traffic anomalies timely and taking immediate emergency response and rescue measures are essential to reduce
casualties, economic losses, and traffic congestion. 'is paper proposed a three-stage method for video-based traffic anomaly
detection. In the first stage, the ViVit network is employed as a feature extractor to capture the spatiotemporal features from the
input video. In the second stage, the class and patch tokens are fed separately to the segment-level and video-level traffic anomaly
detectors. In the third stage, we finished the construction of the entire composite traffic anomaly detection framework by fusing
outputs of two traffic anomaly detectors above with different granularity. Experimental evaluation demonstrates that the proposed
method outperforms the SOTA method with 2.07% AUC on the TAD testing overall set and 1.43% AUC on the TAD testing
anomaly subset. 'is work provides a new reference for traffic anomaly detection research.

1. Introduction

With rapid economic development, a leapfrog has been
achieved in transportation. Contrary to the wishes of [1], the
number of civilian vehicles and the road network density are
increasing, and the road network structure is becoming
more complex. As a result, traffic management schemes are
proposed correspondingly; numerous measures such as
CCTV cameras and radars are put on the roadside to reg-
ulate the driving behavior of drivers [2–4]. Studies on the
vehicle are carried out [5–9]. However, numerous traffic
accidents with terrible consequences still happen every year
[10]. According to the National Bureau of Statistics, in 2020,
there were 244,674 traffic accidents in China, resulting in
61,703 deaths, 250,723 injuries, and a direct property loss of
about 206 million dollars [11].

'e extent of the damage often depends on when traffic
controllers discover the incident and the duration of the
traffic incident [12]. 'e lack of timely accident reporting
will result in many deaths due to delays in medical assis-
tance, prolonged traffic jams, and even secondary accidents.

'erefore, real-time detection of traffic incidents is an
effective way to reduce their impact significantly. With the
development of technology and the advancement of re-
search, various detection technologies and data sources are
used in automatic traffic accident detection studies. Tradi-
tional traffic data provides rich and relatively available data
sources [13, 14], such as traffic data, vehicle speed data, and
occupancy data. Numerous machine learning models are
also applied to detect traffic incidents with traffic data and
have achieved good results [15–18]. Some studies employed
online data from mobile phones to detect traffic incidents,
such as Twitter and Weibo. Specifically, they used web
crawler technology to detect incidents through data pro-
cessing, filtering, reasoning, and other processes [19, 20].
Moreover, Zhang and He [21] integrated the social media
data with traffic data and achieved a better effect.

Another effective solution is to use surveillance video
data. On the one hand, surveillance cameras are extensively
used on modern roads and help traffic managers obtain rich
surveillance video data of road areas. On the other hand,
with the rapid development of computer vision and artificial
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intelligence, many advancements have been achieved in
video analysis and understanding research. Video-based
surveillance for traffic incident detection became possible
whether in the middle of the night or when the traffic flow is
low.

For the research on traffic video anomaly detection, the
video anomaly detection method can be divided into two
categories according to the model type: the traditional
machine learning method and the deep learning method.
Traditional machine learning methods are mainly based on
the Gaussianmixture model [22], histogram feature [23–25],
hidden Markov model [26, 27], appearance feature [28, 29],
and Bayesian network model [30]. Deep learning methods
aremostly based on appearance features andmotion features
in specific scenes, and the final anomaly detection is per-
formed by reconstruction error [31–36], prediction error
[37–40], or hybrid transfer learning classification [41, 42].

However, the two methods mentioned above are often
mixed and cannot be accurately distinguished in recent
years. 'erefore, we follow [43] and broadly classify video
anomaly detection methods into three categories according
to the detection granularity: video level, slice level, and frame
level. 'is paper proposes a three-stage anomaly detection
framework for traffic video. 'e main contributions can be
summarized as follows:

(a) We proposed a novel weakly supervised learning
method for traffic video anomaly detection. Specif-
ically, in the first stage, the ViVit network is
employed as a feature extractor to capture the
spatiotemporal features from the input video. In the
second stage, the class and patch tokens are fed
separately to the segment-level and video-level traffic
anomaly detectors. In the third stage, we finished the
construction of the entire composite traffic anomaly
detection framework by fusing outputs of two traffic
anomaly detectors above with different granularity.

(b) We propose a segment-level traffic anomaly detector
based on the global spatiotemporal features (class
token), a video-level traffic anomaly detector based
on the similarity of patch tokens from different
segments, and a composite traffic anomaly detection
framework. By entirely using video-level similarity
features and all segment-level global spatiotemporal
features, the long-tail distribution problem in traffic
video anomaly detection tasks can be effectively
solved.

(c) 'e experimental results demonstrate the effective-
ness of the proposed method. Specifically, our
proposed architecture achieves 91.71% and 63.09%
on the overall set and anomaly subset of the TAD
testing set, which are 2.07% and 1.43% higher than
the SOTA method, respectively.

'e rest of the paper is organized as follows. Section 2
discusses studies related to video anomaly detection in terms
of three different detection granularities: video level, seg-
ment level, and frame level. 'e details of our three-stage
anomaly detection framework are described in Section 3.

Section 4 shows the implementation details and quantitative
results of the experiments. Section 5 gives the conclusions
and the focus of future work.

2. Literature Review

Rapid technological progress in computer vision and ma-
chine learning has enabled better video understanding.
Many studies on traffic anomaly detection via surveillance
video have been carried out in recent decades. Following
[43], the techniques that could be applied in traffic video
anomaly detection can be divided into three categories:
video level [44], segment level [45], and frame level [46]. 'e
details of the various method categories are described as
follows.

2.1. Video-Level Methods. Popular single-class classification
methods directly detect novelty by measuring the gap be-
tween the original and reconstructed inputs, such as Support
Vector Machine (SVM) [44, 47] and SVDD [48, 49]. In
general, video-level methods treat anomaly detection as a
novel detection problem. Liu et al. [50] proposed a single-
objective generative adversarial active learning method that
directly generates information-rich potential outliers based
on a mini-max game between the generator and the dis-
criminator. Ngo et al. [51] used a similar approach based on
generative adversarial networks (GANs).

2.2. Segment-Level Methods. Segment-level detection is a
method between video level and frame level, which divides
the input video into multiple segments instead of frames. In
recent years, this research has become increasingly popular,
and there is a growing body of related work. Some work built
memory modules that learn only normal patterns from
normal data and determine the presence of anomalies by
computing reconstruction errors [33, 35]. In another in-
teresting work, Georgescu et al. [52] proposed joint learning
of multiple tasks by self-supervision to produce differential
anomaly information: three self-supervised tasks and an
ablation study. Moreover, a two-stage framework is also a
popular research approach. Waqas et al. [41] applied pre-
trained 3D networks to extract spatiotemporal features and
trained the classifier with multi-instance learning tech-
niques. Following this work, Zhu and Newsam [45] intro-
duced optical flow; Lin et al. [53] proposed a dual-branch
network; Lv et al. [54] replaced the feature extractor with a
TSN and proposed an HCE module to capture dynamic
changes; Feng et al. [55] applied pseudolabel and self-at-
tentive feature encoders for training; Wu et al. [56] also
proposed a dual-branch network but with tubular and
temporal branches and so on. 'is strategy can improve
detection accuracy and localize anomalies using a small
amount of annotated information.

2.3. Frame-Level Methods. Based on the classical directional
optical flow histograms, references [23–25, 29] have de-
veloped their own way of extracting frame-level features for

2 Journal of Advanced Transportation



anomaly detection, but they are scene-dependent. More
generative models were used to predict future frames and
calculate the reconstruction error between predicted and
real frames. On this basis, reference [35] used U-Net and
memory module; reference [36] used AE and DPU module.
Both of them generate “normal” future frames and deter-
mine whether they are anomalous. Moreover, after gener-
ative adversarial networks (GANs) proved their ability to
generate “normal” future frames, many researchers have
focused their interest on detecting traffic anomalies at the
frame level. In a similar way to determining anomalies by
prediction errors [37–40, 46], the frame-level detection
method based on GAN networks compares the current
frames constructed by GANs with the ground truth current
frames [31, 37, 57–59]. Besides GAN, there are other
methods to detect traffic incidents at the frame level. Ryan
Medel and Svakis [60] built an end-to-end frame-level
anomaly detector using a long and short-term memory
(Conv-LSTM) network. Zhou et al. [43] first detected
boundary frames as potential incident frames and confirmed
by encoding spatiotemporal features whether these frames
are incident frames.

'e following summary can be made from the above
review, video-level methods usually aggregate features for
single-class prediction, which can take full advantage of fully
supervised tasks but cannot identify anomaly locations.
Segment-level methods can be trained by weakly supervised
learning mechanisms such as multi-instance learning to
perform effective anomaly detection and localization while
maintaining a few annotations (video-level annotations).
Frame-level methods generally perform single-frame detec-
tion by calculating the reconstruction error betweenpredicted
and real frames, and although the localization is accurate, their
application scenarios are limited and have significant errors.
'erefore, in this paper, we combine the advantages of video-
level methods and fragment-level methods to complement
each other and propose a three-stage composite traffic
anomaly detection framework to achieve the anomaly de-
tection and localization of anomaly videos.

3. Method

As a carrier of spatiotemporal information, frames in video
contain temporal information that is not available in mu-
tually irrelative images. 'erefore, understanding and an-
alyzing videos is more complicated and time-consuming
than understanding and analyzing images directly. Many
current video anomaly detection methods are generally

divided into two steps: the first step is to extract spatio-
temporal features from the input video using a pretrained
3D model; the second step is to model the extracted spa-
tiotemporal features and evaluate the anomaly score.

As shown in Figure 1, we propose a three-stage anomaly
detection method for traffic videos. Unlike other methods,
we use the pretrained ViVit to extract features from video
segments and propose a composite framework of video-level
and segment-level traffic anomaly detectors. Specifically, we
first split the input video into multiple segments and then
use the pretrained ViVit to extract spatiotemporal features
from those segments. After that, their global spatiotemporal
features (class tokens) and local spatiotemporal features
(patch tokens) are delivered to the segment-level and video-
level traffic anomaly detectors, respectively. Finally, the
output results of the above two detectors are compound
corrected to complete the final anomaly value evaluation.

In this paper, to avoid ambiguity, class tokens refer to the
segment-level global spatiotemporal features extracted by
the pretrained ViVit model, and patch tokens refer to the
segment-level local spatiotemporal features extracted by the
pretrained ViVit model.

3.1. Extract Spatiotemporal Features Based on ViVit.
Unlike the 3D convolution-based feature extractor [61–63],
the Transformer-based ViVit model can effectively model
the long contextual information of the input video by using
its attentional architecture. 'erefore, here we use ViVit
model 2 (Factorized Encoder) [64], which was pretrained
[65] on the Kinetics-400 dataset, as the feature extractor.

'e above ViVit model 2 adopts the embedding method
of ViVit-B, that is, a tubelet embedding for the input video,
whose tubelet size is set to h × w × t � 16 × 16 × 2. 'e
Factorized Encoder consists of two independent transformer
encoders. 'e first is a spatial encoder that models the short
spatiotemporal relationships of nonoverlapping adjacent t �

2 frames and feeds its output (spatial class token) to the next
encoder. 'e second is the temporal encoder, which uses the
spatial class token within the above nonoverlapping adjacent
t � 2 frames to model the video long spatiotemporal rela-
tionship. Finally, the global spatiotemporal features (class
token) and the local spatiotemporal feature (patch tokens)
are obtained.

Before extracting the temporal features, we perform a
preprocessing operation on the input video. Specifically, we
resize each frame in the video to 224 × 224 and normalize it.
Like Waqas et al. [41], we slice the processed video into

ViVit
Feature Extractor
for each segment

Patch tokens

Class tokens

Video-level
Classifier 

Segment-level
Classifier

Output

Temporal Segments

Figure 1: 'ree-stage video-based traffic anomaly detection algorithm framework.
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multiple video subunits, which are then distributed into 32
segments, where each video subunit is 16 frames. However,
unlike the reference, we perform the averaging operation for
each video subunit in the segment directly rather than after
feature extraction. 'en, each segment is subjected to
spatiotemporal feature extraction using the pretrained ViVit
model to obtain 1 class token and 8 patch tokens. 'e class
token aggregates all the spatiotemporal features of the whole
segment and represents the whole spatiotemporal segment.
'e patch token aggregates the certain local spatiotemporal
features in the segment and represents the local spatio-
temporal segment and its local contextual spatiotemporal
segment. Finally, the class tokens of all segments are de-
livered to the segment-level anomaly detector for segment-
level detection; the patch tokens of all segments are delivered
to the video-level anomaly detector for video-level detection.

3.2. Segment-Level Traffic Anomaly Detector. As shown in
Figure 2, we propose a segment-level classifier based on class
token (768 dimensions). Our segment-level classifier is made
up of five layers, detailed in Figure 2. Its last layer outputs an
anomaly score, and the closer the score to 0, the greater the
probability that the input segment is normal. Conversely, the
closer the score to 1, the greater the probability that the input
segment is abnormal.

Here, we use the multi-instance learning mechanism to
train our segment-level traffic anomaly detector, a weakly
supervised learning method, following [41]. As shown in
Figure 3, it is the training framework of our segment-level
traffic anomaly detector based on multi-instance learning:

(a) Input both positive bag (anomaly video) and neg-
ative bag (normal video) into 32 segments, and then
compile those segments as a positive bag Ba and a
negative bagBn. Each segment in its bag is called the
instance, so the positive bag and the negative bag can
be described as follow:

Ba � ai, i � 1, . . . , m ,

Bn � ni, i � 1, . . . , m ,
(1)

where ai is the instance in the positive pack and ni is
the instance in the negative pack. Our use case has
m � 32.

(b) Under the basic assumption of multi-instance
learning, there are only bag-level labels. Besides, each
positive bag contains at least one positive example,
while eachnegative bagcontainsnopositive examples:

y
a
i � 1, ∃ai ∈Ba,

y
n
i � 0, ∀ni ∈Bn,

(2)

32

Dropout (0.6)
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512

1

Dropout (0.6)
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Figure 2: Segment-level classifier.
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Figure 3: Multi-instance learning-based segment-level classification.
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where yai is the label of instance ai and yni is the label
of instance ni. 'e instance is a positive instance
when its label is 1, but a negative instance when its
label is 0.

(c) Using pretrained ViVit mentioned in Section 3.1, we
can extract the feature from all instances in both
positive bag and negative bag to obtain their cor-
responding class token vector as follow:

Ca � c
a
i , i � 1, . . . , m ,

Cn � c
n
i , i � 1, . . . , m v,

(3)

where Ca is the class tokens feature set, extracted
from the positive bag Ba with pretrained ViVit
model, the same as Cn.

(d) Put extracted feature (class token) of each instance
into the segment-level classifier and acquire an
anomaly score:

Sa � s
a
i � Fs c

a
i( ( i � 1, . . . , m ,

Sn � s
n
i � Fs c

n
i( , i � 1, . . . , m .

(4)

Each training sampleX should include one positive bag
and one negative bag together, namely, X � Ba,Bn . We
use a combination of the following three loss functions to
train the segment-level classifierFs. 'e first loss function is
margin ranking loss. Choose the biggest instance anomaly
score in positive and negative packets as their bag-level
anomaly score for metric ranking loss calculation, where the
metric parameter margin is set to 1.

lmargin �max 0, max
ni∈Bn

Fs c
n
i( −max

ai∈Ba

Fs c
a
i( +margin . (5)

'e second loss function is the temporal smoothness
term. Since video is a sequence of continuous frames
combined, we split it into segments. In theory, the output
anomaly score should be relatively smooth between seg-
ments. 'e temporal smoothness term is designed as

lsmooth � 

(m−1)

i

Fs c
a
i(  − Fs c

a
i+1( ( 

2
. (6)

'e third one is the sparsity term. For anomalies only
take a small part of the entire video, the anomaly instance
should be sparse in the positive bag:

lsparsity � 
m

i

Fs c
a
i( . (7)

'erefore, our final loss function becomes

Ls � lmargin + η1lsmooth + η2lsparsity. (8)

Here, the η1 and η2 coefficients weight time smooth loss
and sparse term loss separately.

3.3. Video-Level Traffic Anomaly Detector. As shown in
Figure 4, we presented a novel video-level classifier. 'e
input layer of the classifier is the similarity of patch tokens
from adjacent segments of the same video. Our video-level
classifier is made up of six layers, detailed in Figure 4. Its last
layer outputs an anomaly score, and the closer the score to 0,
the greater the probability that the input video is normal.
Conversely, the closer the score to 1, the greater the
probability that the input video is abnormal.

Here, we choose the cosine similarity to measure the
degree of difference between two feature vectors. For ex-
ample, givenPi andPj, let the cosine similarity calculation
function beFcos, and then, the similarity Simij between two
vectors is calculated as follows:

Simij �Fcos Pi,Pj ,

Fcos Pi,Pj �
Pi ·Pj

‖Pi‖‖Pj‖
�


n
k�1P

i
k ×P

j

k����������


n
k�1 P

i
k 

2


×

����������


n
k�1 P

j

k 
2

 .

(9)

A normal video should remain continuous in its time-
line, even after it is segmented. 'e continuity between
adjacent segments can be reflected in their similarity.
'erefore, a normal video should maintain a relatively high
similarity between adjacent segments. In contrast, an ab-
normal video would be discontinuous in its timeline due to
the presence of abnormal clips. So, the similarity between

64

Dropout (0.6)128

1

Dropout (0.6)

Layer Norm248

Anomaly

Normal

Figure 4: Video-level classifier.
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adjacent segments in anomaly video should dramatically
decrease and unstable similarity between adjacent segments
in which anomaly occurs.

Based on the above observation and analysis, we pro-
posed a video-level traffic anomaly detector to focus on the
feature similarity between segments and output the video-
level anomaly score. Specifically, after the feature extraction
in Section 3.1, an input video could get 32 groups of patch
tokens (8 in each group). 'en, we calculate the cosine
similarity between each corresponding pair of patch token
features in adjacent groups and finally get 8 × 31 � 248 patch
token cosine similarity. 'erefore, an entire video can be
represented by a 248-dimensional similarity space feature
vector, which is fed into a video-level traffic anomaly dis-
criminator for forwarding derivation to obtain its video-level
anomaly score.

In essence, our feature-similarity-based video-level
traffic anomaly detector is a binary classification task whose
parameters can be optimized with Binary Cross-Entropy
Loss. After training on a large set of video-level labeled data,
it is capable of performing high-performance anomaly traffic
video discrimination.

Lv � Y∗ log( Y) +(1 − Y)∗ log(1 − Y). (10)

Here,Y is the label of input video, and Y is the output of
the video-level traffic anomaly detector.

3.4. Composite Traffic Anomaly Detection. As mentioned
earlier, video-level traffic anomaly detectors focus on feature
similarity between adjacent video segments, while segment-
level traffic anomaly detectors pay attention to modeling
global spatiotemporal features within video segments.
'eoretically, feature similarity between segments has
stronger integrity and stability compared to global spatio-
temporal features within segments. 'erefore, the video-
level anomaly traffic detector can provide a more reliable
output and assist the segment-level detector in anomaly
identification. Inspired by [33, 35], we design the following
composite operation (equation (11)). When the anomaly
score of the video-level traffic anomaly detector exceeds the
threshold value, we normalize the output of the segment-
level traffic anomaly detector by a min–max normalization
[37]:

SC �

S − min
i∈[1,...,m]

S

max
i∈ 1,...,m{ }

S − min
i∈ 1,...,m{ }

S
, if Y> λ,

S, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(11)

where SC is the composite traffic anomaly score, S is the
output of segment-level traffic anomaly detector, Y is the
output of video-level traffic anomaly detector, and λ is the
preset threshold.

4. Experiment

4.1. Dataset and Training Details. We conducted the ex-
periments on the TAD dataset built by Lv et al. [54], a total of
500 traffic surveillance videos with 250 normal and anomaly
videos, respectively. 'e average frames in each clip of the
TAD dataset are 1075. 'e anomalies randomly occur in the
anomaly clips and take about 80 frames on average. 'e
anomalies, including vehicle accidents, illegal turns, illegal
occupations, retrograde motion, pedestrians on the road,
and road spills, take place in various scenarios, weather
conditions, and daytime periods.

Some examples of anomaly videos in the TAD dataset are
shown in Figure 5. While training and testing, we followed
[54] to split the TAD dataset into two parts, with a training
set of 400 videos and a test set of 100 videos. Other statistics
are shown in Table 1.

All experiments were carried out on PyTorch and
hardware configuration of NVIDIA GeForce RTX 2070
GPU, 16 G RAM, CPU i7-10700k @3.80GHz machine. We
jointly use margin ranking loss, time smooth loss, and sparse
term loss to train our segment-level anomaly traffic detector
as mentioned in Section 3.2, where we set margin � 1,
η1 � 8 × 10− 5, and η2 � 8 × 10− 5. It was trained of 1000
epochs with batch size 4. Binary Cross-Entropy Loss was
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Figure 5: Examples of anomaly frames in the TAD dataset [54].

Table 1: Statistic of TAD dataset.

Dataset Videos Frames Label level
Training set 400 452,220 Video level
Testing overall set 100 88,052 Frame level
Testing anomaly subset 60 18,900 Frame level
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applied to train the video-level traffic anomaly detector,
which was 1000 epochs with batch size 8.

Both detectors were SGD Optimizer paired with Cosine
Annealing LR; we both set their Optimizer parameters lr �

0.001,momentum � 0.9, andweight_decay � 1 × 10−4 and
kept the best performed model parameters as the optimal
model. In our experiment, by comparing different preset
thresholds, it is proved that λ � 0.6 works best.

4.2. Evaluation Metrics. For the evaluation metrics of
anomaly detection, we first defined “true positive (TP),”
“false positive (FP),” “true negative (TN),” and “false neg-
ative (FN),” which represent the difference between the
predicted and actual classes.

TP: the predicted class is “anomaly,” and so is the actual
class.

TN: the predicted class is “normal,” and so is the actual
class.

FN: the predicted class is “normal,” but the actual class is
“anomaly.”

FP: the predicted class is “anomaly,” but the actual class
is “normal.”

'e true positive rate (TPR) is the probability that an
actual positive will test positive, and the false positive rate
(FPR) is defined as the probability of falsely rejecting the null
hypothesis. TPR and FPR are calculated as follows:

TPR �
TP

TP + FN
,

FPR �
FP

FP + TN
.

(12)

We choose the area under the frame-level ROC curve
(AUC) as the primary evaluation metric for traffic video
anomaly detection.'e frame-level AUC is insensitive to the
imbalance of sample classification and, therefore, suitable as
our primary evaluation metric. Meanwhile, as an evaluation
metric, the frame-level AUC reflects the detection perfor-
mance of a method in locating traffic video anomalies. 'e
closer the AUC value is to 1, the better the detection per-
formance is.

'e receiver operating characteristic curve (ROC)
mentioned above is a graph showing the performance of the
classification model at all classification thresholds, and the
plotted curve represents the relationship between TPR and
FPR.

We also used some other evaluation metrics to evaluate
the ablation study of our proposed method. Precision and

recall are two important evaluation metrics for detection
evaluation. 'e precision (equation (13)) of a class reflects
the proportion of the number of TP among the total number
of elements that are predicted and labeled as the positive
class. Recall (equation (14)) is defined as the proportion of
the number of TP among the total number of the positive
classes. Recall and precision are contradictory measures, and
the F1-score (equation (15)) is defined as a combination of
recall and precision.

Precision �
TP

TP + FP
, (13)

Recall �
TP

TP + FN
, (14)

F1 − score � 2∗
Recall × Precision
Recall + Precision

. (15)

4.3. Comparison with SOTA Method. In this paper, we
compare the performance of the proposed method with
several other SOTA methods, and their quantitative results
on TAD are shown in Table 2. Among all the methods, the
work by Luo et al. [32] and Liu et al. [37] uses an unsu-
pervised approach and trains with only the normal video
training set. Otherwise, Sultani et al. [41], Zhu et al. [45], Lv
et al. [54], and our work use weakly supervised learning
methods with the video-level labeled training set for
training. 'e above SOTA results on TAD refer to [54].

'e comparative results of the performance on TAD are
given in Table 2. 'ey represent that the weakly supervised
learning methods outperform the unsupervised learning
methods. For example, the relatively inefficient weakly su-
pervised learning method [41] reaches 81.42% AUC on the
overall set and 55.97% AUC on the anomaly subset, yet still
about 12.29% and 0.13% higher than the best unsupervised
learning method [37]. Besides, among the current SOTA
methods, Lv et al. perform best on both the overall set and
anomaly subset, with 89.64% AUC on the overall set and
61.66% AUC on the anomaly subset. However, the proposed
method outperforms the optimal SOTA with 2.07% and
1.43% higher AUC on the overall set and anomaly subset,
separately. 'e results show that our work has been the
SOTA on the TAD dataset.

'e above quantitative analysis proves the following
points: (1) Unsupervised learning methods have limited
performance in complex scenarios and when data anomalies
are not significant. (2) Weakly supervised learning methods

Table 2: Result of TAD dataset

Class Method Overall set AUC (%) Anomaly subset AUC (%)

Unsupervised Luo et al. [32] 57.89 55.84
Liu et al. [37] 69.13 55.38

Weakly supervised

Sultani et al. [41] 81.42 55.97
Zhu et al. [45] 83.08 56.89
Lv et al. [54] 89.64 61.66

Ours 91.71 63.09

Journal of Advanced Transportation 7



can significantly improve the learning and representational
ability of neuronal networks on training data while main-
taining a small number of annotations. (3) 'e proposed
method is more advanced in anomaly detection and

localization, where the ViVit-based feature extractor can
effectively characterize the pattern features of video data,
and the ViVit-based composite traffic anomaly detection
method can more accurately capture the anomalous features

Table 3: Ablation studies on TAD dataset.

Dataset Methods Recall (%) Precision (%) F1-score AUC (%)

Overall set T-SAD 92.16 90.17 0.9088 91.05
T-CAD 92.00 90.48 0.9109 91.71

Anomaly subset T-SAD 66.68 62.68 0.6154 62.04
T-CAD 66.62 63.15 0.6279 63.09
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Figure 6: ROC curves on TAD dataset.
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Figure 7: Video detection result.
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in video data, making the method in this paper significantly
better than the existing SOTA method [54].

4.4.AblationStudies. We conducted ablation experiments to
analyze the performance advantages of the Transformer-
based Segment-level traffic Anomaly Detector (T-SAD) itself
and the performance advantages of the Transformer-based
Composite traffic Anomaly Detection method (T-CAD). As
shown in Table 3, the AUC of T-SAC reached 91.05% and
62.04% on the overall set and anomaly subset, respectively,
exceeding the current SOTA method [54] by 1.14% and
0.38%, respectively. In addition, the AUC values of T-CAD
were 0.66% and 1.05% higher than those of T-SAD on the
overall set and anomaly subset, respectively, demonstrating
the better performance of T-CAD compared with T-SAD in
anomaly localization.

Figure 6 visualizes the ROC curves of T-SAD and
T-CAD on the overall set and anomaly subset and vividly
demonstrates the superiority of the proposed method. As
seen from Figure 6, the ROC curve of T-CAD clearly wraps
around the ROC curve of T-SAD, proving that the T-CAD
outperforms the T-SAD in all aspects of the overall set and
anomaly subset.

We further visualized the detection results of T-SAD and
T-CAD on the overall set separately. In the visualized results
in Figure 7, row T-CAD (a) shows some reliable outputs
from T-CAD on the test set, where T-SAD (a) is the cor-
responding outputs of T-SAD. It shows an improvement
that T-CAD did compare to T-SAD. Still, in Figure 7,
T-CAD (b) is some failure outputs from T-CAD on the
overall testing set and its corresponding T-SAD. Enhancing
detection ability could cause a higher probability of mis-
detection to catch abnormal features distributed sparely in
anomalous videos. 'e exaggeration of the failure outputs is
in keeping with the trait of T-CAD, widening the gap in
T-SAD results. Nonetheless, no matter the overall set or
anomaly subset, performance enhancement proved the ef-
fectiveness of our T-CAD structure.

5. Conclusion

In this work, we propose a three-stage anomaly detection for
traffic videos. First, we utilize a pretrained ViVit model as
the feature extractor to capture the spatiotemporal features
of the input video. 'en, we put the class tokens into the
segment-level traffic anomaly detector for segment-level
detection, pretrained with a multi-instance learning strategy.
We similarly put the patch tokens into the video-level traffic
anomaly detector for video-level detection. Finally, we fuse
the video-level and segment-level detection outputs as our
final output. From the experimental results, our proposed
architecture achieves 91.71% AUC and 63.09% AUC on
testing overall set and testing anomaly subset, which out-
performs the SOTA method with 2.07% and 1.43%, re-
spectively. Overall, the quantitative results demonstrate the
effectiveness of using a spatiotemporal feature extractor and
our composite traffic anomaly detection framework on the
traffic video anomaly detection problem.

'e feature extraction, fusion of foreground and back-
ground information, and modeling of relationships between
foreground objects may be helpful for anomaly feature
extraction, which is worth doing in the future. In addition,
the spatial location detection of anomalies and the specific
classification of anomalies are also worthy topics for
research.
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