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Automatic valet parking (AVP) is the autonomous driving function that may take the lead in mass production. AVP is usually
needed in an underground parking lot, where the light is dim, the parking space is narrow, and the GPS signal is denied. (e
traditional visual-based simultaneous location and mapping (SLAM) algorithm suffers from localization loss because of inac-
curate mapping results. A new robust semantic SLAM system is designed mainly for the dynamic low-texture underground
parking lot to solve the problem mentioned. In this system, a 16-channel Lidar is used to help the visual system build an accurate
semantic map. Four fisheye cameras mounted at the front, back, left, and right of the vehicle are also used to produce the bird’s eye
view picture of the vehicle by joint calibration. (e vehicle can localize itself and navigate to the target parking lot with the
semantic segmented picture and the preobtained semantic map. Based on the experiment result, the proposed AVP-SLAM
solution is robust in the underground parking lot.

1. Introduction

(e public traffic jam situation worsens with the increasing
number of automobiles. Researchers in the automobile field
are now devoting their effort to automatic driving systems
to ease traffic pressure and present a safe way for driving. As
one of the most promising and meaningful functions in
automatic driving, the automatic valet parking (AVP)
system has become the focus of scholars because it can
provide drivers, particularly the new ones, an achievable
and safe way to park vehicles under crowded parking
conditions. (is function can be achieved by providing
vehicles with a high-definition (HD) map for vehicle path
planning. (us, the AVP function is achievable if the HD
map and the global positioning system-inertial measure-
ment unit (GPS-IMU) camera-based localization method
can be used to locate a vehicle at a preknown place.
However, a vehicle cannot possibly acquire environmental
knowledge when this vehicle is located in an unknown
place. A vehicle must locate itself and build an environment
map while moving by itself to overcome the difficulty

mentioned. (erefore, the SLAM problem was proposed in
1986 [1].

SLAM technology can be divided into two categories,
namely, Lidar and Vision, depending on the sensors used.
Lidar-based SLAM schemes are extensively analyzed by
researchers [2]. Lidar can measure the angle and distance of
obstacle points with higher accuracy, which is convenient for
positioning and navigation. Lidar-based SLAM has high
accuracy and no cumulative error when building maps.
Excellent performance and dense point clouds can be ob-
tained using the 3D Lidar. However, the 3D Lidar with 64
channels is expensive for commercialization [3]. (e cor-
ridor of the underground parking lot is long and straight,
with smooth walls on both sides, and it is easy to lose
positioning only by relying on Lidar-based SLAM. (ere-
fore, the vision-SLAM system receives attention from re-
searchers worldwide because of its high perception ability
and low cost.

In addition to vision-SLAM, other traditional feature
methods and road-based feature methods are available. In
traditional feature methods, sparse points, lines, and dense
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planes in a real environment are taken as geometrical fea-
tures, which can be used for vehicle localization [4]. Fur-
thermore, corner features are widely used for visual mileage
calculation [5–7]. (e pose of the camera and feature po-
sitions can be estimated with these methods. Moreover, SIFT
[8], SURF [9], BRIEF [10], and ORB [11] descriptors are
widely used by researchers in describing the features to make
these features unique. ORB-SLAM [12, 13] is a represen-
tative SLAM framework based on nonlinear optimization.
(e ORB features are used as tracking feature points while
driving.

For the methods based on road features, lane lines, curbs,
and traffic signs are widely used as landmarks, which can be
used to localize the camera pose by comparing the land-
marks with previously established maps. Compared with the
traditional-feature-based method, road-feature-based
methods use these landmarks, which are robust even the
illumination conditions change. Yan [14] proposed a non-
linear optimization problem to localize a 6-DOF camera
pose in terms of localization. In this method, the geometry of
road markings and the odometry and epipolar geometry
constraints of the vehicle were considered. (e experiment
results showed that submeter localization error is achieved
on the road with sufficient road markings. Schreiber et al.
[15] came up with a novel approach to establish precise and
robust localization by using a stereo camera system and a
highly accurate map with curbs and road markings. In this
method, global navigation satellite systems are used only to
obtain the initial location, and they are not used during a
50 km test. Ranganathan et al. [16] presented a new scheme
for precise localization. In this scheme, the signs marked on
the road were used to localize the automobile in a global
coordinate. Furthermore, the mechanism combining road-
mark-based map and sparse-feature-based map was adopted
to obtain a high localization accuracy. In addition to loca-
tion, many studies focus on mapping. Rehder et al. [17]
proposed a novel approach to generate the local grid map by
detecting the lane on the image taken by a camera. A globally
consistent map can be constructed with the help of the local
grid map. Jeong et al. [18] proposed a road-SLAM algorithm
by considering the road markings obtained from images
taken by a camera. In this algorithm, the random forest
method was used to improve thematching accuracy by using
a submap containing road information. Based on the ex-
periment results, the accuracy of this mapping method can
be improved to 1.098m over 4.7 km of the path length. (is
result was validated by comparing the obtained data with the
data from RTK-GPS.

In addition to pure vision odometer, vision-aided in-
ertial navigation algorithm is becoming increasingly popular
in the autonomous driving field. In this scheme, IMU is
added into a vision-based scheme to improve localization
precision. Mourikis et al. [19] proposed an extended Kalman
filter-based algorithm for real-time vision-aided inertial
navigation. (e result showed that a very accurate pose
estimation can be conducted with this sensor-fusing algo-
rithm. Leutenegger et al. [6] came up with a keyframe-based
visual-inertial odometry scheme. Although this scheme
demands considerable computation resources, superior

accuracy performance was obtained. (e monocular visual-
inertial system is the most commonly used VIO algorithm at
present [6, 12]. In this scheme, a camera and a low-cost IMU
are used to obtain high-accuracy localization.

Semantic segmentation is a new image clustering task at
the pixel level, and it is widely applied in perception in the
automatic driving domain and medical image diagnosis
[20–23]. In recent years, deep convolution neural network
has been widely used in semantic segmentation tasks [24],
and the majority of the networks are based on various
convolution network structures. Among them, U-Net
[20, 25] is widely accepted and improved as the basic net-
work that can be trained with pictures taken by a camera and
could classify pixels of the pictures into parking lines and
signs. (e basic framework of U-Net is shown in Figure 1.
(ese classified results are critical data for building maps or
localizing automobiles. (e residual network [26] can
achieve good results to adapt to highly complex segmen-
tation scenarios through a very deep layer depth and a large
number of parameters. However, lightweight networks, such
as ERF-Net [27], consider the real-time performance and
accuracy with the method of distillation [28] to be deployed
to edge computing devices, such as onboard computers.

Automotive valet parking is a complex function that can
be equipped on vehicles and help drivers, particularly new
drivers, park their cars in a carport. However, the light
conditions in underground parking lots are usually very dim,
and smooth walls, floors, and columns can be found inside.
All these conditions complicate the parking task. Moreover,
traditional vision equipment is influenced and becomes unfit
in this scenario. In order to solve the above problems, we
first build a vehicle platform with a 16-channel Lidar and
four surrounding cameras. (e robot operating system
(ROS) is adopted to call both the camera and Lidar for
collecting data. Also, a method consisting of image semantic
segmentation, lidar supplemental mapping, semantic
mapping, and localization is proposed. (e rest of this paper
is organized as follows. (e detailed system architecture is
introduced in Chapter 2. (en, the methodology proposed
in this study is described in chapter 3. Finally, the experi-
ment results are presented to show the robustness of the
proposed AVP-SLAM solution in chapter 4, and our con-
clusion is drawn in chapter 5.

2. System Architecture

Four surround-view cameras and a 16-channel Lidar are
applied in the proposed mapping and localization system, as
shown in Figure 2.(e framework for this system consists of
two parts. One is offline mapping, and the other is for lo-
calization. For the offline mapping system, the 16-channel
Lidar is used to provide the odometry and build the point
cloud map. (e semantic information is added to this map
by keyframe matching. We select Lidar keyframes at 0.2
seconds intervals. We use ROS to call both the camera and
Lidar for collecting data, so we have their own time stamps in
the header of themessage. Based on the time stamp, we select
the semantic map corresponding to the Lidar to overlay the
semantic map according to the position and posture of the
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Lidar frames. We drive a data collection vehicle across the
road in an underground parking lot, select 3707 point cloud
keyframes, and then select the corresponding image in the
simultaneously recorded image data. (e ORB features are
extracted from the global map to build the visual semantic
dataset and obtain the initial pose for localization.(e global
map is divided into several zones, and the dataset is
established based on the number of character types. Fur-
thermore, the dictionary can be built by zones. (e initial
pose can be determined with ORB features of the semantic
image. (en, the localization can be done with the pose data
in the last frame and the obtained real-time semantic data.

3. Semantic Mapping and
Localization Methodology

3.1. Image Processing. Four surround-view cameras are used
in this project. (e position and visual angle of each camera
should be adjusted to have a good surrounding picture of the
vehicle, as shown in Figure 3. (e four purple points on the
vehicle are cameras with the fish lens that looks downward.
(e dashed line is the field of view for each camera. Figure 3

shows that four overlapping areas exist between every two
adjacent cameras. (us, the camera should be calibrated
offline, and the weight of each camera should be appro-
priately set to integrate four separate pictures into one
picture. (e well-calibrated result can be seen in Figure 4(a).
(e synthesized picture taken by the camera during driving
in the underground parking lot is shown in Figure 4(b). (e
results shown in Figure 4 indicate that the cameras are well-
calibrated to provide enough visual information that can be
used to localize the vehicle.

3.2. Image Semantic Segmentation. After theoretical explo-
ration and practical verification, this study adopts U-Net
with attention mechanism [29] to perform semantic seg-
mentation tasks, which can make the network sensitive to
the characteristics of specific locations. Data enhancement
method is also used in increasing the training samples to
overcome the disadvantages caused by the size limitation of
the dataset. Attention coefficient α ∈ [0, 1] preserves the
activation for specific tasks by identifying remarkable image
regions and simplifying feature responses. (e output of the
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Figure 1: Basic framework of U-Net.
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Figure 3: Configuration of four surround-view cameras used in the AVP-SLAM system.
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Figure 4: Synthesized picture. (a) Well-calibrated synthesized pictures. (b) Synthesized picture during driving.
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unit is the multiplication of the characteristic graph input
and the attention coefficient. Each input pixel matrix is
xi ∈ RFL , which has a corresponding single-scale feature,
and FL presents the number of feature maps at layer
L. Feature-map xL is obtained at the output of layer L by
sequentially applying a linear transformation. For multiple
segmentation classes, multidimensional attention coeffi-
cients can be used to learn a classified subset of objects in
each dimension. A gate vector gi ∈ RFg can be used to
determine the high-attention area by acting on each pixel I.
Gate coefficient can be obtained using the additional at-
tention, which can be expressed as follows [27, 28]:

q
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xx
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(1)

σ2(xi, c) � (1/1 + e− xi,c ) represents sigmoid activation
function. (e attention unit is defined by the parameter set
Θatt, including linear transformation Wx ∈ RFL×Fint ,
Wg ∈ RFg×Fint , ψ ∈ R(̂Fint × 1), and offset bψ ∈ R, bg ∈ RFint .

(e structure of the attention unit is shown in Figure 5. (e

structure of the attention unit added U-Net (ATT U-Net) is
shown in Figure 6. (e convolution parameter updating the
rules of L-1 layer is as follows.(e function f(xL;ΦL) � xL+1

applied in convolution layer L is characterised by trainable
kernel parameters ΦL.
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(e first gradient term αL
i on the right is scaled. In the

multidimensional attention unit, αL
i corresponds to a vector

containing each grid scale. In each subattention unit,
supplementary information is extracted and fused to define
the output of the residual connection. In order to reduce the
number of training parameters and the computational
complexity of attention units, the linear transformation
(1 × 1 × 1) without any spatial support is implemented, and
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Figure 5: Schematic diagram of attention unit.
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Figure 6: Structure of ATT-U-Net.
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Figure 9: Optimized semantic map. (a) Global view. (b) Zoom-in view.
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the input characteristic map is downsampled to the same
resolution as the gated signal. (e relevant linear trans-
formation couples the feature diagrams and rearranges them
to the low dimensional space to implement the gating op-
eration. Low-dimensional feature maps, such as the first
residual connection, do not perform a gating function,
because they cannot represent input data in high-dimen-
sional space. We use depth supervision to force the medium
feature map to be semantically recognizable at each image
scale, which ensures that the attention unit has the ability to
affect the response of a wide range of image foreground
content at different scales.

A performance comparison between ATTU-Net and the
original U-Net is shown in Figure 7. As shown in Figure 7,
the decrease of loss and the IoU performance when ATT-U-
Net is used are faster and better than those when traditional
U-Net is used. Cross-entropy loss was used here.

3.3.LidarSupplementalMapping. In this study, a 16-channel
Lidar is used to build the segmentation map supplemen-
tarily. (e SC-LeGO-LOAM framework [30–32] is used to
assist in building the map. ROS/C++ is selected as the code
framework. An image-based segmentation method [33]
divides the distance map made by Lidar into multiple groups
of clusters, and classes with less than 30 points are discarded
as environmental noise to improve the efficiency of pro-
cessing and the accuracy of feature extraction. (e mark
(ground point or segmentation point), coordinates in the
distance graph, and the distance to the sensor for each point
can be obtained by segmentation. (ese characters of the
ground and segmentation points are used for character

extraction. In the loop detection of Lidar-based SLAM, the
scan context descriptor encodes the radar point cloud and
scores the similarity of loop detection. (e established Lidar
point cloud map after a series of optimization is shown in
Figure 8, providing pose information for the construction of
the semantic map.

3.4. Semantic Mapping. After obtaining the point cloud
map, we can obtain the pose information of every frame with
high accuracy. (e semantic map and Lidar map with the
same timestamp are combined based on the pose infor-
mation of every Lidar frame. After being matched, the pose
transformation between keyframes is used to accumulate the
semantic map and obtain pose transformation frames. (e
established semantic maps obtain the overlapped parts be-
cause of the pose data error for point cloud and matching
error. (e iterative closest point (ICP) algorithm is used in

(a) (b)

Figure 11: (a) Area map with the highest ORB matching scores. (b) Local map made by ICP method.

Figure 12: Global view of the matched area map within the local
map.

Figure 10: ORB feature detection result.
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calculating the best fusion transformation for the overlapped
parts between two maps to solve the problem mentioned.
(e optimized global map is shown in Figure 9.

3.5. Semantic Localization. (e ORB features are extracted
from the global map and used to make a visual semantic
word bag to determine the initial position and posture. (e

global map is divided into regions. (e word bags and
dictionaries are established based on the number of the
feature points and regions, respectively. (en, the ORB
features are extracted from the initial semantic image input,
and a word bag is built. (is word bag is used to score the
similarity in the dictionary, and the area where the vehicle is
located is determined by the score. (e ORB feature de-
tection is shown in Figure 10. After the vehicle localization

Table 1: (e IoU result.

Lane line Parking line Speed bump Traffic signs Average IoU
0.78 0.68 0.84 0.78 0.77

Original Image Lane Line Parking Line Speed Bump Traffic Signs

(a)

(b)

(c)

(d)

(e)

(f)

Figure 13: Semantic segmentation result.
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area is obtained using ORB feature matching, the ICP
method is used to overlay several continuous semantic maps
into a new one. (e local map localization process is shown
in Figures 11 and 12.(e purple marks are the matched pixel
points, whereas the green points and the white points in
Figure 12 are the pixel points for the local map and the area
map, respectively. After the location of the local map is
obtained, the semantic map of the current frame is used to
match with the local map and obtain the vehicle posture and
location. (e new local map from the global map can be
chosen to be used for the matching and localization in the
next step with the help of the current vehicle posture.

4. Results and Discussion

Several experiments were performed to validate the pro-
posed AVP-SLAM system. All the presented data were taken
from the vehicle platform. Four cameras mounted at the front,
rear, left, and right sides of the vehicle with fish lens were used
in this SLAM system. Furthermore, a 16-channel Lidar was
used to help build the map. A Neousys computer with 32G
RAM size and 11G video memory was used for good system
efficiency. (e front image was taken by the front camera at
30Hz with a resolution of 1920 × 1080 pixels.(e images taken
by the rear, left, and right cameras were recorded at 20Hz with
a resolution of 640 × 480 pixels. After image stitching opti-
mization and synchronization, an image with a resolution of
1090× 860 pixels was output by the system at 18Hz.

4.1. Real Semantic Segmentation Experiment Result. (e
experiments were performed with several harsh external
conditions to test the robustness performance of the proposed
AVP-SLAM algorithm.(ere is no open-source dataset of the
underground parking lot with semantic segmentation for
bird’s eye view. We have made an AVP dataset, and it is a
single underground parking lot dataset for bird’s eye view.
Please refer to the link of supplementary materials for the data
set. (e performance of network ATT U-Net in the 520th
epoch verification set is the highest, and the loss value is 0.38.
(e loss value decreases in the subsequent training process,
but its performance in the verification set decreases, and the
network is overfitted. Finally, the ATT U-Net parameters of
the 520th epoch are used for the subsequent segmentation
process.(e IoU result is shown in Table 1.(e final semantic
segmentation result with ATT U-Net is shown in Figure 13.
Although the parking line is blocked by the car, the parking
line can still be clearly seen in Figure 13(a). Figure 13(b) has
various marks in the same figure, but they are accurately
identified. Although the reflected light overlaps with the white
traffic signs, the traffic signs are segmented correctly, as shown
in Figure 13(c). (is case is the same as the speed bumps and
traffic signs, which are shielded by other parked automobiles,
as shown in Figures 13(d) and 13(e). Based on the result
shown in Figure 13(f), the semantic segmentation result was
not affected by the relatively dim light in the parking lot. (e
result of the U-Net segmentation mechanism on the un-
derground parking lot is very good. In our system, the se-
mantic is visualized and output, and the type of map is also a

pixel map. (e output of the system is 10fps-12fps, which can
meet the real-time positioning requirements of low-speed
vehicles. In summary, every specific feature was segmented
precisely under different environments.

4.2. Mapping and Localization. (e experiment was per-
formed in a dim underground parking lot. We used an
additional Lidar in this system because the semantic map
precision was easily affected by the initial values because
of the relatively large error during matching between
frames and the semantic map. (us, we adopted
Lidar, which is used for building maps. (e SC-LeGO-
LOAM framework was used to build the map, and the
ROS/C++ was used as the code framework. Furthermore,
the loop detection with scene context algorithm was used
to optimize the mapping precision. (e semantic map
could be built with the posture data in the established
Lidar map by matching the corresponding semantic
image. Finally, the global optimized semantic map is
shown in Figure 14.

Localization precision is more important than map-
ping precision because the automobile can localize and
drive itself to the correct destination position even with
an imprecise semantic map. In our experiment, the lo-
calization experiment was performed with the previously
established and optimized semantic map. (e initial
position of the automobile is regarded as known data.
(ese data are usually saved in NVM when the vehicle
was parked the last time.

(e final localization result is shown in Figure 15. (e
red line is used to show the motion trail for the experimental
vehicle. During the experiment, the vehicle could constantly
localize itself from start to end. (e detailed localization
result can be found in the video material.

4.3. Real Application: Autonomous Valet Parking. (e pro-
posed AVP-SLAM system was used under real autonomous
valet parking cases in the underground parking lot. (e
preestablished semantic map was used by the vehicle to
localize itself in this parking lot and guide itself to the
prechosen parking lot automatically, as shown in Figure 16.
Additional detailed experiment results can also be found in
the shared video materials. In conclusion, a good SLAM
result can be provided with the proposed AVP-SLAM
system.

Figure 14: Global optimized semantic map.
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5. Conclusions

In this study, a camera-Lidar combined with the SLAM
solution was proposed. In this scheme, a 16-channel Lidar
was used in assisting the visual system, that is, four sur-
rounding-view cameras with fish lens, to build the map.
Moreover, the semantic features, lane lines, parking lines,
speed bumps, traffic signs, and other visual features could be
detected using ATT U-Net even under harsh situations.
(us, a complete semantic map was built based on the
detected features. With the preobtained map, the vehicle
could localize itself during driving.

Furthermore, a real AVP experiment was performed to
validate the proposed SLAM solution. (e result showed
that the vehicle can park itself in a correct parking lot au-
tonomously in a dim underground parking lot. (us far, the
proposed SLAM solution is only effective with the AVP
scenario. We will continue to develop this solution in the
application field in a much more difficult environment.
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