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The safety of unsignalized intersections is evaluated by correlating the number of crashes with traffic volume and intersection
geometry. However, crash-based safety assessment has known drawbacks related to data quality and coverage. Further, the
crash-based safety analysis does not account that not all vehicles interact unsafely. Therefore, the present study develops
crossing conflict-based safety performance functions (C-SPFs) for eight urban unsignalized T-intersections with varying
intersection geometry. Initially, the crossing conflicts were analyzed using post encroachment time (PET); based on that, they
are bifurcated into critical and noncritical conflicts. The C-SPFs were modeled as a function of traffic volume and intersection
geometry using the generalized estimating equations with the Tweedie distribution (GEE_TD) regression approach. The results
revealed the time of the day, intersection geometry, vehicular composition, and traffic volume of both offending and conflicting
approaches as significant variables influencing the number of critical and noncritical crossing conflicts. Further, to check the
predictive power of the GEE_TD model, the model errors are compared with those obtained using the negative binomial (NB)
model. The result revealed that for both critical and noncritical conflicts, the GEE_TD model has better predictivity (lesser
error) than the NB model.

1. Background

Traffic safety is an emerging concern in the developing
world because it affects a nation’s economy and people’s wel-
fare. Providing reliable and safe transportation is one of the
main goals of federal, state, and local agencies. Meanwhile,
traffic safety is evolving as an area of increased attention
and concern in many countries, including India; various
countermeasures are being practiced/planned worldwide to
increase traffic safety. The World Health Organization [1]
reported that around 1,350,000 people die annually from
traffic crashes. Over the year, researchers have developed
models to understand the causal factors influencing safety
and implement safety-based countermeasures. In developing
countries like India, most intersections along urban arterials
are uncontrolled and unsignalized, and they pose significant
safety implications in terms of conflicts and interactions. As
per the Ministry of Road Transport and Highways [2], 27%
of crashes were recorded near the vicinity of road intersec-

tions [2]. In the last five calendar years (2014 to 2019), T-
intersections added to India’s highest percentage of crashes
and fatalities [3]. These figures explain the severity of traffic
conflicts at uncontrolled intersections, mainly in India.
Thus, it is imperative to assess the prevailing level of safety,
especially at unsignalized T-intersections.

Traditional traffic safety evaluation methods are based on
past crash data where safety is measured using different statis-
tical methods for traffic crashes. This crash data approach is
observed as a reactive approach, suggesting that a significant
number of crashes must be recorded to assess a particular traf-
fic safety measure. The shortcomings of this approach include
(a) low quality and unavailability of crash data in developing
countries like India, and (b) the crash-based safety analysis
does not explicitly account that all the vehicles in the stream
interact unsafely. Hence, the crash-based safety analysis is eth-
ically impartial to countermeasures until the crash occurs. To
overcome this drawback, researchers and transportation engi-
neers mostly use proactive traffic safety measures such as
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traffic conflicts to define critical highways and urban road
locations. Traffic conflict is “an observable situation in which
two or more road users approach each other in time and space
to the extent that there is a risk of collision if their movements
remain unchanged” [4]. The traffic conflicts are analyzed
using different surrogate safety measures (SSMs). These
include post encroachment time (PET), time to collision
(TTC), deceleration to avoid a crash (DRAC), the proportion
of stopping distance (PSD), and time-integrated TTC (TIT).
The SSMs project road user’s temporal and spatial closeness
to crashes or possible collision points. Researchers and practi-
tioners have applied the SSMs to assess traffic and pedestrian
safety at intersections and midblock sections.

The crossing conflicts are the significant conflict move-
ment, and PET is the most suitable proximal safety indicator
to evaluate the safety at unsignalized intersections [5–8].
Goyani et al. [6] found that traffic volume, vehicular compo-
sition, and intersection geometry significantly affect the
probability of critical crossing conflicts (PCCC). 10-15%
reduction in PCCC was observed for unsignalized T-
intersections with Central Island compared to those without
Central Island. Further, they reported an average 10% reduc-
tion for intersections with a larger Central Island diameter
than intersections with a smaller diameter of Central Island.
Zheng and Sayed [9] used two indicators, modified time to
collision (MTTC) and PET, to define the traffic conflicts.
The result reveals that traffic volume significantly affects
PET value as the traffic volume varies and the number of
conflicts changes. Ulak et al. [10] found that risk perception
significantly affects driving behavior, traffic safety, and per-
formance. Katrakazas et al. [11] indicate that conflicts are
significantly higher in congested traffic and fewer during
free-flow traffic conditions. Further, they found that the
number of conflicts increases as the percentage of heavy
vehicles increases.

Trinh et al. [12] developed the conflict-solving model
using the two-player game theory to reduce head-on motor-
cycle conflicts in heterogeneous traffic conditions. The
developed model is useful for identifying head-on collisions
and taking safety precautions to reduce conflicts at signal-
ized and unsignalized intersections. Muley et al. [13] used
a microsimulation to analyze the number of conflicts. They
reported that the potential location of conflicts could be
identified to assess the impact of geometric improvement
in reducing potential conflicts. Qu et al. [14] revealed that
the traffic conflicts for congested traffic states are signifi-
cantly higher, which results in a nonlinear feature for com-
bined traffic states. El-Basyouny and Sayed [15] used the
lognormal regression technique-based conflicts model to
show that traffic conflicts vary with traffic volume and
geometric-related variables. Islam et al. [16] show that
hourly-simulated conflicts significantly affected an hourly
crash count. The increasing presence of nonmotorized vehi-
cles in the traffic stream contributed to fewer conflicts and
crashes. This study is helpful for non-lane-based heteroge-
neous traffic streams prevalent in urban intersections.

Guo et al. [17] indicated that the traffic conflict rate
depends on traffic volume, queue length, shock wave speed,
and platoon ratio. The results revealed a higher conflict rate

associated with shock-wave characteristics, higher traffic vol-
ume, and lower conflict rates related to a higher platoon
ratio. Li and Lam [18] generated an algorithm for conflict-
free scheduling, which offers possible ways to minimize total
delay in the scheduling process. The simulation results veri-
fied that the scheduling algorithm efficiently resolves naviga-
tional traffic conflicts in seaport situations. Zhang et al. [19]
used a negative binomial regression model to identify left-
turn conflicts at signalized intersections. They concluded
that the effects of conflicting traffic volumes on the number
of conflicts vary across different traffic conditions. Guo et al.
[20] study a collision-based before-after (BA) analysis using
a Poisson-lognormal intervention (PLNI) model and the
conflict-based BA analysis by an extreme value theory
(EVT). The results revealed a reduction of 56% in actual col-
lisions from the PLNI model and a reduction of 64% in esti-
mated collisions from the EVT model.

Ding et al. [21] developed a crash prediction model for
fatal and severe injury crashes using the augmented varia-
tional autoencoder technique to resolve the problem related
to the imbalance of crash data. The results revealed that road
length, traffic flow, intersection density, and the number of
lanes positively correlate with fatal and severe injury crashes,
whereas lane width and the speed limit negatively correlate
with fatal and severe injury crashes. Similarly, Cai et al.
[22] used the deep convolutional generative adversarial net-
work (DCGAN) model to capture the effects of traffic on the
crash frequency. The results revealed a significant effect of
the speed difference between the upstream and downstream
locations on crash frequency. Based on these results, high-
way authorities could plan to implement some traffic man-
agement strategies such as variable speed limits and
dynamic message signs. Yu et al. [23] used a convolutional
neural network (CNN) modeling technique with superior
loss functions for real-time crash risk analyses. The authors
plotted the distributions of predicted probabilities for bal-
anced and imbalanced data to distinguish the effects of the
imbalanced data. The results revealed that the CNN model
with focal loss function enhances the model accuracy.

1.1. Study Motivation. Several studies have developed a traf-
fic conflicts model for unsignalized intersections. To the best
of the author’s knowledge, no studies have tried to model
crossing conflicts at unsignalized T-intersections under
varying traffic conditions like in India. The traffic situation
in developing countries is characterized by a mix of vehicle
types that include motorized vehicles such as motorized
two-wheelers (2w), auto-rickshaw (3w), cars, trailers, trucks,
buses, and nonmotorized vehicles such as bicycles, animal-
driven carts, and tricycles [24, 25]. These vehicles have vary-
ing physical dimensions, maneuvering abilities, and other
static and dynamic properties, resulting in unsynchronised
and erratic movement along the road. The sharing of the
road by such a heterogeneous mix of vehicles coupled with
the absence of proper lane markings and lane discipline
(which replicates driver’s noncompliance) forms another
peculiarity of the mixed traffic conditions, making traffic
movement a rather haphazard and complex phenomenon
[26]. The mixed traffic flow affects traffic safety because of
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complex interactions among various vehicle types. With an
indiscriminate mix of vehicles, it is expected that vehicular
composition would significantly affect the number of traffic
conflicts in conjunction with traffic volume. However, no
studies have considered vehicular composition a significant
variable for modeling the number of traffic conflicts. More-
over, traffic conditions in India vary significantly compared
to those observed in other countries. Therefore, the devel-
oped conflicts-based C-SPFs cannot be directly applied to
traffic conditions in India to analyze the prevailing level of
safety. Observing the variation in the number and type of
conflicts is critical to comprehending safety conditions in
traffic. With this motivation, the present study aims to
develop the crossing conflict models as a function of traffic
flow and intersection geometry-related characteristics. The
major contribution of the present study is that it explicitly
quantifies the effect of heterogeneity in traffic volume on
the number of crossing conflicts. The developed conflict
models can enable traffic engineers and city planners to
identify the critical intersections in terms of crossing con-
flicts. Therefore, it might help develop strategies to improve
safety at unsignalized T-intersections in India.

1.2. Definition. For ease of understanding, the term and their
corresponding definition used in the present study are as
follow:

(1) Offending vehicle. “Vehicles taking right-turn from
the Major road or Minor road and merging into
the Minor road or Major road.”

(2) Conflicting vehicle. “Vehicles perform the straight
movement on the Major road.”

(3) Post encroachment time (PET). “Two road users is
described as the time from the instant when the first
road user leaves the conflict area until the second
road user reaches it” [27]

(4) Critical conflicts. “The conflicts with PET values
between -1 s to 1 s are known as critical conflicts.

The threshold of PET value for classifying the crit-
ical conflicts is considered based on a past piece of
study” [5, 6, 28, 29]

(5) Noncritical conflicts. “The conflicts with PET values
other than 1 s (greater than 1 s and less than 6 s or
less than -1 s and greater than -6 s) are known as
non-critical conflicts.”

Figure 1 shows a graphical representation of crossing
conflict at an unsignalized T-intersection.

2. Study Methodology

2.1. Data Overview. For the present study, eight urban
unsignalized T-intersections viz. Rachana Circle (21°12′
46.59″ N, 72°52′03.61″ E), Muktanand Circle (22°19′
14.87″ N, 73°11′50.91″ E), Acharya Shree Junction (21°10′
19.4″ N, 72°50′11.4″ E), Prime Arcade (21°12′08″ N,
72°47′39″ E), Valinath Chock (21°13′26.09″ N, 72°49′
17.66″ E), Lajamani Chowk (21°14′19.59″ N, 72°53′20.37″
E), Poddar Arcade (21°12′27.44″ N, 72°50′38.03″ E), and
Khatushyam Junction (21°08′39.43″ N, 72°47′56.88″ E) hav-
ing different intersection geometry like, with or without
Central Island were selected. The snapshots of the particular
selected T-intersection are shown in Figure 2.

The intersection area and the width of each approach leg
were measured by conducting field surveys. This was done
during free-flow environments with the help of traffic police.
The collected road inventory details for the selected study
sites are summarized in Table 1. Traffic data from morning
09:00AM to evening 08:00 PM were collected using the
video-graphic technique under ideal/fair weather environ-
ments by placing a high-definition (HD) video camera on
top of the high-rise building near the vicinity of the particu-
lar intersections to serve as a vantage point to capture traffic
movement precisely in all traffic directions.

2.2. PET Data Extraction. In the absence of a reliable auto-
matic traffic data extractor, classified vehicle count and

Minor Road

Major Road

Offending vehicle

Conflicting vehicle

Conflict

(a)

Minor Road

Major Road

Offending vehicle

Conflicting vehicle

Conflict

(b)

Figure 1: Crossing conflicts movement between the offending and conflicting vehicle (a) minor to major (b) major to minor.
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vehicle-based PET were extracted manually from the
recorded video using the AVS data extractor software with
an accuracy of 33 milliseconds. To extract the PET data
manually, around 80 hours for one intersection (640 hours
for all eight intersections) is spent. Further, the data were
extracted by one person to minimize human error in extract-
ing the PET data. Using the AutoCAD 2020 software, a grid
of 3:5 × 3:5m was drawn and overlaid on the particular
video file using Corel Video Studio 12 software. The proce-
dure for extracting PET from the video file is shown in

Figure 3. The PET is computed using the following:

PET = T2 – T1, ð1Þ

where T1 = time when the offending road users leave the
conflict area; T2 = time when the conflicting road users enter
the conflict area.

Due to right-hand driving conditions in India, right-
turning (R-T) movements form crossing conflicts and vice
versa. The PET value was evaluated only for R-T

(a) Rachana Circle (b) Muktanand Circle

(c) Acharya Shree Junction (d) Prime Arcade

(e) Valinath Chock (f) Lajamani Chowk

(g) Poddar Arcade (h) Khatushyam Junction

Figure 2: Snapshots of the study sections (a) S-1, (b) S-2, (c) S-3, (d) S-4, (e) S-5, (f) S-6, (g) S-7, and (h) S-8.
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movements. Conflicts related to PET values between −6 s
and+6 s were selected for the detailed analysis. The threshold
for PET values greater than 6 s and lesser than −6 s will be
considered because there was less chance of a near-crash,
and the driver has enough time to take evasive actions
[30]. It was also observed that there might be the possibility
to be more than one value of PET (refer to Figure 1) for one
observed vehicle. Thus, the minimum PET value is consid-
ered for detailed analysis [5, 6, 31]. Further, as shown in
Figure 3, positive and negative PET values were observed.
A negative PET value implies that the offending vehicle will
conflict with the conflicting vehicle’s front end. On the other
hand, a positive PET value would indicate an offending vehi-
cle conflict with the conflicting vehicle’s rear end.

2.3. Modeling Technique. A generalized estimating equation
(GEE) models longitudinal or clustered data. It is frequently
used when the collected sample is a count data and nonnor-
mal distributed. A GEE is used for estimating the variables of
a generalized linear model (GLM) with a probable unknown
relationship between results and outcomes. A variables esti-
mation from the GEE is reliable even when the covariance
structure is miss specified under mild regularity conditions.
Therefore, the present study develops a GEE model for
crossing conflicts at unsignalized T-intersections. The GEE
procedure is a multinomial analogy of a quasi-likelihood
function, extending the GLM. The GLM transforms categor-
ical variables to meet the assumptions of continuity and nor-
mality [32, 33]. The GLM can be expressed as:

g uið Þ = βiXi, ð2Þ

where ui = EðyiÞ = g−ðβiXiÞ:gðÞ is a link function, which
shows the categorical variable by a linear mixture of explan-
atory variables. gðÞ normally takes an identity, a logit, or a
log for continuous, categorical, and count dependent
variables.

The present study assumed that Tweedie distribution
(TD) is a part of the GLM. The TD plays a major role in
GLM since it contains special cases like the normal, Poisson,
gamma, and inverse Gaussian. The TD offers an integrated
framework to model overdispersed (variance greater than
the mean), underdispersed (variance lesser than the mean),
zero-inflated (more zeroes than expected), and count data,

as well as multiple response variables. The TD is a particular
case of an exponential distribution. Therefore, in the present
study, the generalized estimation equation with the Tweedie
distribution (GEE_TD) regression technique is used for
developing a crossing conflict-based C-SPFs as a function
of intersection geometry, traffic volume, and vehicular
composition.

Let Yi be the number of crossing conflicts at an intersec-
tion for a given time interval and follow the Poisson distri-
bution defined by a single parameter λi, as shown in in the
following:

Yi ~ Poisson λið Þ: ð3Þ

Under the Poisson-Tweedie class of model, the Poisson
mean parameter follows the Tweedie distribution as shown
in the following:

Yi ~ Twp μi, ϕið Þ, ð4Þ

where μi > 0 is the mean parameter, ϕi > 0 is the dispersion
parameter, and p indicates the Tweedie power parameter.

The mean and the dispersion parameter can be modeled
as a function of covariates. The flexibility of the Tweedie dis-
tribution lies in p, which includes positive real number
values. The relationship between the mean and variance of
the Poisson-Tweedie model is given in the following:

Var Yið Þ = μi + ϕi ∗ μi
p: ð5Þ

The model should not lead to a negative number of
crossing conflicts and should predict zero conflict values
for zero values of the exposure variable. The commonly
used model form consists of an exponential function for
including the covariate effect on the dependent variable.
In addition, the logarithm link function can be linearized
in the model [34]. Statistically, the conflict model is
represented as follows:

ln Yið Þ = β0 + β1 ∗ Xi1+⋯:+βm ∗ Xim, ð6Þ

where ln ðYiÞ = predicted number of crossing conflicts;
Xi1, Xim = covariates representing traffic and intersection-
related characteristics; β0, β1, βm =model parameters.

The GEE_GLM is estimated by a quasi-likelihood func-
tion, as shown in the following:

〠
N

i=1
DiVi

− yi − uið Þ, ð7Þ

where Vi = σ2½ð1 − ρÞI + ρI� is a covariates matrix; I is an
N ×N identify matrix. J is an N ×N matrix, all of whose ele-
ments are 1. ρ is the correlation coefficient between indepen-
dent and dependent variables.

The present study developed separate models for critical
and noncritical conflict. The number of crossing conflicts
(critical and noncritical) was computed for 5-minute data
aggregation intervals and converted to equivalent hourly

1 T1

1

22

Conflict area

T2

Figure 3: Methodology to extract PET values [T2 − T1 = 0 (Crash),
T2 − T1 = >0 (Positive PET), T2 − T1 = <0 (Negative PET)].
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conflict rates for developing the conflict model. PET values
between (−1 to 0 and 0 to 1) seconds were considered one
domain known as critical conflicts. The conflicts with PET
values other than 1 s (greater than 1 s and less than 6 s or less
than −1 s and greater than −6 s) were termed noncritical
conflicts [5, 6, 26].

3. Results and Discussion

3.1. Primary Analysis. A two-hour traffic volume, one hour
of off-peak (10:00 to 11:00AM), and one hour of peak
(06:00 to 07:00PM) were used for the detailed analysis.
Majorly four vehicle classes are observed in the study sites,
viz., motorized two-wheelers (2w), auto-rickshaw (3w), car,
and other (LCV, Bus, and Truck). The traffic volume for
an offending and conflicting stream and their vehicular com-
position were aggregated at a 5-minute data aggregation
interval. The traffic volume was also converted to equivalent
hourly traffic volume, as shown in Figure 4(a). The total
vehicular composition comprising both offending (R-T)
vehicles and conflicting (through) vehicles is shown in
Figure 4(b).

3.2. Descriptive Statistics of PET Data. The descriptive statis-
tics of the PET dataset for each selected study site by
approach leg are summarized in Table 2. A significant vari-
ation in the mean and standard deviation of PET values was
noted by both approach legs (L1 and L2) for a selected study
site. This recommends that risk is different when a major or
minor vehicle performs a right-turn to merge into the traffic
stream. Further, a significant variation in PET values can be
noted between the selected study sites and approach leg,
highlighting the combined effect of traffic flow characteris-
tics (traffic volume and composition) and intersection geom-
etry. The higher mean of PET value indicates lesser conflicts
and, consequently, lesser risks and vice versa.

4. Model Calibration

For the present study, the crossing conflicts at eight urban
unsignalized T-intersections were modeled using the GEE_
TD regression approach. The GEE_TD model with a power
parameter value of 1.5 and a log-link function was adopted
for modeling crossing conflicts. The dispersion or scale
parameter was estimated as a function of observed covari-
ates. In the present study, two different models, (a) the crit-
ical conflict model and (b) the noncritical conflict model,
were developed using a set of independent variables (traffic
volume, vehicular composition, and intersection geometry).
The descriptive statistics of the dependent and independent
variables are summarized in Table 3.

The quasi-likelihood criterion (QIC) was used to mea-
sure the goodness-of-fit of the developed model. The differ-
ent correlation structures were selected for the present study,
like independent, exchangeable, and unstructured, for
modeling crossing conflicts. Results revealed that the
exchangeable matrix has a lower QIC value. Therefore, an
exchangeable correlation structure was adopted to develop
the GEE_TD model. The model summary and correspond-
ing goodness-of-fit measures are presented in Table 4.

Table 4 shows that the traffic volume of both offending
and conflicting streams significantly affects the number of
crossing conflicts, either critical or noncritical. With an
increase in the traffic volume of the offending stream, the
number of critical and noncritical conflicts increases. On
the other hand, with an increase in the traffic volume of
the conflicting stream, the number of critical crossing con-
flicts increases, whereas the number of noncritical conflicts
decreases. This can be attributed to the fact that the gap in
the traffic stream decreases at higher traffic volume. As a
result, the drivers of the offending stream roll over smaller
gaps, resulting in smaller PET and, thus, a higher number
of critical conflicts. At higher traffic volume, the increase in
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Figure 4: Traffic data overview (a) traffic volume (b) vehicular composition.
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Table 3: Descriptive statistics of selected variables.

Variable Type of variable Levels and coding Minimum Maximum Average Standard deviation

Critical conflicts (conflicts/hr)

Continuous

96 1284 396 188

Noncritical conflicts (conflicts/hr) 108 1140 454 229

2w C (%) 38 92 72 8

3w C (%) 0 45 13 7

Car C (%) 0 35 12 7

2w O (%) 41 100 70 11

3w O (%) 0 43 11 8

Car O (%) 0 42 14 10

Conflicting volume (vehicle/hr) 960 6588 2914 1188

Offending volume (vehicle/hr) 228 2268 855 393

Intersection geometry
Categorical

0 without Central Island
1 with Central Island

0: 49% of samples
1: 51% of samples

Time of the day
0-off-peak

1- peak hour
0: 30% samples
1: 70% samples

Note: Critical and noncritical conflicts per hour, 2w C, 3w C, and Car C = 2w, 3w, and car composition in conflicting approach (%), 2w O, 3w O, and Car
O= 2w, 3w, and car composition in offending approach (%).

Table 2: Descriptive statistics of PET data.

Study site Movement Mean Median Mode Standard deviation Standard error

S-1

L1 0.06 -0.30 0.37 1.87 0.04

L2 0.60 0.43 0.17 2.10 0.06

Combine 0.28 0.07 0.37 1.99 0.04

S-2

L1 0.60 0.33 -0.53 1.95 0.06

L2 0.10 0.10 -0.37 2.09 0.07

Combine 0.39 0.23 -0.37 2.02 0.04

S-3

L1 0.99 0.60 -1.47 2.11 0.07

L2 1.19 1.33 3.20 2.39 0.11

Combine 1.05 0.88 3.20 2.26 0.06

S-4

L1 -0.50 -0.64 -0.68 1.84 0.07

L2 -0.12 -0.28 0.72 1.87 0.11

Combine -0.38 -0.52 0.72 1.86 0.06

S-5

L1 0.69 0.44 0.27 1.62 0.07

L2 0.41 0.16 0.15 1.56 0.06

Combine 0.53 0.25 0.27 1.59 0.04

S-6

L1 0.12 0.17 -0.50 1.84 0.06

L2 0.01 -0.12 -0.42 1.78 0.07

Combine 0.12 0.17 -0.50 1.80 0.06

S-7

L1 -0.56 -0.72 0.13 1.84 0.05

L2 -0.34 -0.48 0.25 1.80 0.05

Combine -0.45 -0.48 0.13 1.83 0.04

S-8

L1 -0.67 -0.54 -2.21 1.90 0.06

L2 -0.51 -0.21 0.29 1.56 0.07

Combine -0.61 -0.37 -2.21 1.79 0.05

Note: L1 =minor road where vehicles are taking right-turn to merge into the major road traffic stream. L2 =major road where vehicles are taking right-turn to
merge into the minor road traffic stream.
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critical conflicts would decrease the number of noncritical
conflicts. The effect of traffic volume on crossing conflicts
is in line with the observations reported by [15, 35–37].

The number of critical conflicts increases as the propor-
tion of 2w, 3w, and cars increases in the conflicting stream.
Lighter vehicles like 2w, 3w, and cars exhibit aggressive driv-
ing behavior (maintain lesser relative distance at higher
speeds and sudden acceleration/deceleration characteristics).
Further, the driver’s poor yielding behavior forces drivers of
the offending stream to accept and roll over smaller gaps. As
a result, the number of critical conflicts increases. On the
other hand, if the proportion of 2w, 3w, and cars increases
in the offending stream, the number of noncritical conflicts
increases. This can be attributed to the fact that the drivers
in the offending stream force the drivers in the conflicting
stream to decelerate; as a result, the corresponding PET

value increases, thereby increasing the number of noncritical
conflicts.

Intersection geometry significantly affects the number of
critical and noncritical crossing conflicts. The results
revealed less critical and noncritical crossing conflicts for
urban T-intersections with Central Island than intersections
without Central Island. This can be attributed to the pres-
ence of Central Island, which causes the drivers to weave
through the conflict area. As a result, the number of crossing
conflicts (critical and noncritical) decreases. A 25-41%
reduction in critical and noncritical conflicts can be
observed for similar traffic volumes for intersections with
Central Island compared to those without Central Island.
Therefore, intersection geometry significantly affects traffic
safety and traffic operation. The observation is consistent
with those reported by [6, 38]. Time of the day also

Table 4: Model summary.

Type of model Variables Coefficients Standard error p value

Critical conflict model

Intercept 4.738 0.919 ≤0.001
[off-peak] -0.130 0.013 ≤0.001
[peak] 0a

[with Central Island] -0.084 0.038 ≤0.005
[without Central Island] 0a

2w C 0.012 0.010 ≤0.005
3w C 0.014 0.008 ≤0.010
Car C 0.017 0.007 ≤0.005
2w O -0.009 0.006 ≤0.010
3w O -0.005 0.007 ≤0.005
Car O -0.009 0.007 ≤0.010
CV 0.000065 0.001 ≤0.001
OV 0.001 0.007 ≤0.001

(scale) 0.802

P 1.5

QIC 203.93

Noncritical conflict model

Intercept 8.828 0.565 ≤0.001
[off-peak] -0.081 0.031 ≤0.001
[peak] 0a

[with Central Island] -0.143 0.020 ≤0.001
[without Central Island] 0a

2w C -0.043 0.007 ≤0.001
3w C -0.042 0.007 ≤0.001
Car C -0.040 0.009 ≤0.001
2w O 0.008 0.003 ≤0.001
3w O 0.004 0.005 ≤0.010
Car O 0.012 0.004 ≤0.005
CV -0.000085 0.007 ≤0.001
OV 0.001 0.004 ≤0.001

(scale) 0.651

P 1.5

QIC 156.13

Note: Off-peak/peak = times of the day (hours), with/without Central Island = intersection geometry, CV = conflicting volume (vehicle/hr), OV= offending
volume (vehicle/hr), QIC = quasi − ikelihood criterion, and a = Set to zero because this parameter is redundant.
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significantly affects the number of critical and noncritical
conflicts. Fewer crossing conflicts were observed for off-
peak hours than peak hours, which can be attributed to the
variation in the traffic volume of both conflicting and
offending streams.

4.1. Model Validation. The mean absolute percentage error
(MAPE), root mean square error (RMSE), and mean percent-
age error (MPE) were computed to check the predictability of
the developed model. MAPE for critical conflicts and noncriti-
cal was observed as 16% and 15%. RMSE and MPE values were
66 and 76, and −4% and −2%, respectively, for critical and non-
critical conflicts. The negative value of MPE indicates that the
model over-predicts the number of crossing conflicts. However,
the overprediction is marginal. Therefore, the developed model
can be considered representative and used to predict crossing
conflicts at unsignalized T-intersections.

In addition, to check the predictive power of the GEE_
TD model, the model errors are compared with those
obtained using the negative binomial (NB) model. The
MAPE for critical conflicts and noncritical was observed as
18% and 15%. RMSE and MPE values were 76 and 85, and
−5% and −4%, respectively, for critical and noncritical con-
flicts. Moreover, the MAPE, RMSE, and MPE were calcu-
lated for all the selected eight urban T-intersections for
GEE_TD and NB model, and the results are summarized
in Table 5. For both critical and noncritical conflicts, the
GEE_TD model performs better (lesser error) than NB.
The consistency in the results is observed for all eight urban
T-intersections. Therefore, it is concluded that the GEE_TD
model is the most suitable modeling technique for predicting
critical and noncritical conflicts.

5. Summary and Conclusions

In India, unsignalized T-intersections contribute to a signif-
icant number of crashes and fatalities compared to other
intersection types. Among all types of conflicts, crossing
conflicts are regarded as more severe at unsignalized T-
intersections. Therefore, eight urban unsignalized T-
intersections with varying roadway geometry and intersec-
tion control were selected. The crossing conflicts were iden-
tified using post encroachment time (PET). The identified

conflicts were bifurcated into critical and noncritical con-
flicts. The number of crossing conflicts (critical and noncrit-
ical) were modeled as a function of traffic volume, vehicular
composition, and intersection geometry using the GEE_TD
regression approach. Some of the important conclusions
drawn from the study are as follows:

(1) critical and noncritical crossing conflicts vary with the
traffic volume of the conflicting and offending stream.
The number of critical conflicts increases with an
increase in the traffic volume of the offending and con-
flicting stream. On the other hand, with an increase in
the traffic volume of the conflicting stream, the num-
ber of noncritical crossing conflicts decreases

(2) vehicular composition significantly influences the
number of crossing conflicts. Critical conflicts
increase with an increase in the proportion of 2w,
3w, and cars in the conflicting stream. With the
increase in the proportion of 2w, 3w, and cars in
the offending stream, noncritical conflicts increases

(3) traffic conflicts vary by intersection geometry. Fewer
traffic conflicts are observed for unsignalized T-
intersections with Central Island than intersections
without Central Island. At similar volumes, an aver-
age reduction of 25-41% in crossing conflicts can be
noted at intersections with the Central Island than
without Central Island

(4) time of the day (i.e., peak or off-peak hours) signifi-
cantly affects the number of crossing conflicts. More
conflicts can be observed during peak hours than off-
peak hours

(5) the developed crossing conflict model is helpful for
the city planners and traffic engineers to estimate
the number of conflicts with varying geometry char-
acteristics at unsignalized T-intersections. These
models can help to identify the critical intersections
based on the number of critical crossing conflicts.
Therefore, they can facilitate the development of
appropriate surrogate safety measures to enhance
traffic operations safety

Table 5: Model error for the study site.

Study sites
GEE_TD (NB)

MAPE RMSE MPE
Critical conflict Noncritical conflict Critical conflict Noncritical conflict Critical conflict Noncritical conflict

S-1 3 (20) 16 (16) 31 (119) 126 (172) -1 (-19) 15 (-3)

S-2 13 (13) 10 (10) 69 (71) 83 (84) -4 (-5) 2 (2)

S-3 13 (13) 14 (13) 63 (64) 47 (45) 9 (9) -12 (-11)

S-4 10 (10) 13 (12) 52 (52) 57 (56) 3 (3) -2 (-2)

S-5 24 (29) 12 (12) 68 (72) 71 (72) -26 (-23) 9 (9)

S-6 26 (30) 20 (19) 64 (65) 60 (59) -19 (-17) -13 (-11)

S-7 19 (19) 18 (21) 90 (91) 71 (71) 1 (2) -9 (-8)

S-8 11 (11) 14 (13) 43 (42) 57 (56) -2 (-2) -7 (-6)

Note: Parenthesis () indicates the NB model error.
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5.1. Future Research Direction. In the present study, eight
urban T-intersections were considered for modeling con-
flicts. The same study can be carried out for urban four-leg-
ged, Y-intersection in the future. Crossing conflicts can also
be modeled using advanced statistical techniques like Bayes-
ian and hierarchical models to better account for unobserved
heterogeneity. The development of safety-based warrants
also merits further investigation. The crossing conflicts-
based safety performance function incorporating the effects
of the other confounding factors like weather conditions,
driver perception, gender, age, and drivers’ information
can be considered as the future scope of the study. In the
present study, only crossing conflicts were considered as
they are critical compared to other types of conflict. How-
ever, in the future, different types of conflicts such as rear-
end, sideswipe, angled, and crossing can be analyzed in a
unified framework by developing multivariate models.
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