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Trafc travel mode identifcation and classifcation are crucial for the development of intelligent transportation systems (ITSs). At
present, scholars have investigated the classifcation of motorized and nonmotorized trafc travel in various road environments;
however, the classifcation of walking and bicycle modes in nonmotorized travel has been largely ignored.Terefore, in this paper,
we investigate nonmotorized trafc travel and propose a new low-cost nonmotorized trafc travel mode classifcation system,
known as theWi-Fi classifcation (Wi-CL) system that usesWi-Fi signal detectors and the refned characteristics of nonmotorized
travel modes. Te Wi-CL system includes four modules: data acquisition module, data processing module, feature extraction
module, and mode classifcation module. In the data acquisition module, the proposed system detects the Wi-Fi signals of trafc
participants in road environments. In addition, we propose a received signal strength indicator (RSSI) fltering algorithm for
hybrid trafc networks that efectively addresses surrounding obstacles and environmental noise. In the feature extraction
module, we extract relevant trafc features to construct a mode classifcation model. Finally, a recurrent neural network (RNN)
framework based on the long short-term memory (LSTM) algorithm is successfully implemented in the mode classifcation
module for trafc travel mode identifcation. To validate the efectiveness of the Wi-CL system, extensive experiments were
conducted using feld data collected by Wi-Fi detectors installed at the South China University of Technology (SCUT). Te
experimental results show that the proposed RSSI fltering algorithm achieves excellent signal fltering results in real road trafc
environments. In addition, the constructed travel speed estimation algorithm outperforms other baseline models in four diferent
scenarios (fat-peak walking, midday peak walking, fat-peak cycling, and midday peak cycling), achieving an overall classifcation
accuracy of 97.92%. In summary, our Wi-CL system is a feasible approach for nonmotorized trafc travel mode classifcation.

1. Introduction

Intelligent transportation systems (ITSs) and city surveillance
systems are important applications of the Internet of Tings
(IoT) [1, 2] that apply the sensing, control, and communication
technologies of ground transportation systems through IoT
devices to improve the safety and smoothness of urban road
networks [3]. Trafcmode detection plays an important role in
helping urban planners and transportation agencies determine
the occupancy of road resources by diferent trafc modes at
various times [4].Tis information can be used to plan, design,

and operate the multimodel infrastructures required by
transportation network users [5]. Additionally, extracting
trafc mode information over short periods can help city
planners monitor anomalies in trafc networks. Model-based
information has also been utilized in other felds, e.g., private
route recommendation [6], daily commuting surveys [7], and
congestion prediction [8]. Although most existing studies
investigated motorized transportation, several scholars have
realized the importance of nonmotorized transportation
modes in urban transportation systems and have attempted to
optimize these nonmotorized transportation modes [9].
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Movement data obtained from pedestrians and cyclists are
critical in modeling travel behavior and habits, especially in
urban surveillance systems [10]. However, collecting travel data
from pedestrians and cyclists on streets, sidewalks, and public
trails is a considerable challenge [11]. In addition, widely used
vehicle sensors (such as induction loops, cameras, ultrasonic
sensors, and radars) sufer from several problems, including
high installation and maintenance costs and inefciencies in
pedestrian and cyclist detection and tracking, because pe-
destrians and cyclists usually have weak behavioral norms, in
contrast to motor vehicles, which are restricted by lane rules
[12]. Tus, automatic nonmotorized trafc data collection and
mode detection techniques should be developed and applied in
practical scenarios.

To address these problems, several studies have proposed
special sensors for pedestrian counting, such as infrared
sensors, ultrasonic sensors, and pressure footpads [13].
However, these sensors provide data for only specifc points in
a network. More importantly, point-based counting tech-
niques fail to detect the same person at diferent points in the
network when determining travel routes, destinations, and
travel times [14]. Currently, as a low-cost alternative [15],
location-aware technology has attracted considerable interest
in tracking pedestrian and nonmotorized movements due to
the popularity and development of smart mobile devices such
as cell phones and tablets. Most early studies on location-
aware technologies used the prevalent and well-established
global positioning system (GPS) [16], global system formobile
communications (GSM) [17], and accelerometers as data
sources [18]. Among them, GPS-based approaches require
users to install and run a mobile application to actively
transmit GPS records to the center, which is not convenient in
the real world [19]. In some studies, GSM data has been
suggested as an efective way to track cell phones based on
their cellular signal strength. However, the location estima-
tion is very coarse and only appropriate for O-D surveying
[17]. Tus, our study focuses on the receiving signal strength
indicator (RSSI) values captured by wireless communication
signals (such as bluetooth and Wi-Fi). Specifcally, in wireless
channels, RSSI values have a mathematical relationship with
the 2D distance [20], i.e., the plane distance between the smart
mobile device and the detector. Also, it has been reported that
the detection rate of bluetooth devices is usually between 5%
and 12% since most applications involving Bluetooth tech-
nology are carried out in the vehicle network [21]. In contrast,
Wi-Fi-enabled smart devices periodically attempt to connect
to wireless LAN (WLAN) when sending detection request
data. Tus, a simple low-cost monitoring unit that is in-
dependent of user participation is sufcient for passively
collecting these data, and this device does it involve any
hardware or software modifcations [22].

Given the advantages of Wi-Fi detector data for
movement mode detection and the fact that previous studies
involving Wi-Fi detector data have focused on limited in-
door movements, we explored the feasibility of using Wi-Fi
detector data to identify nonmotorized trafc modes in
urban road environments. In the literature [5, 10, 22], several
trafc mode classifcation systems based on Wi-Fi detector
data have been proposed. Te general steps for determining

trafc modes using Wi-Fi detection data can be summarized
as follows: frst, ofine Wi-Fi data are collected, and the data
are cleaned to remove errors and redundant information;
then, relevant features are extracted from the cleaned data
and delivered to a classifer for training; and fnally, the
trafc modes are predicted based on the trained classifer.
However, these systems face several problems: (1) the most
difcult challenge is the lack of accuracy in distinguishing
modes with similar speeds, accelerations, or routes [23].
When diferent trafc modes have similar speeds, acceler-
ations, or movement routes, methods for separating these
routes are not sufciently accurate. In particular, existing
methods cannot be used to directly distinguish walking from
cycling, even if the approaches are valid for vehicle classi-
fcation. (2) Most previous works did not consider noise in
RSSI signals. In addition, the ground data as the main
classifcation feature were not validated according to the
expected movement speed. (3) Traditional machine learning
classifcation models, such as logistic regression (LR),
support vector machines (SVM), and multilayer perception
(MLP), cannot adapt to complex urban trafc environments,
resulting in reduced classifcation accuracy.

To address the above issues, we propose a real-time
trafc monitoring system that automatically and accu-
rately identifes walking and cycling travel modes in mixed
trafc networks using commercial Wi-Fi detectors. More-
over, we tested the proposed system in a realistic trafc
environment at the South China University of Technology
(SCUT) campus.Temain contributions of this paper can be
summarized as follows:

(1) We construct a novel, low-cost, portable Wi-Fi
classifcation (Wi-CL) system that identifes fne-
grained nonmotorized trafc modes by using only
Wi-Fi detection data as the information source.
Notably, the proposed system is nonintrusive and
can be retroftted using existing road infrastructures,
such as posts, walls, or barriers.

(2) We propose and validate an RSSI fltering algorithm
for mixed trafc networks that suppresses the am-
bient noise caused by surrounding obstacles. Te
experimental results show that the average error in
the walking trafc mode is 5.74m, which is 27.78%
less than that of the conventional constant velocity
fltering (CVF) algorithm and 7.57% less than that of
the Kalman fltering (KF) algorithm. Similarly, the
average error in the cycling trafc mode is 5.53m,
which is 19.74% and 18.68% less than the errors in
the CVF and KF algorithms, respectively.

(3) We design a recurrent neural network (RNN) model
based on a long short-term memory (LSTM) net-
work to identify and classify diferent nonmotorized
trafc modes. We extract features from the raw data
instead of using the RSSI raw data itself. Te eval-
uation results indicate that the recognition accuracy
of the LSTMmodel is 25%, 18.78%, and 8.34% better
than that of the conventional LR, SVM, and MLP
algorithms, respectively.
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Te remainder of this paper is organized as follows.
Related work is reviewed in Section 2. Section 3 presents the
design idea and framework of the Wi-CL system and the
inspiration for identifying nonmotorized trafc modes.
Section 4 describes the methodology details. Te experi-
mental results and performance evaluation are presented in
Section 5. Section 6 discusses the conclusions and outlook of
this study.

2. Related Works

Te development and application of nonmotorized trafc
data collection and monitoring systems have been in-
vestigated in the feld of public transportation. Te federal
highway administration (FHWA) has released the most
recent version of its trafc monitoring guide, which includes
a new section on monitoring and identifying nonmotorized
trafc [11]. Currently, there are two main types of travel data
collection methods based on location-aware technologies:
user-centric methods and network-centric methods [5].

2.1. User-Centric Methods. Active user participation in the
data collection process is required in user-centered ap-
proaches. Commonly used data sources include GPS data,
inertial measurement unit (IMU) data, or a combination of
the two. Zheng et al. [16] proposed a supervised learning
method that can infer the travel modes of trafc participants
(e.g., walking, cycling, driving, and taking the subway) from
GPS data alone. However, in this study, the collected GPS
data were not sufcient for classifcation, and the accuracy
rate was only 72.8%. Dabiri and Heaslip [24] used con-
volutional neural networks (CNNs) to predict the travel
modes of the original GPS trajectories.Te integration of the
best CNN confguration resulted in a maximum accuracy of
84.8%. Although neural networks can achieve better clas-
sifcation performance than traditional machine learning
methods, using only GPS data reduces the accuracy of the
system. Stenneth et al. [25] proposed a method for inferring
user trafc travel modes based on geographic information
system (GIS) data and knowledge of the underlying trafc
network. Te results showed that the detection accuracy of
the method was 17% better than that of the GPS-only
method. Reddy et al. [18] developed a trafc mode classi-
fcation system using a GPS receiver and an IMU built into
a cell phone. Te system used a two-stage decision tree
approach and a hiddenMarkov model (HMM) and achieved
an accuracy of more than 90%. However, these studies
usually involve high operational costs, as they require ad-
ditional mobile applications. In addition, the excessive time
and equipment energy costs for trafc participants increase
the difculty of implementing these methods at large scales
to address real-world trafc problems [26].

2.2. Network-Centric Methods. Network-centric approaches
attempt to collect data passively without network user in-
tervention. Te primary data sources for network-centric
approaches include Wi-Fi, Bluetooth, and GSM data. Sohn
et al. [17] used GSM signals collected by cell phones to

determine whether a person was standing, walking, or
driving. A two-stage logistic regression analysis resulted in
an average accuracy of 85% for walking and driving de-
tection. GSM signals are suitable for O-D measurements but
insufcient for detecting trafc modes [5]. Yang and Wu
[27] used Bluetooth data to classify three travel modes:
walking, cycling, and driving. However, in this study, 6.12%
of drivingmodes were incorrectly identifed as bicycling, and
10.53% of driving modes were identifed as driving.

Due to the popularity of Wi-Fi facilities and the prev-
alence of IoT devices, mobile crowd sensing based on Wi-Fi
detection data, such as activity recognition [28], crowd
counting [29], and location estimation [30], has become
increasingly popular. Abedi et al. [10] compared the ef-
ciency of Wi-Fi and Bluetooth devices for human mobility
data collection. Teir study showed that Wi-Fi is a more
efcient media access control (MAC) address dataset than
bluetooth devices for tracking spatio-temporal movements
of pedestrians and cyclists. Lesani and Miranda-Moreno
[22] developed a Wi-Fi/bluetooth-based sensor for identi-
fying mixed trafc networks. Kalatian and Farooq [5] used
Wi-Fi data collected by smartphones to identify and predict
people’s trafc travel modes. Te results showed that the
MLP model had the best prediction accuracy of 86.52%.
Unfortunately, most previous studies on Wi-Fi data-based
trafc mode detection did not consider RSSI noise. In terms
of classifcation models, Vu et al. [31] proposed a new RNN-
based method for identifying trafc modes. Te results
showed that deep learning methods have faster speeds and
higher accuracies than traditional machine learning algo-
rithms with the same learning parameters. However, instead
of extracting the LSTM features, they directly input the raw
data into the LSTM. Since LSTMmodels have been shown to
have high accuracy in trafc mode detection studies with
a large number of classes [32], this study uses LSTM gates for
long sequences. Moreover, we extracted a new set of features
from the original data instead of using the original data
directly.

3. System Overview

3.1. Inspiration for the Proposed System. Te design of the
proposed system was inspired by the increasing use of smart
electronic devices such as cell phones, laptops, and tablets.
Every smart electronic device has a unique MAC address,
which is usually expressed as 12 hexadecimal digits [22].
According to the IEEE 802.11 white paper [33], Wi-Fi-
enabled smart electronic devices attempt to connect to
nearby WLAN by periodically broadcasting probe requests,
which are special frames that provide information to par-
ticular access points or all nearby access points, including the
MAC address of the sender and recognized service set. Wi-
Fi-enabled devices broadcast probe signals even when the
device is not in use. In addition, each detection request frame
from a Wi-Fi-enabled smart electronic device can be cap-
tured and stored by Wi-Fi detectors [20]. Te vibration of
the signals may be caused by the travel speed, travel time,
and diferent trafc trajectories; thus, trafc participants
with diferent travel modes generate distinct RSSI signals,
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and Wi-Fi detectors can capture the dynamic characteristics
of these signals as pedestrians and cyclists move if the signals
are sensitive, as discussed in the literature [10, 22].

Figure 1 compares the RSSI signals acquired in various
time domains for diferent trafc modes. Figure 1 shows that
diferent trafc modes exhibit distinct time-domain char-
acteristics. Specifcally, the RSSI signal generated by the
cycling mode has a larger frst-order derivative than that
generated by the walking mode because speeds change more
frequently during cycling than during walking. In contrast,
the RSSI signals generated by the walking mode have more
connections because more time is required for users to walk
through the coverage area and for signals to be sent and
received repeatedly by the same detector. Tis fgure
demonstrates the feasibility of using RSSI signals generated
byWi-Fi detectors to classify diferent trafcmodes. In brief,
feature extraction and trafc mode classifcation techniques
can divide trafc modes in mixed trafc networks into two
categories, walking and cycling, according to the RSSI sig-
nals generated by the trafc participants.

3.2. System Architecture. Te purpose of this study is to
design an enhanced trafc travel mode identifcation system
by exploring the sequence information acquired by Wi-Fi
detectors. Figure 2 illustrates the architecture of the Wi-CL
system. Te fgure shows that the Wi-CL system consists of
four main modules: a data acquisition module, a data
processing module, a feature extraction module, and a mode
classifcation module. Te data acquisition module captures
the detection requests broadcast byWi-Fi-enabled devices in
the coverage area, recording information such as MAC
addresses, RSSI sequences, and timestamps, and collecting
the information into packets [34]. Te packets are stored in
internal databases or transferred to central databases via
WLAN. To improve the results, multiple sensors can be
placed at a site to increase the probability of capturing
packets when scanning the channel. In this study, the pe-
destrian and cyclist tracking data are anonymous to prevent
the potential leakage of personal information. Tus, each
fxed MAC address is not associated with any personal
information, such as names or phone numbers [35].Te data
processing module has three key functions: removing re-
dundant data, and erroneous data generated by motor ve-
hicles; recovering missing data due to packet loss; and
reducing signal noise caused by the environment. Te fea-
ture extraction module extracts the parameters and relevant
features of the model, such as the driving speed, number of
connections, and frst-order derivatives of the RSSI signals.
Te mode classifcation module has two key components:
LSTM training and prediction. In the frst part, the module
trains the LSTMmodel based on the relevant features; in the
second part, the signal features corresponding to the MAC
addresses are classifed into two diferent nonmotorized
trafc modes, namely, walking and cycling, based on the
trained LSTM model.

Te system is divided into two phases: an ofine phase
and an online phase. In the ofine phase, the system usesWi-
Fi detectors to collect a large amount of smart electronic

device data in the coverage area and performs data pro-
cessing to integrate the raw data into a new set of features
and train the LSTM model. In the online phase, the system
converts the detected real-time data packets into feature
vectors through the data processing and feature extraction
modules and feeds the feature vectors into the previously
trained LSTM model to calculate the trafc trips with the
highest probabilities.

4. Methodology

Tis section details the operation of the four modules in the
proposed system. Te main symbols and meanings are
shown in Table 1.

4.1. Data Collection and MAC Address Grouping. In the
coverage area, theWi-Fi detector passively collects data from
all surrounding Wi-Fi-enabled smart electronic devices. Te
system will encrypt the user’s personal and private data and
package the MAC address, RSSI signal, and other relevant
data [10]. Because each detector captures a large number of
MAC addresses during each scan, the raw packets must be
grouped according to MAC addresses [16], and the basic
idea of this process is shown in Figure 3.

Assume that there are m detectors deployed along the
nonmotorized road lanes. For the kth target, the time interval
between the frst and last packets detected by sensorm can be
expressed as equation (1), and if the target is detected only
once, tm

k,1 � tm
k,2.

∆t
m
k � t

m
k,2 − t

m
k,1. (1)

Te matrix Gm
k represents the RSSI dataset collected by

sensorm for moving target k and is sorted in ascending time
order. Te data samples include the MAC address, time-
stamp, and RSSI value of target k, and each row represents
a data sample collected by sensor m at a certain time.

G
m
k �

00: 16: EA: AE: 3C: 40 7/10//2019 10: 20: 30 −68

00: 16: EA: AE: 3C: 40 7/10//2019 10: 20: 31 −70

00: 16: EA: AE: 3C: 40 7/10//2019 10: 20: 35 −74

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(2)

4.2. Data Processing. Since Wi-Fi detectors were not orig-
inally designed for trafc sensing, the RSSI values of user
devices usually contain more noise in outdoor environ-
ments; thus, this noise must be eliminated before the trafc
modes can be identifed [36]. Te processing method has
three key steps: fltering anomalous and redundant data,
recovering missing data, and eliminating data noise.

4.2.1. Filtering Abnormal and Redundant Data. Te data
collected by Wi-Fi detectors inevitably includes some data
from motorized vehicles, even in environments where
walking and bicycling are the primary modes of trans-
portation, such as campuses and residential areas.Terefore,
the frst data processing step for this system is removing
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potentially inaccurate data generated by motorized vehicles,
which can lead to signifcant errors in the identifcation of
nonmotorized trafc modes.

Similar to the accelerometer-based vehicle detection
algorithm [37], RSSI signal-based vehicle detection is based
on the fact that vehicles travel faster than nonmotorized

vehicles. Tus, we apply an average speed threshold algo-
rithm to identify RSSI signals generated by motor vehicles
[38]. Te average operating speed of device k in the mon-
itoring area of detector m can be calculated using equation
(3), where∆lmk denotes the Euclidean distance between target
k and Wi-Fi detector m.
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Figure 1: Time-domain comparison of RSSI signals for diferent transportation modes. (a) Walking. (b) Biking.
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v
m
k �
∆l

m
k

∆t
m
k

. (3)

Wi-Fi detectors cannot estimate target locations based
on single RSSI values collected by one detector. In other
words, sensors at diferent locations may obtain the same
RSSI value due to noise interference. To reduce interference
caused by inaccurate data, this study assumes that the target
is on diferent sides of the detector when the number of
connections is greater than a given threshold [39]. In par-
ticular, when target k moves from the frst detected position
to the last detected position, the moving distance can be
calculated as:

∆l
m
k �

l
m
k,2 + l

m
k,1, n

m
k ≥ ε

m
,

0, n
m
k < ε

m
,

⎧⎨

⎩ (4)

where εm is the threshold value for the number of con-
nections, which is related to the antenna characteristics of
the detector, antenna type, and detection radius. When
nm

k ≥ ε
m, the frst and last packets are located on diferent

sides of detector m; conversely, when nm
k < ε

m, the frst and
last packets are located on the same side of the detector. If we
set ∆lmk � 0, the mode classifcation fails because the number
of connections is too small. Tus, in this study, the value of
εm was set to 5.

In 2010, Parkin and Rotheram [40] experimentally
measured and analyzed volunteers of diferent ages,
genders, bicycle types, and cycling experience in the

Leeds, UK, in diferent dimensions and for diferent
purposes. Te experimental results showed that over the
gradient 3% to +3% the eighty-ffth percentile speed
varies from 18 kph to 25 kph, and this suggests that
25 kph is a reasonable design speed to adopt for cycle
trafc. Since the actual road gradient in this experiment
is within the conditions of the above experiment and
does not have a sharply changing road alignment, the
experimental result of 25 kph, i.e., 7 meters per second,
provided in the literature [40] will be used as the
threshold to diferentiate the speed of bicycle trafc in
this experiment.

4.2.2. Recovering Missing Data. Within the communication
range of Wi-Fi-enabled smart electronic device detectors,
detectors may fail to receive detection requests broadcast by
Wi-Fi-enabled smart devices due to shielding and envi-
ronmental factors. If a packet is lost, the RSSI value captured
by the detector is displayed as NULL. In the literature [41],
Dong and Dargie demonstrated that the moving average
(MA) method is an applicable fltering method for signal
fuctuations. Te MA approach uses a set of existing serial
data to predict the next phase or phases of data. However,
the original MA algorithm changes the entire RSSI signal
sequence. Terefore, in this paper, the MA algorithm is
improved by interpolating only the missing data [42]. For
a certain MAC address k, the modifed MA algorithm can be
calculated as follows:

Table 1: Symbols and meanings.

Symbol Meaning
tm
k,1 Timestamp of the frst packet of target k

tm
k,2 Timestamp of the last packet of target k

∆tm
k Time interval between the frst and last packets

lmk,1 Linear distance between sensor m and target k at the frst packet timestamp
lmk,2 Linear distance between sensor m and target k at the last packet timestamp
∆lmk Distance moved by the target k

nm
k

Number of times that sensor m detects target k

S
ff

k,i
Value of the ith RSSI signal sequence after classifcation

d
eff

k,t
Linear distance between target k and detector m at moment t

Data acquisition module

Packet grouping

Central databaseRoadside unit

10/7/2019 10:22:53,MAC,RSSI,...

10/7/2019 10:22:54,MAC,RSSI,...

10/7/2019 10:22:55,MAC,RSSI,...

10/7/2019 10:22:56,MAC,RSSI,...

MAC1:RSSI1 (time),RSSI1 (time)...

MAC2:RSSI2 (time),RSSI2 (time)...

MAC3:RSSI3 (time),RSSI3 (time)...

Electronic
equipment

Wi-Fi detector

Figure 3: Data acquisition with the Wi-CL system.
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S
f f
k,i �

S
ff
k,i−w + . . . + S

ff
k,i−1

w
, S

f f
k,i ∈ NULL,

S
ff
k,i, S

f f
k,i ∉ NULL,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

where Sf fk,i is the ith value of the RSSI signal sequence after
excluding inaccurate data and w is the given window size,
which has a considerable impact on algorithm performance.
Te value of w was set to 4 in this study.

4.2.3. Eliminate Data Noise. In this paper, we show that
the distance-based method does not need a lot of pre-
training for parameters. RSSI ranging has the advantages
of low cost and low time system requirements and is
independent of transmission delay, antenna delay, and
other factors. Te strength of the wireless signal can be
used to determine the distance between the transmitting
node and the receiving node without requiring addi-
tional hardware. Terefore, an a priori database is not
required for support. However, the Wi-Fi detector is
sensitive to the surrounding environment, and the real-
time data collected contains a lot of noise, which needs to
be removed before the data is used for trafc pattern
recognition. In order to overcome the problems of RSSI
signal instability and inaccurate range estimation in
ranging methods, scholars have proposed noise re-
duction preprocessing using Kalman flter [43], Bayesian
flter [44], and particle flter [45] according to the
characteristics of fuctuating real-time RSSI signal. Te
main idea is based on iteration. Terefore, if the initial
detected RSSI sequence contains large errors, the accu-
racy of the algorithm will be greatly afected. In our
previous work [20], we proposed a constant velocity
Kalman flter (CVKF) algorithm for noise reduction. Te
CVKF algorithm efectively solves the large error
problem in the previous observations of the RSSI se-
quence by embedding a constant speed flter.

4.3. Feature Extraction. After the above data processing
steps, the fltered RSSI signals are fed into a classifer to
distinguish diferent trafc travel modes. Regardless of the
classifcation technique, dichotomy-free classifcation is
possible only if the signals of diferent trafc modes do not
substantially overlap in feature space [46]. Speed-related
variables are the main classifcation features in the rele-
vant literature [22]. However, the use of speed variables
alone does not guarantee satisfactory results. For example, in
congested areas, diferent trafc modes move at similar
speeds [5]. Terefore, feature selection is crucial in classi-
fcation systems.

Although feature selection is usually not necessary in
deep neural networks (DNNs), we fnd that using raw or
fltered RSSI signals as input does not provide high pre-
diction accuracy. Various methods have been applied to
select the most relevant features for improving classifcation
performance, such as analysis of variance (ANOVA) tests
[47] and relative mutual information (RMI) [37]. However,

the use of statistical tests or mutual information to select the
top-ranked features is insufcient because the fltered RSSI
signals may still be noisy. In the literature [5], Kalatian et al.
proposed the ReliefF algorithm for feature selection and
assigned diferent weights according to the importance of
the variables, where the basic idea is to estimate the quality of
the variables based on their weights to distinguish highly
similar detection results.

However, the algorithm takes more time to train and
analyze the results since it uses 15 features as input to the
classifer. In this study, we identify and select key variables in
each category based on the literature results [5]. Te vari-
ables in this paper include the movement velocity veff

k ,
number of connections nnff

k , and frst-order derivatives of the
RSSI time series Ssffk � Ssffk,1, Ssffk,2, . . . , Ssffk,t .

Te number of connections and frst-order derivatives of
the RSSI signals can be easily calculated from the processed
data; however, the operating speed of device k is difcult to
calculate. In the literature [22], Lesani and Miranda-Moreno
used the average travel speed (ATS) [48] as the operating
speed variable. However, we found that the speed values
estimated by this method are inaccurate because the de-
tection targets often encounter unexpected events, such as
extreme weather and congestion, in real trafc environ-
ments. Another movement speed estimation method is
calculating the ratio of the real-time physical distance to time
and converting the fltered real-time RSSI data into the real-
time physical distance, which is known as the real-time
travel speed (RTS) [49]. For MAC address k, the real-
time travel speed estimation method can be expressed as
follows:

v
rff
k,t �

d
eff
k,t+1 − d

eff
k,t

τ
, (6)

where vrffk,t denotes the real-time movement speed of device
k at moment t in the coverage area, deff

k,t is the physical
distance between the target and detector at moment t for
device k, and τ represents the time interval between two
consecutive detections. Te physical distance is based on
the fltered RSSI data. Unfortunately, the fltered RSSI
signal may still be noisy, so the accuracy of the driving
speed calculated by this method needs to be improved. To
address this problem, in this paper, we embed the moving
average flter into the real-time travel speed and propose
a new travel speed estimation method called the real-time
fltered travel speed (RFTS).

Te key idea of the RFTS algorithm is to convert the RSSI
signal into a physical distance between the moving target
and the detector. Typically, the most commonly used
propagation model to describe the relationship between the
RSSI and physical distance is the logarithmic distance path
loss model, as shown in equation (7), where λ represents the
environment-specifc loss parameter and B denotes the
calibrated RSSI value when the distance between the de-
tection target and detector is set to 1m. For a given Seffk,j , the
distance estimator can be converted to equation (8), where
the values of B and λ are determined through extensive
experiments [20].
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S
eff
k,j � λ × 10 log10d

eff
k,j + B, (7)

d
eff
k,j � 10 B− Seff

k,j
/10∙λ 

. (8)

4.4. Mode Classifcation. Traditional machine learning
methods rely heavily on manually extracted features,
resulting in issues with feature extraction in machine
learning-based image recognition, speech recognition,
and natural language processing approaches [50]. Fully
connected neural network-based methods also encounter
various problems, such as too many parameters and an
inability to utilize time series information in the data [51].
As more efective RNN structures have been proposed, the
ability of RNNs to mine time-series information and
semantic information has been fully utilized, and
breakthroughs have been achieved in speech recognition,
language modeling, machine translation, and time-series
analysis [52].

An RNN is a typical DNN, and the most substantial
diference between RNNs and traditional neural networks is
that each previous output is sent to the next hidden layer
during training in an RNN. Recurrent neural networks
portray the relationship between the current output of
a sequence and the previous information. Structurally, an
RNN remembers the previous information and uses it to
infuence the output of the following nodes.Tus, the output
depends on the current input information and memory
units [53].

An RNN has an additional weight, namely, the hidden
state of the hidden layer unit, and can process variable-
length sequences with a recursive hidden state whose acti-
vation depends on the previous state. Terefore, RNNs are
suitable for the mutual interpretation of repetitive sequence
data.

ht �
0, t � 0,

∅ ht−1, xt( , otherwise.
 (9)

We assume that the input sequence of the classifcation
model is x � x1, x2, . . . , xt . At moment t, the RNN updates
its hidden state ht according to equation (9). ∅ is an acti-
vation function, such as a logistic sigmoid with afne
transformations. Traditionally, recursive implicit states can
be updated by ht � g(Wxt + Uht−1), where g is a smooth
bounded function and W and U are weights.

However, RNNs utilize gradient-based optimization
algorithms, increasing the difculty of training long se-
quences [54]. In other words, the rate of change of the
weights decreases sharply over time, which tends to result in
undertraining long sequences [55]. In contrast, LSTM
models have memory that can be read, written, and deleted,
and these functions allow LSTM models to select the data
that should be remembered [15]. In this study, the proposed
RNN model includes an LSTM module and an output layer
for classifcation. Te structure of the LSTM module is
shown in Figure 4.

Here, ct is the signal that follows the up line, xt is the
input vector, and ht is the hidden state (value of the recurrent
weight).Te input and previous hidden state enter the forget
gate frst.Te output of the forget gate ft can be calculated as
follows:

ft � δ Wuf ht−1, xt  + buf( , (10)

where Wuf is the weight between the cell state and forget gate
and buf is the additive bias of the forget gate.

Te second step determines which input to choose. Tis
step has two substeps, as shown in equations (11) and (12).

it � δ Wui ht−1, xt  + bui( , (11)

ct � tan h Wug ht−1, xt  + bug , (12)

where Wui and Wug are the weights between the cell state
and the input and external output gates, respectively.
Moreover, bui and bug are the additive biases of the input gate
and external output gate, respectively.

Next, the LSTM model updates ct according to the
outputs of these two gates with equation (13).

ct � ft ∗ ct−1 + it ∗ ct. (13)

Tese changes are applied to ht, and the hidden state is
updated as shown in equations (14) and (15).

ot � δ Wuo ht, xt  + buo( , (14)

ht � ot ∗ tan h ct( , (15)

where Wuo is the weight between the cell state and the output
gate and buo is the additive bias of the output gate. In ad-
dition, the sigmoid function δ(·) and hyperbolic activation
function tan h(·) are used as activation functions.

Finally, to identify the walking or biking mode, we input
the feature ht, which is extracted in the last LSTM cell into
a single perceptron layer. Te output hθ of the model is
calculated as follows:

hθ � δ Wθht + bθ( , (16)

where Wθ is a weight matrix that transfers the values in the
fully connected (FC) layer to the output layer and bθ is a bias
factor. In equation (16), the sigmoid function δ(·) is used to
transform the logit of a single neuron in the fnal stage to
calculate the probability of classifying walking or biking.

Te packet captured by each detector is split into win-
dows after processing. If there are p frames in a window, the
inputs are passed through the LSTM p times. As previously
explained, in this study, each frame in the window has three
features. Following feature extraction, the feature values are
normalized in the range (0, 1). Finally, all features within
a window are input into the LSTM model.

5. System Evaluation

5.1. Hardware Platform. Te hardware used for data ac-
quisition in this experiment is shown in Figure 5. In this
fgure, 1 is the Wi-Fi detector charger, which converts from
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220V AC to 12V DC; 2 is the DS-007 detector, which was
produced by Chengdu DataSky Company, China, and has
been proven to be suitable for use in outdoor environments;
3 is the NewsMY-W12 battery source; 4 is the cable con-
necting the battery source and Wi-Fi detector; 5 is a tape
measure used to measure the straight-line distance between
the target and the Wi-Fi detector; 6 is a LAN cable that
allows the collected data to be transmitted to a personal
computer in real-time; and 7 is a laptop.

For short-term feld experiments, the Wi-Fi detector can
be powered by a mobile power supply, while for long-term
feld experiments, an external AC power cable should be
connected to the detector. Before the formal experiment, the
DS-007 detector was pretested to evaluate its performance,
such as its scan interval, signal fading rate, directional in-
homogeneity, detection rate, and packet loss rate.

During the preexperiment, we tested diferent numbers
and diferent types of small samples of travelers by calcu-
lating the values of B and λ by collecting the RSSI values
between the target and the wireless detector at diferent
distances. We moved the smart device from 1m to 15m in
steps of 1m and acquired 25 RSSI values at each fxed point.
Ten, the outliers at each position were discarded by
computing the mean and variance of the measurements. In
detail, we removed data samples that were greater than one
standard deviation from the mean. Subsequently, we per-
formed a logarithmic interpolation of the RSSI data
according to equation (8). Te resulting ftting curve is
shown in Figure 6. Te calibrated values of B and λ were set
to B� 49.51 and λ� 1.2. For the DS-007 detector, a calibrated
PM was used in this study. Finally, the RSSI value was
converted to a distance with equation (17).

d
eff
k,j � 10 49.51− Seff

k,j
/12 

. (17)

In addition, according to the pre-experiment test results,
the efective detection area of the DS-007 Wi-Fi detector can
be approximated as a sphere with a radius of 30m, which is
slightly smaller than the 50m radius of the Wi-Fi detector
used by Lesani and Miranda-Moreno [22]. Te efective
detection range of the detector depends on the chosen
antenna. Antennas with low gains have lower detection rates
but more accurate velocity estimations. Terefore, in this

experiment, when the linear distance between the intelligent
terminal device and the DS-007Wi-Fi detector was less than
30m, all connection details were collected by the detector.

5.2. Data Acquisition. To validate the proposed Wi-CL
system, four DS-007 Wi-Fi detectors were deployed in
a specifc area (namely, a circle consisting of four streets) at
the SCUT, Wushan Campus, to collect Wi-Fi trajectories as
participants walked or cycled. It is important to note that
unlike traditional intrusive trafc sensors such as toroidal
induction coils, piezoelectric sensors, and magneto-resistive
sensors., the deployment of the Wi-Fi detectors proposed in
this paper utilizes existing trafc support facilities such as
trafc signal frames or intersection light poles and does not
require additional deployment of road structures. Terefore,
the deployment of the experimental detectors does not afect
the road trafc environment and normal trafc operations. It
should be pointed out that the equipment proposed in this
paper is easily afected by the multipath efect when con-
ducting data acquisition outdoors. Te multipath efect
means that the electromagnetic wave propagates through
diferent paths and the component felds reach the receiving
end at diferent times according to their respective phases,
causing interference and distortion or error of the original
signal. Te multipath efect will lead to signal fading and
phase shift. Terefore, before sending the collected data into
the pattern classifcation system, the data processing and
fltering module is required to flter the RSSI signal.

Tis campus has a large-scale pedestrian and cyclist
network with reduced vehicular trafc. Terefore, this is
a suitable place to test the proposed system. In this study, we
recruited four volunteers from the Intelligent Transportation
Laboratory of the SCUT for data collection. In the experi-
ment, in order to control the rationality of the experiment,
the participants were all school students, aged about
20–28 years old, with a male to female ratio of about 2 :1.Te
gait speed was normal human speed. We conducted 20
replicated experiments at each testing location to reduce
random errors. Te participants were encouraged to carry
a Wi-Fi-enabled smartphone and move on the road by
walking and cycling. A total of 160 trips, including 80
walking and 80 biking trips, were collected; 70% of the trips
were included in the training set to calibrate the developed
model, and the remaining 30% were used to validate the
performance of the classifer. Furthermore, in the WiFi-
based approach, our pre-experiments demonstrated that
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Figure 4: Basic LSTM cell structure.
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Figure 5: Hardware equipment for data acquisition.
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individual diferences were not signifcant for the classif-
cation of travel mode (motor vehicle/bicycle/walking).
Terefore, this paper does not focus on individual
diferences.

Te trace data in this experiment is labeled data; for
example, the MAC Address is unique, so there will be no
confusion during detection. Tere are also fltering modules,
LSTM modules, etc. for auxiliary identifcation, and they all
have good signal noise reduction and feature extraction
performance.

Te experimental measurement data used in the analysis
were collected during two separate periods: (1) 10:00 to 1100
on July 10, 2019, namely, the fat peak, and (2) 12:00 to 13:00
on July 10, 2019, namely, the noon peak. Two data collection
periods were included to compare the impact of crowding on
the classifcation performance of the system.Te locations of
the DS-007 Wi-Fi detectors and the participants’ trajectories
are shown in Figure 7. Mutual infuence between the de-
tectors was ignored only when the distance between two
detectors was considerably greater than the coverage area of
the detectors. On-site, the locations of the detectors were
carefully determined to ensure that overlap did not occur
between the sensing ranges of diferent detectors. Te
shortest distance between the detectors was approximately
200m, which is greater than the detection radius of 30m.

5.3. Performance Analysis of the Proposed System. In this
subsection, we evaluate the performance of the proposed
system based on the collected dataset. Te evaluation has
three key objectives: (1) to assess the noise reduction per-
formance of the system; (2) to evaluate the speed estimation
performance of the system; and (3) to compare the proposed
classifcation framework with traditional classifcation
algorithms.

5.3.1. Noise Reduction Performance Analysis. Te high
volatility of RSSI signals causes system errors; thus, the
tolerance to RSSI signal fuctuations is an important per-
formance metric. In the literature [20], we demonstrated

that the CVKF flter can efectively suppress the localization
divergence caused by RSSI signal fuctuations, regardless of
whether pedestrians are stationary or moving at low speeds.
However, we do not know whether the CVKF flter is equally
applicable to bicycles, which travel at faster speeds than
walking pedestrians.Terefore, in this study, we frst analyze
the noise reduction performance of the system. In the ex-
periment, the RSSI signal was received by the smart terminal
device in three scenarios: (1) the tester remained stationary
for 80 seconds at a distance of 10m from the detector; (2) the
tester started at a distance of 30m from the detector,
approached the detector, and walked 30m away from the
detector; and (3) the tester started at the detector, moved
30m away from the detector, rode a bicycle to the detector,
and rode their bicycle 30m away from the detector. While
walking or riding, the tester maintained a constant speed as
much as possible. Te ground truth was generated at several
reference points with measured positions. A stopwatch was
used to record the time taken by the tester to pass these
reference points and was interpolated to obtain the true
position of the ground between these reference points [56].
In addition, we assume that the pedestrian moves at
a constant speed between the two reference points.

In fact, since the detection cycle of a single Wi-Fi de-
tector is short. Terefore, it can be assumed that the activity
during the detection cycle is a single activity, i.e., the user is
either riding a bike or walking. For a case corner task such as
someone in the middle of a bike ride, outliers can be handled
by the action of the fltering module. Moreover, using the
distinction between stationary and active states is relatively
simple for the RSSI-based approach, as shown in Figure 8.

Figure 8 compares the raw RSSI data and the fltered
RSSI data collected in the three scenarios. Te RSSI fltering
algorithms use CVF, KF, and CVKF flters. As shown in
Figure 8, in schemes (1) to (3), the raw RSSI data collected by
the detector are relatively noisy. Tus, if these data are used
directly for mode classifcation, large errors may occur. For
example, as shown in Figure 8(a), the raw RSSI data fuctuate
quickly between 0 dBm and 10 dBm even when the data are
collected at the same fxed location. Te raw RSSI data are
processed using a fltering algorithm to obtain smoothed
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Figure 6: Te distribution of the RSSI value and distance in the
pre-experiment.

Figure 7: Experiment area and Wi-Fi detector locations.
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data. In Schemes (1) to (3), the CVF, KF, and CVKF al-
gorithms enhance data with less errors more than unfltered
data. However, signifcant error peaks in the frst few RSSI
data sequences have a considerable impact on the optimi-
zation results of the KF algorithm. In Figure 8(a), the frst
few raw RSSI values have large errors at 0–10 s, leading to
large errors in the KF algorithm (the fltering performance
improves only after approximately 10 s). Unfortunately, in
a real trafc environment, the possibility of peak errors in the
frst few data sequences cannot be eliminated. Moreover, the
CVF algorithm may overft data with peaks, as shown in
Figure 8(b) between 50 and 60 s and Figure 8(c) between 12
and 17 s. Tis result likely occurs because the prediction
principle of the CVF algorithm is based on a fxed speed,
which is not sensitive enough to the actual situation of the
RSSI peaks. It is worth noting that the CVKF algorithm
proposed in this paper addresses the above two problems.

In addition, this study evaluates the efectiveness of the
proposed flter by converting the RSSI into a distance value.
Two evaluation metrics are considered: the mean error and

the root mean square error. Te estimated distance errors of
the CVF, KF, and CVKF algorithms for the three cases are
shown in Table 2.

Te distance estimates obtained from the original un-
fltered RSSI data, including stationary, walking, and biking
data, are subject to large errors. Regardless of whether the
CVF, KF, or CVKF algorithm is used, the mean error and
root mean square error (RMSE) are larger in the sports
environment than in the stationary environment. Tis may
be related to the fact that people move faster in walking and
cycling environments, resulting in larger signal fuctuations.
On the one hand, for the walking scenario, the average error
of the CVKF algorithm is 5.74m, which is 27.78% (7.94m)
and 7.57% (6.21m) less than the average errors of the CVF
and KF algorithms, respectively. On the other hand, for the
cycling scenario, the average error of the CVKF algorithm is
5.53m, which is approximately 19.74% (6.89m) and 18.68%
(6.80m) less than the average errors of the CVF and KF
algorithms, respectively. Terefore, the fltering perfor-
mance of the CVKF algorithm is better than that of the CVF
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Figure 8: Comparison of the fltering performance in the three scenarios. (a) Stationary. (b) Walking. (c) Biking.
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and KF algorithms in these three cases. Moreover, the av-
erage error of the KF algorithm in the cycling environment
(6.80m) is larger than that in the walking environment
(6.21m), indicating that the KF algorithm cannot adapt to
changes in the cycling environment. In contrast, the CVKF
algorithm maintains a better fltering performance, even in
the faster cycling environment.

5.3.2. Speed Estimation Performance Analysis. Travel speed
is the main feature of existing trafc travel mode classif-
cation models based on data collected by smart electronic
devices. However, most studies do not validate the estimated
travel speeds. In addition to analyzing the noise reduction
performance of the system, in this study, we verify the
accuracy of the estimated travel speed extracted from the
collected MAC addresses and RSSI signals. To verify the
accuracy of the estimated travel speeds, the locations of the
testers during movement were generated using the spe-
cialized open-source software Sensorlog, which is a mobile
data collection and annotation application that is efective
for collecting mobile location data, as explained in [57]. Tis
application can be downloaded from the Google Play
Marketplace. In this study, we used the velocity data of the
testers collected by this application as ground-truth data. In
this experiment, we compared the ATS, RTS, and RFTS data
collected in four scenarios. Te four scenarios are defned as
follows: (a) walking data collected during the fat peak; (b)
walking data collected during the noon peak; (c) cycling data
collected during the fat peak; and (d) cycling data collected
during the noon peak. Figure 9 shows the vehicle speeds
estimated by the three methods in the four scenarios, and
Figure 10 shows the cumulative distribution functions
(CDFs) of the speed estimation errors for the ATS, RTS, and
RFTS algorithms.

As shown in Figure 9, the ground truth speeds for
walking and bicycling are relatively stable during the fat
peaks (scenarios (a) and (c)). In contrast, during the midday
peak hours, the ground truth speeds for walking and cycling
decrease sharply. For example, the cycling speed decreases
substantially from 1.5 to 2 2m/s to 0.3∼0.8m/s within
20–30 s in scenario (d). Tis decrease may be due to the
increase in pedestrian network trafc on Damien Hill Road
during the noon peak period due to students leaving school.
As a result, bicyclists had to reduce their speed when they
reached that road section. Te ATS algorithm uses the
average moving speed of the moving target in the coverage
area, which is infuenced considerably by the frst and last

RSSI signal values. If large errors occur, the accuracy of the
ATS algorithm decreases rapidly. In addition, this algorithm
does not accurately refect changes in the velocity of the
moving target during the monitoring period. For example,
in scenarios (b) and (d), the ATS algorithm maintains the
original value even after the speed of the moving target
changes. In addition, when the frst few values in the RSSI
sequence have large errors, the speed estimation result of the
RFTS algorithm is closer to the ground truth speed than that
of the RTS algorithm. For example, in scenario (d), the RSSI
values are closer between 0 and 5 s, and the RTS algorithm
estimates a velocity value of 0m/s. However, the RFTS al-
gorithm calculates the average of the estimated velocities
within a window, and the fnal smoothed input is 0.5m/s.

Table 3 shows the vehicle speed estimation errors for the
three methods in the four scenarios. According to Figure 10
and Table 3, the average error of the RFTS algorithm in the
four scenarios (1.9m/s, 0.19m/s, 0.57m/s, and 0.42m/s) is
smaller than those of the ATS (0.24m/s, 0.24m/s, 0.82m/s,
and 0.60m/s) and RTS algorithms (0.22m/s, 0.23m/s,
0.80m/s, and 0.58m/s). Moreover, the 90% CDF errors of
the RFTS algorithm in the four cases are 0.38m/s, 0.39m/s,
1.25m/s, and 1.0m/s, which are smaller than those of the
ATS and RTS algorithms. Inevitably, the estimated speed
errors obtained by the three algorithms are larger in the
cycling environment than in the walking environment.
However, it is worth noting that the proposed RFTS algo-
rithm has the smallest error among the three algorithms. In
other words, compared with the other algorithms discussed
in this paper, the RFTS algorithm is more stable in the four
cases, and the estimated travel speed is closer to the ground
truth speed.

5.3.3. Classifcation Accuracy Performance Analysis. We
compare the proposed classifcation framework with LR
[58], SVM [59], and MLP [5] three machine learning al-
gorithms that are widely used in classifcation models. Te
parameters in the LR, SVM, and MLP models are well tuned
to achieve good accuracy. Te SVM classifer uses a linear
kernel function with a soft edge constant of 1. Te MLP
classifer uses the following parameters: number of epochs:
200; optimization method: Adam; number of hidden layers:
2; input and hidden layer activation function: ReLU; all
hidden layer activation: 4; output layer activation function:
sigmoid; and batch size: 20. In addition, the classifcation
framework designed in this paper consists of an LSTM layer
and a fully connected layer. Te sigmoid activation function

Table 2: Comparison of the estimated distance error in the three scenarios (unit: m).

Scenario Method
Unfltered CVF KF CVKF

Stationary Average error 5.89 3.62 4.07 3.46
RMSE 3.91 1.51 2.68 1.21

Walking Average error 15.01 7.94 6.21 5.74
RMSE 45.04 7.68 3.43 2.90

Cycling Average error 11.31 6.89 6.80 5.53
RMSE 18.02 4.63 4.35 4.45
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was used in the output layer, and the cross-entropy loss
function and Adam optimizer were applied. Te ReLU
activation function was used between the outputs of the
LSTM layer and the fully connected layer. In addition, the
output size of the LSTM layer was 128, and the size of the
fully connected layer was 1. When the length of the data in
the batch was inconsistent, we padded the data with 0 s in
front. For a fair comparison, we perform the same data
processing and feature selection methods for the RSSI sig-
nals. For each classifer, we perform 10 cross-validations on
the collected dataset [46]. For a detailed analysis of the
results, the results of each algorithm are shown in Table 4.

Te experiments were conducted on a Linux system on
a Lenovo G40 computer with an Intel(R) Core (TM) i5-
4258U CPU @2.40GHz, Python version 2.7.15, and Ten-
sorFlow version 1.12.0 CPU model. Te classifcation
metrics considered in our analysis are accuracy, precision,
and recall. We determined the values of these metrics for
each travel mode class and reported the average of each class
value for each classifer. Te accuracy is defned as the

number of blocks that were correctly classifed as belonging
(true positive) or not belonging (true negative) to a class
divided by the total number of inferences (overall). Te
precision is obtained by dividing the number of correctly
classifed blocks by the total number of inferences made for
that class (true positives + false positives). Te recall is
calculated by dividing the number of correctly classifed
blocks by the total number of blocks that belong to that class
(true positives + false negatives) [7].

In Table 4, in the analysis of the algorithm prediction
results, the header columns are the actual labels, and the
header rows are the predicted labels. Tese data show the
error ratios for diferent error attributes. To further analyze
the LSTM model designed in this paper, the accuracy and
training loss are shown in Figure 11. We can summarize
some interesting fndings as follows:

(i) Te classifcation process starts with the training of
the LR model. Although the calibration process is
simple, the 72.92% accuracy of the LR model is not
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Figure 9: Distribution of estimated travel speed determined by three methods in four scenarios.

Journal of Advanced Transportation 13



satisfactory and is the lowest among the four
models. Compared with the LR model, the accuracy
of the SVM model is improved, reaching a value of
79.14%, which is still below 80%. Te MLP model

for predicting the moving modes achieved better
recall and accuracy scores than the frst two models;
however, the results were still unsatisfactory. To
reduce the error in the MLP model and improve the
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Figure 10: CDFs of the estimated travel speed determined by three methods in four scenarios.

Table 3: Comparison of the travel speed estimation errors of the three methods (unit: m/s).

Scenario Method
ATS RTS RFTS

Scenario (a) Average error 0.24 0.22 1.94
RMSE 0.13 0.18 0.15

Scenario (b) Average error 0.24 0.23 0.19
RMSE 0.23 0.18 0.16

Scenario (c) Average error 0.82 0.80 0.57
RMSE 0.33 0.58 0.40

Scenario (d) Average error 0.60 0.58 0.42
RMSE 0.69 0.62 0.44
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Table 4: Analysis of the algorithm prediction results.

Model Actual modes
Predicted modes

Recall Accuracy (%)
Walking Biking

LR
Walking 21 3 87.50%

72.92Biking 10 14 58.33%
Precision 65.63% 82.35% —

SVM
Walking 24 0 100.00%

79.14Biking 10 14 58.33%
Precision 70.59% 100% —

MLP
Walking 24 0 100.00%

89.58Biking 5 19 79.17%
Precision 82.76% 100% —

LSTM
Walking 24 0 100.00%

97.92Biking 1 23 95.83%
Precision 96.00% 100% —
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Figure 11: Performance of training and validation data versus the number of epochs. (a) Accuracy. (b) Loss.
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Figure 12: Accuracy of LR, SVM, MLP, and LSTM model models in diferent time windows.
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classifcation prediction accuracy, the LSTM algo-
rithm was experimentally implemented. Te overall
prediction accuracy of the LSTMmodel was 97.92%,
and the check-all rate and accuracy of the labeled
observations were greater than 90%, which were
higher than the respective values of the frst three
models. Te results show that for the classifcation
of walking trafc modes, the LSTM model exhibits
the best classifcation performance among the four
models.

(ii) Cycling is the transportation mode with the lowest
recall rate. Te recall rates of the LR, SVM, MLP,
and LSTM models were 59.33%, 58.33%, 79.17%,
and 95.83%, respectively. A large number of ob-
served cycling trips were classifed as walking trips.
Tis error may refect the fact that in crowded
spaces, cycling and walking share many speed-
related features, which increases the difculty of
distinguishing the two as diferent modes. In this
case, the LSTM model exhibits the most stable
classifcation performance among the four models.
Out of 24 bicycle observations, 23 observations were
correctly predicted, and only one observation was
incorrectly predicted as walking, yielding a recall
rate of 95.83%. Tis recall result is more accurate
than the results of the LR, SVM, and MLP models.

(iii) Figure 11 shows that the accuracy of the LSTM
model reaches 95% in the frst 50 epochs during
training, indicating that the LSTM model can ef-
fectively classify nonmotorized trafc modes. In
addition, the loss of the LSTM model decreases
signifcantly in the frst 100 epochs. Between the
150th epoch and the 200th epoch, the loss does not
change substantially, as shown in Figure 11(b). Te
results show that the model converges to the op-
timal solution by the 200th training epoch.

(iv) As shown in Figure 12, the accuracy of the four
models of LR, SVM, MLP, and LSTM improves
sequentially in diferent time windows. In general,
the accuracy of the four types of models slightly
decreases as the time window gets larger, but LSTM
maintains high performance and high accuracy.Te
accuracy stays above 95% in all fve-time windows
tested, which is the best among the four types of
models proposed.

6. Conclusion

Tis study considers nonmotorized travel mode classifca-
tion and proposes a nonmotorized travel mode classifcation
system using only a single Wi-Fi detector as a data source
based on existing research. Te proposed system achieves
fne-grained identifcation of diferent trafc travel modes
with a low deployment cost, good real-time performance,
and satisfactory recognition accuracy. In contrast to other
related studies, this study does not combine Wi-Fi detection
data with other data sources to explore the travel patterns of
trafc participants; thus, our approach is more cost-efective

and easier to implement in practice. More desirable results
were achieved in terms of processing data anomalies and
efectively reducing signal noise. Te proposed RFTS al-
gorithm has the smallest speed estimation error among four
comparison algorithms, and the results are closer to the real
movement speeds of trafc participants. Moreover, the
proposed algorithm achieves good results in terms of travel
mode classifcation accuracy, which is our greatest concern,
and has the best results among the four algorithms in terms
of both classifcation accuracy and recall recognition rate.

Following this research, we can also collect more valu-
able trajectory-type data for data mining, such as origin-
destination backpropagation, urban trafc state estimation,
trafc trip characterization, and trafc safety assessment.
Moreover, we can better understand the basic relationship
among trafc fow velocity, trafc fow density, and trafc
volume. Te above research results can be used as an al-
ternative model in future trafc information monitoring
systems in smart cities.

In future work, this study can be improved in several
ways, and future research will address the following three
issues: (1) validating the efectiveness and reliability of the
Wi-CL system for various road geometries and trafc de-
mand modes and conducting more extensive feld experi-
ments with the system; (2) improving the fltering
algorithms and classifcation methods; and (3) designing
a broader range of urban road network applications that
cover a wide range of trafc modes, such as small cars,
pedestrians, bicycles, subways, surface buses, and light rails.
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