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Tis study addresses a new electric vehicle routing problem with time windows and recharging strategies (EVRPTW-RS), where
two recharging policies (i.e., full or partial recharging) and three recharging technologies (i.e., normal, rapid, and ultra-rapid) are
considered. For this problem, we frst develop a mixed-integer linear programming model defned in a series of vertices including
a depot, a series of recharging stations, and a set of customers. Due to the strong NP-hardness of EVRPTW-RS, a tailored adaptive
large neighborhood search heuristic (ALNS) which contains a number of advanced efcient procedures tailored to handle the
proposed problem is developed. Numerical experiments for benchmark instances generated based on the Greater Toronto Area
and Ontario in Canada are conducted to evaluate the performance of the proposed model and ALNS. Computational results
demonstrate that the ALNS is highly efective in solving EVRPTW-RS and outperforms commercial solver CPLEX. Moreover, the
advantages of the proposed recharging strategies are illustrated and some recommendations are provided for stakeholders when
using electric vehicles for delivery.

1. Introduction

Te red line that global temperatures must not exceed is the
line that pushes our planet beyond the 1.5-degree temper-
ature limit, according to the statement made at the 27th
Conference of the Parties to the United Nations Framework
Convention on Climate Change [1]. Global temperatures
can rise as a result of a rise in CO2 emissions, which can also
have an impact on climate change. However, CO2 emissions
in 2021 increased by almost 2.1Gt from 2020 levels.
According to the International Energy Agency, if trans-
portation activity had returned to prepandemic levels in
2021, the world’s CO2 emissions would have increased by
600Mt.Te overall CO2 emissions would have risen by 7.8%
as a result, which would be the fastest pace of growth since
the 1950s [2]. Considering this fact, electrifying conven-
tional vehicles may signifcantly lower CO2 emissions.
McKinnon et al. [3] emphasized that one of the most

important approaches to decarbonizing long-distance cargo
transportation systems is through the electrifcation of road
transportation vehicles.

Over the past decades, the parcel delivery service has
increased dramatically due to population growth and ur-
banization. A huge increase in logistics has been seen since
the early 2000s as a result of the rapid rise of lifestyles and the
advent of electronic commerce. At the same time, envi-
ronmental concerns [4–6] have begun to shape the logistics
industry, with increasing competition among logistics ser-
vice providers in order to meet the growing demand for
green, faster, and cheaper deliveries. A rapid trend in the use
of electric vehicles (EVs) has been observed. Logistics service
providers and individuals are encouraged to use EVs, par-
ticularly to reduce CO2 emissions and fuel costs.

Te adaption of alternative fuel vehicles (AFVs) in the
feet can achieve greener delivery and may help improve the
competition among logistics service providers. Among these
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AFVs, EVs are among the most alluring. AFVs utilize al-
ternatives and greener sources of fuel like methanol, ethanol,
biodiesel, natural gas, electrical power, hydrogen, and
propane. However, a systematic assessment of evidence is
needed before these feets become completely diferent. For
example, Koc and Karaoglan [7] pointed out that the use of
AFVs has several impacts, including increased resource use,
harm to ecosystems and people, increasing air pollution,
noise pollution, and CO2 emissions’ efects on the climate.

As a last-mile service solution, the feets of EVs have
several advantages including the absence of CO2 emissions,
positive impact on air quality in urban areas, and lower noise
pollution in contrast to vehicles with internal combustion
engines [8]. Moreover, in situations of high oil prices, such
as the fnancial crisis, these EV system supply feets play
a lower cost role in protecting the logistics service providers
from contact and ensuring the total cost of deliveries.

As a result, a ffth of automobiles sold in Norway today
are electric, and 230 million electric bikes have replaced
gasoline motorcycles in China’s largest cities [9]. Addi-
tionally, EV sales set a new high in 2021, growing by four
times their market share from the previous year to account
for nearly 10% of all new car sales globally. Compared to
2020, public and private spending on EVs has doubled. More
and more nations make commitments to phase out internal
combustion engines or set aggressive electrifcation
goals [10].

However, the greatest limitations are related to EV
delivery, driving range, and long recharging times. Tere-
fore, there is a growing interest [11, 12] in incorporating
environmental factors and relative constraints in EVs into
vehicle routing problems (VRPs). In the literature on op-
erations research [13], electric vehicle deliveries are generally
modeled and studied as an electric vehicle routing problem.
Tis problem is solved by placing multiple delivery EVs at
the depot and building an EV route that serves all customer
nodes to minimize travel distance or operational costs. Te
EVRP with time windows includes consumers who are only
accessible within a specifed timeframe.

Te above background indicates that logistical trans-
portation, particularly road transportation, can lead to high
CO2 emissions, and therefore our study has chosen to use
EVs for delivery. Tere are some limitations in current
research into the recharging time of electric vehicle trans-
portation. Moreover, existing studies on EVRP generally
assume that EVs leave the distribution center at the same
time every day, go immediately to the next node, and fnish
the fxed recharge energy of each recharging station at
a certain recharging mode. Because each customer demand
point has a time limit for the expected delivery time, this
strategy can cause EV not to be delivered on a specifed time
frame, or the logistics company can use more efcient de-
livery methods to deliver goods within the customer demand
point time limit. Additional vehicles increase the fxed fee.
Terefore, after arriving at the recharging station, de-
termining which recharging rate and how much to recharge
is a valuable question worth examining.

To meet daily recharging needs, fast rechargers are be-
coming increasingly popular and drivers can choose

recharging modes according to their needs. Tis study fo-
cuses on a new EVRP with time windows and multiple
recharging strategies, which allows the partial recharge
strategies using three recharging modes by determining
recharge energy. It is naturally an extension of the EVRP
with time windows and partial recharging (EVRPTW-PR)
by deciding on the recharging energy and using alternative
rechargers including three recharging modes (i.e., normal,
rapid, and ultra-rapid).

Te remainder of the paper is organized as follows.
Section 2 of this article reviews the pertinent literature.
EVRPTW-RS is discussed in Section 3 along with its
mathematical model.Te ALNS-SA is proposed in Section 4.
Te experimental study is fully described and the fndings
are discussed in Section 5. Te work is concluded in Section
6 with a fnal observation and recommendations for
further study.

2. Literature Review

Since the introduction of the truck delivery problem [14],
over the past few decades, VRPs and their various extensions
and variants of traditional VRPs have been extensively
developed with justifcation in applications in real life. Te
key objective of the vehicle routing problem (VRP) is to
reduce the overall distance traveled by a group of customers
during a visit by using several vehicle routes that begin and
terminate at the depot while taking into account a variety of
constraints. Many vehicle researchers [15–17] are primarily
interested in the problem of capable vehicle routing problem
(CVRP) and the heterogeneous feet vehicle routing prob-
lem. In contrast, those [18] who focus on customer-focused
research have considered customer time windows and
customer satisfaction.

EVRP is a typical VRP where delivery is performed by
conventional vehicles. Compared to conventional vehicles,
the use of EVs is limited by many restrictions, as the range of
EVs is short, and there is a requirement of recharging ac-
tivities along the route of the vehicle. However, they [7, 19]
have several advantages, such as nonlocal greenhouse gas
emissions, minimal noise, renewable energy source re-
liability, and the ability to operate independently of fuc-
tuating oil prices. Currently, the EVRP extends the VRP
mainly in four aspects:

(i) Recharging stations (CSs) [20–22].
(ii) Nonlinear charging functions [23–25].
(iii) Recharge policy [26–30].
(iv) Heterogeneous feet of EVs [31].

Schifer and Walther [21] presented the issue of po-
sitioning routes taking into account the positioning of
EVs and the decision to position them at the charging
stations. In this case, partial recharges are allowed. Finally,
an ALNS was presented, which was enhanced through
local search, labelling algorithms, and new penal functions
for assessing neighborhoods. Te location of the battery
exchange station of the EV and the routing problem [20]
of the battery exchange station under the battery drive
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range limit are similar to CS locations. Keskin and Çatay
[26] developed an ALNS to efciently solve the EVRPTW-
PR. Te interest in EVRPTW-PR is growing. Since the
recharge profle is a linear time function and reaches 80%
of the battery capacity [23], the charge curve becomes
concave. All vehicles recharge up to 80% of their batteries,
and full recharging takes longer. Tey enhanced the ALNS
algorithm to solve the problem. It was proposed [32] to
develop four variants on the basis of the allowed recharge
times of each route and the recharge state of EVs at
each CS.

In an EVRPTW-RS, a homogeneous EV feet is
shipped from a single library dispatch. Customers can
specify additional time windows and delivery locations.
Te order is delivered to these locations strictly within the
corresponding time window. Due to the limited autonomy
of the EV, it may be necessary to recharge on the way to
continue its journey. In contrast, most studies [24, 26] aim
to reduce the total distance or travel time. Tese studies
[35–37] consider reducing energy consumption and
emissions of EVs or delays.

Te objective of this function is to minimize the total cost
of the delivery company by deciding on the delivery route,
arrival time, recharging stations, recharging energy, and
recharging technologies so that the delivery company uses
the minimum number of vehicles in its feet, including the
cost of traveling and recharging. We frst propose a 0-
1 mixed-integer linear programming (MILP) model for this
problem. It expands the EVRP-PR introduced by Schneider
et al. [13] in an alternative way as in Keskin and Çatay [26],
and this model also includes several realistic considerations.
First, we consider the possibility of a partial recharge in
a station.Tis means that we must determine not only where
and when to recharge but also how much. Tis extension is
driven by the potential cost savings resulting from using
partial recharges, which could save recharge time and thus
facilitate the achievement of maximum time constraints,
reducing the number of vehicles needed and thereby re-
ducing transportation costs. Since the problem is intractable
for large-size instances, we develop an ALNS method that
selects the operator to be used in the next iteration based on
the historical performance of the operator with the number
of uses and generates the neighborhood structure of the
current solution by competing among operators. To avoid
getting stuck in a local optimum, we incorporate the sim-
ulated annealing method (SA). Terefore, the proposed
algorithm is called adaptive large neighborhood search-
simulated annealing (ALNS-SA). In the local search pha-
ses, we use several problem-specifc neighborhood struc-
tures. We conduct extensive experimental studies to
investigate the performance of the ALNS-SA. Our contri-
butions are summarized as follows:

(i) We consider a new electric vehicle routing problem
with time windows and recharging strategies and
formulate it into a 0-1 MILP model.

(ii) We develop an ALNS and SA hybrid approach by
posing several new problems with specifc neigh-
borhood structures.

(iii) Extensive computational experiments are con-
ducted to verify the performance of the proposed
approach.

(iv) We present various trade-of analyses on key de-
cision variables and provide insights from logistics
companies when using electric vehicles for delivery.

3. Problem Definition and Formula of Model

Tis section studies the 0-1 MILP of the EVRPTW-RS.

3.1. Problem Defnition. EVRPTW-RS refers to a group of
customers with known time windows, demands, and
service times.Tere are EVs with a fxed maximum battery
and load capacity. During travel, the battery charge level
decreases in proportion to the distance traveled, and EVs
may have to visit recharge stations CSs to continue their
travel. In contrast to EVRPTW, when the EV departs from
the CS with a full battery, in EVRPTW-RS, the EV time of
the recharging depends on the initial state of battery
charge, the distance of the next depot, and the decided
recharging rate.

Figure 1 shows an example involving 8 customers (1–8),
7 CSs (A–G), and the depot. Te percentage value on the
EV1 route shows the battery state of recharge when the
vehicle arrives at the customer or CS and when it departs
from the CS. EV2 visits CS D after servicing customer 5 and
has its battery recharged before visiting customer 4. Ser-
vicing customers 8, 7, and 6, the EV3 returns to the depot
with its initial charge. On the other hand, EV1 is recharged
once in CS A and twice in CS B. Note that each CS is not
necessarily visited (see charging stations C and E–G). In
what follows, we provide the mathematical model for
EVRPTW-RS.

Unlike traditional EVRPs, our aim is to propose a route
plan to simultaneously deliver electric feets that can meet
constraints and provide charging strategies. Terefore, we
propose the concept of a virtual distribution depot and
provide a detailed explanation in Figure 2.

EVRPTW-RS is aimed at creating daily travel for lo-
gistics companies to provide services to customers. Te
objective function is to minimize the travel cost and
recharging costs in order to efectively use available EVs by
minimizing the EVs’ wasted time en route, and this reduces
the number of vehicles in use. Each EVmust visit each of the
designated customers.

Te delivery network studied in this paper has one and
only one depot, all EVs depart from the depot and return to
the depot after completing their tasks. Te EVs are fully
charged when they leave the depot, and the EVs are partially
recharged at the CS. Te distribution vehicles are the same
type of vehicle. Te delivery goods studied in this paper are
the same kind of general goods, and the vehicles only unload
the goods when they reach the corresponding customer
demand point. Each customer demand point can be visited
once and only once by a single electric vehicle, and all of its
delivery requirements are met. Te location of the depot, the
customer demand point, and the CS are known, and the
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demand at each customer demand point is known. EVs can
be recharged without waiting when they arrive at the CS, and
each vehicle can reach the CS an unlimited number of times
for recharging, and the cost of recharging is proportional to
the amount of recharging.

Tis paper considers multiple recharging technolo-
gies: normal, rapid, and ultra-rapid. Tis problem tracks
the charge state of EVs and ensures that the energy of EVs
is feasible rather than recharging to full capacity, Q, at
the CS.
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3.2. Model Formulation

3.2.1. Notation. Te EVRPTW-RS is modeled as a 0-1 MILP
program on a complete orientation graph GRA, where the
customer is modeled as a graphical vertice, and the route
between customers is modeled as a graph arc [26, 34]. Te
symbol for the mathematical model developed to solve the
variant of the EVRPTW-RS is shown in Tables 1–3. Let N′ �

1, . . . , n{ } be a set of geographically scattered customers that
need to be served, and let C be a set of CSs. In order to allow
multiple visits to the same CS, a virtual set of CSs C′ is defned
(N � N′ ∪C′). Vertices 0 and s + 1 denote the depot instances,
and every route begins at vertex 0 and ends at vertex s + 1
(S � N∪ 0{ }∪ s + 1{ }). Graph GRA is defned as
GRA � (S,ARC), where ARC is the set of arcs
ARC � (i, j) | i, j ∈ S, i≠ j . Te arc value disij indicates the
distance of the arc, Eijk indicates the energy consumption to
traverse the arc, and timijk indicates the time required to cross
the arc.Te objective function includes frstly the total traveled
distance’s cost minimization (equation (2)) and then the
recharging cost minimization (equation (3)). EVs have a load
capacity of W and battery capacity of CAP. Recharging time is
computed as a linear function value of recharged capacity with
each inverse recharge rate of ca, cb, cc, respectively, and the
unit energy cost of using recharge technology e ∈ δ is denoted
by Fe

C. Each customer i has a service time ts
ik, load demand qi,

and time window [ui, li]. Besides the traijk decision variable,
eight more decision variables are used: ya

ik ∈ 0,1{ } is equal to 1
if the vehicle is recharged with normal charger at a recharging
station, 0 otherwise, yb

ik ∈ 0,1{ } is equal to 1 if the vehicle is
recharged with rapid charger at a recharging station i, 0 oth-
erwise, andyc

ik ∈ 0,1{ } is equal to 1 if ya
ik� yb

ik � 0, 0 other-
wise. θe

ik is the amount of recharging energy received by the
vehicle k at a recharging station i using the recharging type e.

mik is the remaining load capacity when the vehicle arrives at
the vertex, and pa

ik is the remaining battery capacity when the
vehicle arrives at the vertex.

3.2.2. Energy Consumption. Actually, the EVs’ energy
consumption rate is infuenced by the speed, the amount of
load capacity, traveling speed, the amount of load, the
traveling environment and other factors referenced [5] to
construct the driving speed, and dynamic load under the
electric vehicle power consumption rate model as follows:

Eijk �
0.5CdρAV

3

1000ε
+

grCrV

1000ε
wei + weiik − weijk  ,

∀i, j ∈ S, i≠ j, k ∈ K.

(1)

Equation (1) represents the calculation of the EVs’ en-
ergy consumption rate under dynamic load, where Eijk

represents the energy consumption coefcient of vehicle k

during its journey from node i to node j; wei is the vehicle
weight; weiik and weijk indicate the weight of the load at
nodes i and j, respectively; gr is the gravity constant; ρ is the
air density; A is the windward area; Cd is the air resistance
coefcient;Cr is the wheel rolling resistance coefcient; and ε
is the electric vehicle rotation efciency.

3.2.3. EVRPTW-RS. Teminimized total cost of EV delivery
is formed by equations (2) and (3). Equations (4) and (5)
represent the travel cost and the recharging cost,
respectively.

Table 1: Sets and parameters.

Sets and parameters
0, s + 1 Depot, including depot 0 and depot s + 1
S Set of N and the depot of 0 and n + 1 S � N∪ 0{ }∪ s + 1{ }

N Set of customers and recharging stations N � N′ ∪C′

N′ Set of customers N′ � 1, 2, . . . , n{ }

K Set of EVs K � 1, 2, . . . , m{ }

C Set of recharging stations C � 1, 2, . . . , l{ }

δ Set of various ways of recharging δ � a, b, c{ }

W Te loading capacity of the electric vehicle
CAP Te battery capacity of the electric vehicle
V Te average speed of the electric vehicle
qi Te demand of customer i i ∈ N′

ts
ik

Service time for each customer by electric vehicle k

i ∈ N, k ∈ K

disij

Te distance between node i and node j

i ∈ N∪ 0{ }, j ∈ N∪ s + 1{ }

F
Te cost of travel from node i to node j by the electric

vehicle

timijk

Traveling time from node i to node j by electric vehicle k

i, j ∈ S, k ∈ K

Tlim Te maximum travel time
[ui, li] Time window for vertex i i ∈ N′

Table 2: Intermediate variables.

Intermediate variables
tl
ik Arrival time of vertex i by electric vehicle k i ∈ N∪ 0{ }, k ∈ K

tik

Recharging time at recharging stations by electric vehicle k

i ∈ C′, k ∈ K

pl
ik

Te energy level of vehicle k when leaving vertex i

i ∈ N∪ 0{ }, k ∈ K

Eijk

Te amount of consumed energy by the electric vehicle k

between i and j i, j ∈ S, k ∈ K

Fe
C Te unit energy cost of using charger technology e ∈ δ

ce Te recharging rate of using charger technology e ∈ δ

Table 3: Decision variable.

Decision variable

ta
ik

Arrival time of vertex i by electric vehicle k

i ∈ N∪ s + 1{ }, k ∈ K

mik

Te load level of vehicle k when arriving at vertex i

i ∈ S, k ∈ K

pa
ik

Te energy level of vehicle k when arriving at vertex i

i ∈ N∪ s + 1{ }, k ∈ K

pb
ik

Te energy level of vehicle k when leaving recharging
station i i ∈ C′, k ∈ K

traijk 1 if vehicle k travels arc (i, j), 0 otherwise

ya
ik

1 if is recharged with normal charger at recharging station
i, 0 otherwise

yb
ik

1 if the vehicle is recharged with fast charger at recharging
station i, 0 otherwise

yc
ik 1 if ya

ik� yb
ik � 0, 0 otherwise

θe
ik

Te amount of energy that vehicle k receives at recharging
station i using charger type e, e ∈ δ
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min cost � F∗ 
i∈N∪ 0{ }


j∈N∪ s+1{ }


k∈K

traijk ∗ disij + F
e
C ∗ 

k∈K


i∈C′

e∈δ

θe
ik,

(2)

min cost � cost1 + cost2, (3)

cost1 � F∗ 
i∈N∪ 0{ }


j∈N∪ s+1{ }


k∈K

traijk ∗ disij, (4)

cost2 � F
e
C ∗ 

k∈K


i∈C′

e∈δ

θe
ik. (5)

Equations (6)–(10) ensure arc connectivity. Constraint
(6) enforces only one visit to each customer. By constraint
(7), a customer is restricted to be visited once at most.
Constraint (8) indicates that the number of incoming arcs

equals the number of outgoing arcs at each node. Con-
straints (9) and (10) guarantee a start and end vertex for each
trip.


k∈K



i∈N′ ,i≠ j

traijk � 1,∀j ∈ N∪ s + 1{ },
(6)


k∈K



i∈N′∪ s+1{ },i≠ j

traijk ≤ 1,∀j ∈ C
′
,

(7)


i∈N∪ 0{ }

traipk − 
j∈N∪ ns+1{ }

trapjk � 0,∀k ∈ K, p ∈ N, i≠ j, p≠ i, p≠ j,
(8)


j∈S

tra0jk � 1,∀k ∈ K, (9)


i∈S

trai,s+1,k � 1,∀k ∈ K. (10)

Equations (11) and (12) represent the load constraints.
Constraint (11) guarantees that the maximum load of the
vehicle is not exceeded, and constraint (12) ensures the load
feasibility.

0≤wei0k ≤W,∀k ∈ K, (11)

weijk ≤weiik − qi ∗ traijk + W 1 − traijk ,

∀i, j ∈ N
′
, i≠ j,∀k ∈ K.

(12)

Equations (13)–(15) denote the time window and the
travel time constraints. Constraint (13) forces that the
customer’s arrival time must be within the time range.
Constraints (14) and (15) guarantee the timing requirements
of adjacent customer nodes. Constraint (16) indicates the
time requirement for visiting charging stations and cus-
tomer nodes.

ui ≤ t
a
ik ≤ li,∀i ∈ N

′
,∀k ∈ K, (13)

t
a
jk ≥ t

l
ik + timijk ∗ traijk − Tlim 1 − traijk ,

∀i, j ∈ S, i≠ j, k ∈ K,
(14)

t
l
ik � t

a
ik + t

s
ik,∀i ∈ N, k ∈ K, (15)

t
a
jk ≥ t

a
ik + timijk ∗ traijk + tik − Tlim + CAP∗ ca( 

∗ 1 − traijk ,

∀i ∈ C
′
, j ∈ S, i≠ j, k ∈ K, e ∈ δ.

(16)

Constraints (17)–(20) ensure arc battery. Constraint (17)
forces the arrival remaining battery capacity of each node.
Constraint (18) indicates that no power is consumed in each
node. Constraint (19) shows the power relationship between
two adjacent nodes. Constraint (20) guarantees the
remaining battery capacity for each customer node.

0≤p
a
ik ≤CAP,∀i ∈ S,∀k ∈ K, (17)

p
a
ik � p

l
ik,∀i ∈ S,∀k ∈ K, (18)

p
a
jk ≤p

l
ik − Eijktraijk + Q 1 − traijk ,

∀i ∈ S,∀j ∈ S, i≠ j,∀k ∈ K,
(19)

p
l
ik ≥Eijkxijk,∀i ∈ N

′
,∀j ∈ C

′ ∪ s + 1{ },∀k ∈ K. (20)
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Te proposed model extends the MILP of EVRPTW-
FR. A new decision variable pb

ik is considered, which
denotes the energy on the departure from CS i, given by
constraint (21). After recharging, the rest of the energy is
somewhere between the rest of the energy recharging in
the previous CSs pa

ik and the whole energy Q. Constraints
(22) and (23) calculate the energy amount recharged and
recharging duration of EV visits to CS, respectively.
Constraints (24)–(26) ensure that EV recharging at a CS is
performed by the chosen recharger type. Constraint (27)
guarantees the relationship between the battery capacity
of the EV after visiting CS and when it arrives at the next
node.

p
a
ik <p

b
ik ≤Q,∀i ∈ C

′
,∀k ∈ K, (21)

p
b
ik − p

a
ik � 

e∈δ
θe

ik, (22)

tik � 
e∈δ

ce ∗ θ
e
ik, (23)

θa
ik ≤y

a
ik ∗Q, (24)

θb
ik ≤y

b
ik ∗Q, (25)

θc
ik ≤ 1 − y

a
ik − y

b
ik ∗Q, (26)

p
a
jk ≤p

b
ik − Eijktraijk + Q 1 − traijk ,

∀i ∈ C
′
,∀j ∈ S, i≠ j,∀k ∈ K.

(27)

4. Adaptive Large Neighborhood Search

Since VRP is an NP-hard problem, commercial solvers
have to wait long to solve mid-sized instance models, and
they cannot solve large-scale instance models either.
Furthermore, because the proposed problem is greater than
traditional VRP, we develop ALNS using the SA method
and efciently solve the EVRPTW-RS. As seen in Table 4,
the most common methods of solving EVRP are neighbor
search algorithms [13, 26, 33, 37, 39] such as VNS and LNS
variants. Te main framework of the ALNS was developed
by Ropke and Pisinger [40], followed by the authors of
[26, 41] who succeeded in solving a number of complex
VRP variations. Tis method uses removal and insertion
operators iteratively and accepts or rejects the candidate
solution on the basis of the probability acceptance crite-
rion. ALNS can generate up to 1000 clients and provide
diferent versions of VRP [42]. Te proposed EVRPTW-RS
covers diferent types of VRPs, including CVRP [15], ve-
hicle routing problem with time windows (VRPTW) [43],
and EVRPTW-PR [26]. Recent research has highlighted
how efectively the ALNS algorithm solves various VRP
types. Some researches include [44, 45], which utilize ALNS
to solve VRPTW and CVRP, respectively.

Terefore, this paper develops metaheuristic algorithms
to attain solutions within a feasible computation time. To
solve our objective function model (cost minimization), we
use the ALNS with the simulated annealing method. Al-
gorithm 1 provides the overall framework of ALNS. Te
functions rem (.) and rep (.) show the removal operator and
the insertion operator, respectively. Te variables Sinitial,
Scandidate, Scurrent, and Sbest refer to the solutions of the initial,
candidate, current, and best-found. Te objective function
values are expressed by R (Scandidate), R (Scurrent), and R
(Sbest).

Te proposed ALNS algorithm begins with the initial
solution as described in Section 4.1, whereas using the SA
framework, acceptance criteria are used. Initial temperatures
are set to accept solutions with objective values equal to
(1 + ξ), and initial objective values are accepted with 0.5
probability. Te best, most current solutions and the iter-
ation counter of the ALNS-SA, n(pro)s, have been
initialized.

In each iteration, frst select operators of the algorithm
heuristics as mentioned in Section 4.2 (i.e., the removal and
insertion) that are used to attain Scandidate. According to the
acceptance criteria of SA, the candidate solution
Scandidate,which is obtained by the algorithm through se-
lected removal and insertion operators, will be decided
whether to be accepted. Tat is, if R (Scandidate)<R (Scurrent),
then it is always accepted. If the Scandidate is weaker than the
Scurrent, the Scandidate will replace the Scurrent with a probability
of e− (R(Scandidate)− R(Scurrent))/T. At the end of each iteration, the
temperature T will decrease, and the probability of accepting
a bad solution will decrease.Te set of removal and insertion
operators is represented by ε− and ε+, respectively.

Once in every a iterations, the continuous neighborhood
change procedure, which is used as the reinforcement
procedure for Hansen [46], is used as a variable neigh-
borhood search framework to improve the Scurrent. Algo-
rithm 2 shows this process. If the existing solution improves
in one of the kmax neighborhood structures, the search will
resume in the frst neighborhood structure of the updated
Scurrent or search for the next neighborhood.

Te removal operator rem has the selection probability
φ(rem) � w(rem)/Σrem∈ε− w(rem′) and the insertion op-
erator rep has the selection probability φ(rep) �

w(rep)/Σrep∈ε+ w(rep′). Te initial weight is 1/|ε− | and
1/|ε+|, respectively. Te weight is updated on the basis of
operator performance. Te algorithm has the maximum
number of iterations summax.

4.1. Initial Solution Construction. We develop a two-phase
constructive heuristic for the procedure of generating an
initial solution specifc to a problem. Te frst phase is to
assign customers to EVs, routing and scheduling; the second
phase is to scan remaining unrouted customers and create
the next route using other EVs.

Te frst is the customer-score, disj
i , i ∈ N′, calculated for

every customer sorting the customers according to their latest
distance. On the basis of a given customer-score, the further
away customers have a higher customer-score.Te order of the
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customer set is to increase the customer-scores and start the
visit of the frst customer in the order of the customer set.
Second, each EV is built from the depot node with complete
charging capacity, after which customers are visited one by one,
plugging the nearest CS into the EV route (i.e., the charge
capacity is insufcient to visit the next customer) and

eventually returning to the depot node. At this stage, it is
assumed that each CS will use the ultra-rapid rechargingmode.
Finally, the route schedules that are built in the frst step are
determined. If the time window of any customer is infringed,
the corresponding customer will be removed from the EV
route and, if it exists, inserted into the customer list of another

(1) Generate a Sinitial and assign it to Sbest;
(2) Sinitial � Scurrent � Sbest;
(3) n(pro)s � 1;
(4) T � T0(R(Scurrent));
(5) while the maximum number of iterations is not reached, i.e., n(pro)s ≤ n(pro)smax

do
(6) if n(pro)s ≡ 0 (mod a) then
(7) SNC (Scurrent, kmax) (Algorithm 2)⟶ Scurrent;
(8) end if
(9) Choose destroy operator s ∈ ε− (customer, travel, station) based on Weighti

s;
(10) if travel is removed then
(11) Select repair operator rep ∈ ε+ for the travel;
(12) Update n(pro)s for the route operator;
(13) else if a station is removed then
(14) Select repair operator rep ∈ ε+ for stations;
(15) Update n(pro)s for the station operator;
(16) else if a customer is removed then
(17) Select repair operator rep ∈ ε+ for customers;
(18) Update n(pro)s for the customer operator;
(19) else if a recharging technology is removed then
(20) Select repair operator rep ∈ ε+ for charge technologies;
(21) Update n(pro)s for the recharging technology operator;
(22) end if
(23) if the energy level shows that the solution is not possible then
(24) Nearest CS Insertion operator;
(25) end if
(26) if R(Scandidate)≤R(Scurrent) then
(27) Update Scurrent;
(28) else
(29) Generate a number randomly ran ∈ [0,1];
(30) if ran < e− (R(Scandidate)− R(Scurrent))/T then
(31) Update Scurrent;
(32) Update s(pro)s and Wi

s for each operator;
(33) Update Weightis for each operator;
(34) end if
(35) end if
(36) if R(Scurrent)<R(Sbest) then
(37) Update Scurrent;
(38) Update Sbest;
(39) Update s(pro)s and Wi

s for each operator;
(40) Update Weightis for each operator;
(41) else if R(Scurrent) compared to the previous iteration, it has enhanced then
(42) Update Scurrent;
(43) Update s(pro)s, Wi

s for each operator;
(44) Update Weightis for each operator;
(45) end if
(46) if n(pro)s ≡ 0 (mod pro) then
(47) Update Weightis for operators using the adaptive weight adjustment;
(48) end if
(49) n(pro)s � n(pro)s + 1;
(50) T � T∗ τ;
(51) end while

Output: Sbest

ALGORITHM 1: Te general framework of the ALNS-SA.
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EV, whose route has not yet been built. If such an EV does not
exist, the customer will be inserted into the set of unrouted
customers Ui(i ∈ N′). And each CS visit will select the optimal
rechargingmode, the optimal rechargingmode driver provides
the lowest recharging energy, and the recharging energy en-
sures that the power supply will not be burned out until the
next CS visit. Vk(k ∈ K) represents the set of customers
assigned to each EV, and Ri(i ∈ N′) represents the set of
unrouted customers. Te algorithm provides the construction
process for the frst phase.

At the end of the frst phase, there may be an unrouted
customer (i.e., Ui ≠∅(i ∈ N′)). In the second phase of the
construction heuristic, all customers of the set Ui(i ∈ N′)

must be added to another EV. If there are EVs satisfying
various constraints that can access unrouted customers, then
unrouted customers will be inserted into the corresponding
EVs; otherwise, a new rout will be generated to access them.

4.2. Removal and Insertion Operators. ALNS searches the
neighborhoods of the initial solution using diferent removal
and insertion operators. Some of these operators [26, 47] are
successfully proposed. However, the proposed ALNS must
be modifed on the basis of the presented problems, as the
operators of removal and insertion are already used. In
addition, we introduce several operators for specifc prob-
lems, such as removal recharging technology, customers
with worst distance removal, recharging technology in-
sertion, and customers with optimal distance insertion.

One removal operator, “Random Route Removal,” is
used to remove the routes, three removal station operators
are named “Random Customer Removal,” “Worst Distance
Removal,” and “Random Recharging Station Removal,” and
one removal operator for deleting technologies is named
“Recharging Technology Removal” in our ALNS.

(i) Random Route Removal. Te operator randomly
selects an EV and removes the route traveled by
that EV.

(ii) Random Customer Removal.Te operator randomly
selects the customer for a route and removes it.

(iii) Worst Distance Removal. Te operator removes the
customer, which increases the largest distance on
the current tour.

(iv) Random Recharging Station Removal. Te operator
randomly selects the CS visit in the Sinitial and
removes the CS from the tour that corresponds to it.

(v) Recharging Technology Removal. Te operator
randomly removes the information on recharging
technology from the CS visit selected in the solution.
Figure 3 shows examples of applications of this
action on delivery routes.

Tree insertion operators for the insertion of customers,
CS, and recharging technologies are “Random Customer
Insertion,” “Nearest Recharging Station Insertion,” and
“Recharging Technology Insertion.” Tese insertion oper-
ators are described as follows.

(i) Random Customer Insertion. For every removed
customer, the operator chooses a compatible EV
and randomly assigns each removed customer to
a route location.

(ii) Least Distance-Based Customer Insertion. Te op-
erator selects an unrouted customer from a number
of unrouted customers and an EV capable of serving
that customer with a minimum distance. Ten, the
unrouted customer is assigned to the EV route. Tis
procedure keeps going until all unrouted customers
are given the EV route.

(iii) Nearest Recharging Station Insertion. For EVs in
each delivery route, the operator checks the
recharging state of each visitor node, inserts the
nearest CS at the corresponding location of the
corresponding route every time a minimum SOC is
detected, and determines the amount of recharging
used in recharging and determines the technology
used in recharging.

(iv) Recharging Technology Insertion. For each CS the
EV passes, the operator selects not to disturb the
current EV schedule and provides the best
recharging technology to minimize the recharge
cost. If the removal of recharging technology is
employed in an iteration as a removal heuristic, the
introduction of recharging technology is chosen as
an insertion heuristic. Figure 4 shows an example
of the application of this action on the
delivery route.

(1) k � 1;
(2) while k≤ kmax do
(3) move (Scurrent, k)⟶ Scandidate;
(4) if R(Scandidate)≤R(Scurrent) then
(5) Scurrent � Scandidate;
(6) k � 1;
(7) else
(8) k � k + 1;
(9) end if
(10) end while

Output: A global best solution Scurrent

ALGORITHM 2: Te sequential neighborhood change (SNC) procedure, SNC (Scurrent, kmax).
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Te ALNS-SA algorithm is employed after generating
the initial solution Sinitial. In the frst iteration, the weights
of all operators are initially equal to 1, and the operators
are chosen randomly. Tese weights are adjusted once in
each subsequent iteration and are calculated by equation
(28) based on the performance of the operator.

ω(pro)
i
s �

(1 − c)ω(pro)
i− 1
s + c

s(pro)s

n(pro)s

, if n(pro)s > 0,

(1 − c)ω(pro)
i− 1
s , if n(pro)s � 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(28)

n(pro)s represents the number of iterations that operator s

applied in the i iterations, and c ∈ [0, 1] roulette wheel pa-
rameter controls the historical performance of the heuristics.
Apply a removal or insertion heuristic to the Scurrent in an
iteration and obtain a Scandidate (such as heuristic pro).Te score
of the heuristic O(pro) is improved by ∆O(R(Scandidate),

R(Scurrent), R(Sbest)), which is calculated as

∆O �

ω1, if R S
candidate

 < R S
best

 ,

ω2, if R S
best

 <R S
candidate

 < R S
current

 ,

ω3, if R S
candidate

 ≥R S
current

 , but it is accepted,

ω4, if S
candidate is rejected.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(29)

Te increment amounts should be set to ω1 >ω2 >
ω3 >ω4 ≥ 0 so as to carry out an appropriate score adjust-
ment. Te probability of selecting the operator s is updated
in iteration i depending on the weights of equation (30). Wi

z

is the weight of operator z in iteration i and N is the total
number of operators of each type.

Weight
i
s �

W
i
s


N
Z�1W

i
z

, (30)

4.3. Neighborhood Structures. Te following four neigh-
borhood structures (i.e., kmax = 4) are used by the proposed
ALNS-SA in the SNC process in the following order.

(i) Horizontal Relocation. Randomly select nodes vis-
ited by the EV and insert them in random positions
in the route of an EV.

(ii) Horizontal Switch. Two nodes visited by the EV
are randomly selected, and positions along the
EV route are swapped.

(iii) Vertical Relocation. Randomly select the node vis-
ited by the EV. Ten, it is removed from the EV
route and placed on another arbitrary EV route.

(iv) Vertical Switch. Exchange the positions of two
nodes that were chosen at random and visited by
two separate EVs.

5. Computational Experiments

We employ CPLEX 12.10 solver in our experiments;
however, any open-source or commercial solver can be
utilized instead. Te algorithm codes in the Python 3.8
environment and runs on a Core i5 3.40 GHz computer
with 8 GB of RAM. Te time limit for solving the in-
stances is set to 7200 s. We frst describe the data and
parameter settings in Section 5.1. We then analyze the
performance of the proposed ALNS-SA in Section 5.2 to
compare the diference between the proposed ALNS-SA
and commercial solvers on small and medium-sized

Depot Customer 1
Normal Rapid

Customer 2 Depot
CS1

Depot Customer 1
Normal Rapid Ultra-rapid

Ultra-rapid

Customer 2 Depot
CS1

Figure 3: Recharge technology removal.

Ultra-rapid

Ultra-rapid

Depot Customer 1
Normal Rapid

Customer 2 Depot
CS1

Depot Customer 1
Normal Rapid

Customer 2 Depot
CS1

Figure 4: Recharge technology insertion.
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instances and the ALNS results of large-size instances in
Section 5.3. We investigate the efect of multiple
recharging strategies compared with a single strategy in
Section 5.4.

5.1. Data and Experimental Settings. We conduct an ex-
tensive computational study to evaluate the performance of
the proposed mathematical algorithm and the sensitivity of
the solution to key parameter values. To do so, we generate
a reasonable set of benchmark instances of three diferent
scales from the GVRP instances in [38] that are based on
real-world settings: small size (including 5–10 customers),
medium size (including 15–20 customers), and large size
(including 100 customers).

Walmart in Canada aims to entirely use alternative
fuel vehicles by 2028 [38]. However, due to their limited
range, EVs need to be charged, and Walmart needs
routing that takes into account both recharging methods
and partially recharged EVs. Due to the many limitations
of EVs, Walmart is somewhat similar to other logistics
companies (such as UPS, Amazon, and JD) that wish to
electrify their vehicle feets. We will use them as an
example to explore this problem in order to ofer ideas
for logistics organizations aiming to deploy electric feets
and improve delivery services.

In these cases, each node that corresponds to the exact
locations of the Walmart supercenter’s depots and cus-
tomers is relatively evenly dispersed within a region of the
Greater Toronto Area measuring roughly 100 km2. All cases
were evaluated considering a single depot. Te travel dis-
tance of the two points is measured in km, and the distance
afects how much energy is used.

Besides this, the EV’s cargo load capacity at vertex B
of the depot is � 740000 kg, and the EV cargo load ca-
pacity isBk � 37000 kg. Cost coefcients are derived for
a real-world case study [48]; these are fxed as
cd � 0.3742 yuan∙km− 1/ da y and ck � 392.7445 yuan/ da y.
Te battery capacity Ck � 350 kWh, the energy con-
sumption per kilometer travel δk � 1.75 kwh/km, and the
average speed per vehicle v � 1 km/min. Te full
recharging of the EV battery takes 420minutes for
normal recharging, 180 minutes for fast recharging, and
30minutes for super-fast recharging. Its cost [49, 50] is
calculated in CNY per minute: 0.069 yuan, 0.207 yuan,
and 3.453 yuan, respectively. To prevent battery degra-
dation or total charging and maintain its lifespan [51],
α � 0.8 and β � 0.2 are defned to ensure that the SOC of
each vehicle is between 20% and 80% of its capacity when
it leaves the customers and recharging stations. Te EV’s
electric power consumption and the recharging cost
parameters that the CS management established based on
their marketing plan afect how long it takes to charge
an EV.

Te instance name indicates the volume of customers
and recharge stations included in the case. For example, the
case named 20-4-A has 20 customers and 4 CSs, and to
distinguish the same consumers, identifcation is added to
the end of the case name.

5.2. Results of Comparison of Small- and Mid-Sized Cases.
Te results of CPLEX implementation in small- and
medium-sized mathematical models are presented in
Table 5. After executing numerous several instances
using diferent vertices, the overall number of vertices of
a small-sized case is determined. Finally, cases with fewer
than 15 vertices can be optimized using CPLEX. Tis
section compares the CPLEX results with the proposed
ALNS-SA on these test cases in order to assess the
performance of the ALNS-SA algorithm because small-
sized cases can be solved optimally using the CPLEX
solver. Te data table includes the total amount of EVs
utilized in the best objective function, the optimal ob-
jective function value calculated using two diferent
approaches, and the running time of the best result in
seconds. Te proposed ALNS algorithm is not very
satisfactory in small-size instances, but it has a signif-
cantly longer running time than CPLEX and a signifcant
efect in mid-sized cases.

5.3. Results for Large-Sized Cases. We evaluate the suggested
ALNS-SA’s performance in large-sized cases. Table 6 dis-
plays specifc fndings. Te best objective function values are
shown in this table (i.e., the percentage contribution of the
two objective function terms: travel cost and recharging
cost), along with the average total cost value, the number of
EVs utilized by the best solution, and the solution’s fnal
execution time in seconds.

In large-sized instances, the total recharge cost is
dominant, representing 64.30% of the total cost. Tis
shows the importance of efective use of the recharging
strategy. Similarly, we also note that the ALNS can deliver
existing solutions to 100 customers in less than
50minutes, which is acceptable for use in real-world
scenarios.

5.4. Te Impact of the Availability of Recharging Strategies for
Diferent Recharging Methods. Several EVRP studies con-
sider only fast recharging strategy [26]. Ten, we examine
the impact of accessibility to recharging strategies with
numerous recharging modes on the entire cost. Further-
more, in the current case where there are recharging
strategies with multiple recharging modes, we also consider
the case where the recharging station has only normal, rapid,
or ultra-rapid recharging technologies and conduct exper-
iments for every case. Table 7 compares the average values
for various recharging strategies and the best goal values of
functions for each case’s divergence from the best objective
values for all recharging strategies that used multiple
recharging technologies.

It is clear from Table 7 that some recharging strategies
have improved total costs. Tese savings are on average
3.30%, 0.16%, and 5.36% compared to the recharging
strategy using a single recharge mode with normal, rapid,
and ultra-rapid rechargers, respectively. If the recharge
station only ofers one recharging mode, for most of the
instances, a fast recharger will provide the best results de-
spite its higher recharge costs. Rapid recharging is crucial
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since it shortens the overall journey duration and increases
the area that can be used in situations when time windows
are a major constraint. Te fndings indicate that all tech-
nologies and rapid technology are equipped with the same
solution for small- and mid-sized cases. However, compared
to the accessibility of all recharger types, rapid rechargers
result in poorer solutions in large-size situations.

To take into account the potential for partial recharge at
the recharging station, we decide when and how much to
charge at that charging station. Based on the possible savings
from partial recharging, which can lower the total amount of
vehicles required, recharging times, and costs of energy that
cannot be recharged through depots, this result is shown in
Table 8.

Table 5: Results on small- and mid-sized cases.

# of
instance

CPLEX ALNS-SA
Gap (%)

Obj EVs Time Obj EVs Time
5-1 680.40 3 <60 816.62 4 1.21 +16.68
10-2 690.05 3 <60 1337.73 6 3.10 +84.42
15-3 1410.63 7 7200.00 1307.54 6 7.74 − 7.88
20-4 1861.19 10 7200.00 1609.53 8 24.61 − 15.64

Table 6: Results for large-size cases.

# of
instance Obj Travel cost

(%)
Recharging cost

(%) EVs Time (s)

100-20-A 5416.36 36.26 63.74 28 1803.42
100-20-B 5045.67 39.21 60.79 26 1201.99
100-20-C 2514.86 26.10 73.90 10 2050.61
100-20-D 4893.54 32.66 67.34 22 2418.75
100-20-E 3535.29 29.90 70.10 13 1663.46
100-20-F 7648.44 46.79 53.21 46 940.52
100-20-G 6144.65 39.00 61.00 32 1770.96
Average 5028.40 35.70 64.30 25.29 1692.82

Table 7: Comparison results of recharging strategies for diferent recharging technologies.

#
of instance

All technologies Normal technology Rapid technology Ultra-rapid technology
Obj Time Obj Time Gap (%) Obj Time Gap (%) Obj Time Gap (%)

5 460.88 1.00 471.88 1.00 +2.39 460.88 1.00 0.00 463.88 1.00 0.00
10 1267.49 6.18 1280.12 3.21 +1.00 1259.47 12.34 − 0.64 1323.82 5.17 +4.44
15 1307.54 6.14 1348.00 2.41 +3.09 1307.53 2.51 0.00 1316.44 2.48 +0.68
20 1609.53 13.70 1689.19 4.51 +4.95 1609.53 4.35 0.00 1590.54 5.32 − 1.18
100-H 5313.31 85.58 5840.71 40.12 +9.93 5363.31 101.05 +0.94 6300.61 45.07 +18.58
100-I 5104.27 61.72 5213.00 62.01 +2.13 5148.27 53.50 +0.86 5673.73 60.00 +11.16
100-J 2575.00 695.01 2634.30 710.00 +2.30 2576.04 826.79 +0.04 2882.75 649.33 +11.95
100-K 4744.56 69.00 4783.24 70.34 +0.82 4746.56 67.84 +0.04 4906.75 137.00 +3.42
100-L 3550.56 600.33 3573.91 654.31 +0.66 3567.56 608.26 +0.48 3521.91 747.26 − 0.81
Average 2658.16 170.96 2981.59 171.99 +3.30 2893.24 186.40 +0.16 3108.94 183.63 +5.36

Table 8: Comparison results of partial recharging strategies and full recharging strategies.

# of instance
Partial recharging strategies Full recharging strategies
Obj Time Obj Time Gap

100-M 6900.19 0.44 7022.00 0.36 +1.77%
100-N 8549.19 0.35 8727.65 0.28 +2.09%
100-O 3465.09 3.26 3508.10 2.75 +1.24%
100-P 4634.06 0.54 4746.29 0.40 +2.42%
100-Q 6085.71 0.66 6144.65 0.51 +0.97%
100-R 7551.80 0.31 7648.44 0.28 +1.28%
100-S 3550.56 6.83 3550.56 5.68 0.00
Average 5819.51 1.77 5906.81 1.47 +1.40%
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6. Conclusions

Tis paper examines the logistics and distribution of EVs. To
improve the timeliness of the EVs, we propose the
recharging strategies. When EVs are recharged at each
recharging station, three recharging modes (i.e., normal,
rapid, and ultra-rapid) and the recharging energy can be
determined according to the need. To this end, we build the
EVRPTW-RS model and consider constraints such as ve-
hicle energy, vehicle load, and window time constraints.
Since the established EVRPTW-RS model is an NP-hard
problem, we design the ALNS algorithm according to the
characteristics of the EVRPTW-RS model, which proposes
more targeted operators of removal and insertion in the
ALNS-SA algorithm.

Further analysis of the numerical results yields the
following conclusions. Firstly, when solving the cases, the
outcomes demonstrate that our ALNS algorithm out-
performs CPLEX with regard to both time and solving
quality. Secondly, the proposed EVRPTW-RS can reason-
ably determine the rechargemode and recharge energy at the
recharge station in order to efectively reduce the overall
cost. EVRPTW-RS performs mid-sized instance resolution
(15.64%) better than CPLEX’s solutions, and it is able to
resolve large-scale situations, which CPLEX is unable to do.
Furthermore, the EVRPTW-RS solution time is shorter than
the CPLEX solution time. Tirdly, the decision making of
the three recharging technologies is compared, and the
results show that the overall cost of the decision-making
recharging technology is 3.3%, 0.16%, and 5.36% lower than
that of only using normal, rapid, and ultra-rapid recharging
technologies, respectively.

Our fndings demonstrate the efcient use of multiple
recharging technologies: normal, rapid, and ultra-rapid. As
expected, the use of normal and ultra-rapid recharging
technology at the recharging stations will increase the overall
cost of operation of delivery companies. However, in some
cases, recharging stations using only fast recharging tech-
nologies can also reduce overall costs. We have shown that,
taking into account all recharging technologies (i.e., normal,
rapid, and ultra-rapid), the overall cost will reduce in most
cases. Furthermore, research shows that partial recharging at
recharging stations through recharging energy decisions not
only efectively saves each vehicle’s delivery time and reduces
the number of vehicles used by delivery companies but also
signifcantly reduces the total cost of recharging at the
recharging station.

Tis fnding may be of signifcant importance for
stakeholders (i.e., delivery companies and governments)
when investing in recharge infrastructure. If the government
provides several recharge modes for some CSs, this fnding
can be important for delivery companies, which can sig-
nifcantly improve delivery efciency and reduce delivery
costs. Government action is not part of this study, but it may
actually be the case.

Tere are several important directions to research in
future work. Firstly, in the real world, the road is dynamic,
such as vehicle accidents and severe weather events.
Terefore, vehicle speeds may be connected to specifc road

segments in the network of roads. Secondly, from the
perspective of model building, objective optimization under
heterogeneous feets and multiple delivery depots is also an
attractive research direction. Finally, according to model
characteristics, the ALNS algorithm can take into account
more targeted removal and insertion operators and the
parameters of the ALNS algorithm can be adjusted accu-
rately in subsequent case analysis, further improving the
algorithm’s performance. Although dealing with these
problems is difcult, we believe that they have important
implications for business.
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