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Vehicle trajectory prediction can provide important support for intelligent transportation systems in areas such as autonomous
driving, trafc control, and trafc fow optimization. Predicting vehicle trajectories is an extremely challenging task that not only
depends on the vehicle’s historical trajectory but also on the dynamic and complex social-temporal relationships of the sur-
rounding trafc network. Te trajectory of the target vehicle is infuenced by surrounding vehicles. However, existing methods
have shortcomings in considering both time dependency and interactive dependency between vehicles or insufcient consid-
eration of the impact of surrounding vehicles. To address this issue, we propose a hybrid deep learning model based on a temporal
convolutional network (TCN) that considers local and global interactions between vehicles. Specifcally, we use a social con-
volutional pooling layer to capture local interaction features between vehicles and a multihead self-attention layer to capture
global interaction features between vehicles. Finally, we combine these two features using an encoder-decoder structure to predict
vehicle trajectories. Trough experiments on the Next-Generation Simulation (NGSIM) public dataset and ablation experiments,
we validate the efectiveness of our model.

1. Introduction

Trajectory prediction plays a crucial role in intelligent
transportation systems (ITSs) as it helps autonomous ve-
hicles perceive the current behavior of surrounding agents
(SAs) and continuously predict their future actions to
maintain efcient motion planning and navigation de-
cisions, ensuring safety for all agents [1, 2]. Additionally,
trajectory prediction is benefcial for vehicle communica-
tion, vehicle control, and trafc safety and management,
reducing high latency and data transmission interruptions in
the vehicle network through early registration and resource
allocation [3–7]. In L2 and L3 intelligent driving with mixed
trafc fow, trajectory prediction is essential for maneu-
vering and potential collision warnings, as human driver
intentions are often unavailable [8, 9]. Terefore, trajectory
prediction is one of the indispensable capabilities for au-
tonomous driving.

Predicting the future trajectories of surrounding vehicles
is an incredibly challenging task. It relies not only on the
vehicle’s historical trajectory but also on the dynamic and
complex social-temporal relationships of the surrounding
trafc network [10]. Early traditional methods used physics-
based models such as constant velocity (CV) or Kalman
flters (KFs) [11], which only considered the agent’s dy-
namics to generate the agent’s future path. However, these
methods are only applicable to short-term trajectory pre-
diction and relatively simple trafc scenarios. Tey mainly
focus on individual historical information of each vehicle
and ignore the complex social interaction between vehicles
[12]. Early works typically relied on traditional machine
learning methods such as Bayesian learning, hidden Markov
model (HMM), support vector machine (SVM), and
Gaussian process (GP) [13] for trajectory prediction.
However, these methods require manually crafting features
from raw data, which cannot serve as a universal
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representation of complex trafc environments. Terefore,
traditional methods are difcult to obtain satisfactory ac-
curacy, especially for long-term prediction (3–5 seconds),
which has been proven to be more challenging than short-
term prediction (1–3 seconds) [14].

As a branch of machine learning, deep learning can au-
tomatically extract features from rich data to overcome the
limitations of handcrafted features. Trajectory data can be
viewed as interactive multivariate time series, so capturing time
and interaction dependencies is one of the key steps for
achieving accurate predictions. In order to capture the tem-
poral correlations between trajectories at diferent timestamps,
recurrent neural networks (RNNs), especially a range of im-
proved variants such as long short-termmemory (LSTM) [15],
gated recurrent unit (GRU) [16], and bidirectional RNN
(BiRNN) [17], have been widely used for trajectory prediction
due to their ability to model sequential data. However, due to
structural limitations, RNN and its variant networks sufer
from low computational efciency and are unable to capture
long-term dependencies on excessively long sequences, making
them unsuitable for long-term prediction. Faced with these
shortcomings of RNN, another new sequence processing
network has been proposed. In a study by Bai et al. [18],
a specialized convolutional neural network called temporal
convolutional network was designed for processing sequential
data, such as time series and natural language [19–21].
Employing dilated causal convolution layers, TCN efectively
captures long-term dependencies across various time scales
within input sequences. Previous research has documented
signifcant performance improvements achieved by the TCN
model in both regression and classifcation tasks [21–24].

However, modeling historical time series alone is not
sufcient for vehicle trajectory prediction, as it also needs to
consider the complex interaction between vehicles. For
instance, in dense highway environments, if a driver at-
tempts to change lanes, drivers in adjacent lanes may slow
down to make way. Terefore, in order to accurately predict
future trajectories, besides the raw historical trajectories, the
interactions among participants need to be considered as
one of the parameters for the model’s prediction.

In this article, we introduce a network that utilizes the
TCN and attention mechanisms to model the historical
temporal features and interaction features of vehicles. Tis
approach is aimed at enhancing prediction performance.
Te main contributions of the article are as follows:

(1) We use an encoder-decoder structure based on TCN
to capture temporal dependencies and improve
computational efciency.

(2) We use social pooling layers to capture local in-
teraction features between vehicles and attention
layers to capture global interaction features.Ten, we
combine the local and global interaction features to
assist in prediction.

(3) We conducted experiments on public datasets, and
the experimental results of trajectory prediction
show that the proposed model is superior to classical
models.

2. Related Work

By predicting the trajectories of surrounding vehicles, in-
telligent cars can react to changes in the motion state of
surrounding vehicles in advance, make accurate decisions on
future trafc situations, and plan safe, easily controllable,
comfortable, and not overly conservative driving trajecto-
ries. After summarizing, there are mainly three types of
vehicle trajectory prediction methods: physics-based
methods [25, 26], behavior-based methods [27, 28], and
deep learning-based methods [29, 30].

Te vehicle trajectory prediction method based on
physical models simplifes the target vehicle into a relatively
simple vehicle dynamic or kinematic model. It iteratively
calculates the future state of the vehicle based on inputs to
the model, such as acceleration and steering angle, as well as
external conditions like road surface friction coefcient [31].

Te dynamic model is based on diferent forces acting on
the vehicle during motion, such as longitudinal and lateral
tire forces, to model the vehicle’s motion [32].Te kinematic
model is based on the mathematical relationship between
vehicle motion parameters, such as position, velocity, and
acceleration, without considering the forces that afect
motion [33]. In trajectory prediction research, because the
internal parameters required by the dynamic model are
difcult to observe with the vehicle’s sensors, the use of the
kinematic model is more common. Study [34] proposed
a trajectory prediction model based on constant velocity and
acceleration by assuming that the predicted temporal vehicle
motion state remains unchanged, but this method does not
consider the varying characteristics of vehicle lateral dy-
namics in the prediction time domain and is not applicable
to conditions such as vehicle turning and lane changing.
Study [35] studied the variation characteristics of vehicle
yaw rate within the prediction time domain based on the
above model, which efectively characterizes the vehicle’s
lateral position changes and has high online calculation
efciency. However, the above method assumes that most
vehicle states remain unchanged within the prediction time
domain, ignoring their uncertainty, and thus only applies to
short-term prediction. To solve the above problems, study
[36] used a mixture of Gaussian matrix to model the un-
certainty of vehicle states and used a switching Kalman flter
to predict future trajectories, while another study [37]
established a model for characterizing the uncertainty of
model input variables based on Monte Carlo methods to
improve the prediction accuracy of motion trajectories.
However, the above methods did not fully consider the
impact of vehicle interaction behavior on the uncertainty of
predicted trajectories.

Existing behavior identifcation algorithms can be di-
vided into methods based on driving behavior classifers
(such as support vector machines and multilayer percep-
tron) [38] and methods based on probabilistic graph models
(such as Markov random felds and Monte Carlo sampling)
[39–41]. In terms of trajectory prediction based on behavior
identifcation, study [42] generated predicted trajectories of
diferent lengths using a kinematic model by combining the
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identifed driving behavior with the current vehicle state, but
this method ignored the uncertainty of the vehicle’s current
state and driving behavior. To solve the problem of modeling
vehicle state and behavior uncertainty, Gaussian process
methods and random search tree methods are widely used.
For example, another study [43] ftted a Gaussian process
based on vehicle historical trajectory training data that can
satisfy the probability distribution characteristics of driving
behavior and used this to create sample trajectories for each
behavior. Study [36] researched the sampling method of
vehicle model input parameters and obtained the probability
distribution characteristics of predicted trajectories based on
Gaussian process and fast search random tree algorithm
combined with the results of vehicle behavior recognition.

Many deep learning-based methods use end-to-end
learning models for trajectory prediction, which take the
historical observation information of the target vehicle as
input and directly output various types of predicted tra-
jectories. Such methods can efectively combine prior and
posterior knowledge in trafc scenarios to achieve long-term
trajectory prediction while maintaining good computational
efciency. Study [44] proposed an LSTM network based on
an encoder-decoder structure, which uses a convolutional
network to extract vehicle spatial grid features and ulti-
mately outputs a multimodal distribution of predicted
trajectories. Study [33] introduced an encoder-decoder
structure LSTM network based on spatiotemporal occu-
pancy grid maps. Te maximum prediction duration can
reach 2 seconds, but the training data for the above models
need to be manually annotated, increasing the difculty of
model training. A diferent study [45] used graph con-
volutional networks to extract vehicle interaction features
and utilized an encoder-decoder structure LSTM network to
simultaneously output diferent vehicle predicted trajecto-
ries. Te aforementioned LSTM-based trajectory prediction
methods have solved problems such as gradient vanishing
and explosion during long-term sequence training and have
higher prediction accuracy in long-cycle prediction. How-
ever, LSTM networks have disadvantages such as complex
structure, large computation, inability to perform parallel
computing, and long training time.

Tere have been numerous studies incorporating TCN
and social modules into trajectory prediction tasks. For
instance, paper [46] addressed the issue of shared LSTM
models neglecting the uniqueness of the ego-perspective,
which hinders the extraction of interaction features from the
perspective of ego pedestrian. Tey employed two separate
LSTM models as social modules to extract features for ego
pedestrian and their neighbors. Subsequently, they used ego-
centric features to guide an attention mechanism for ag-
gregating the features of interacting neighbors, thereby
generating efective interaction features. An innovative dual-
attention architecture for encoding observations in RNNs was
introduced in [47]. Tis architecture efectively handles both
environmental (map) and social (neighbors) features in
a unifed manner, providing a comprehensive approach to
information integration. In [48], a specially designed deep
neural networkwith a switch-like structure, incorporatingTCN
layers, BiLSTM, and attention mechanisms, was employed.

Tis approach led to improved predictive performance. In [49],
a time convolutional network with attention mechanism
(TCN-ATM)model was developed for lane-changing intention
recognition. When considering an input sequence of 150
frames, the proposed TCN-ATM model achieved an impres-
sive overall classifcation performance of 98.20%.

In summary, physics-based trajectory prediction
methods only consider the constraints of vehicle motion
characteristics on the trajectory and do not take into account
the impact of factors such as road structure, trafc rules, and
vehicle historical trajectory on the future motion state of the
vehicle. Tis results in problems such as low prediction
accuracy and poor environmental adaptability, limiting its
use to low-speed short-term prediction. Compared to
physics-based prediction methods, behavior-based pre-
diction methods can achieve better prediction accuracy and
longer prediction time. However, in complex multivehicle
interaction trafc scenarios, there are issues with low scene
adaptability and poor robustness. Deep learning-based
trajectory prediction methods incorporate intervehicle in-
teraction information into the training process through
various data fusion techniques. After multiple rounds of
training to converge the loss value, they can output diferent
types of long-term prediction results. However, existing
methods do not fully consider the modeling of intervehicle
interaction behavior or do not consider vehicle-to-vehicle
interactions, making it difcult to apply them to complex
trafc scenarios. Terefore, during the model training
process, it is necessary to fully model the interaction be-
havior to further improve prediction accuracy.

3. Problem Formulation

As shown in Figure 1, we assume that the autonomous
vehicle can observe the motion of vehicles within ± 90 feet
longitudinally and in adjacent lanes laterally and can collect
their past trajectories at a certain frequency.

Te trajectory prediction can be formulated as a problem
that estimates the future positions of target vehicle based on
all previously observed trajectories. Specifcally, let X denote
the past trajectories of all observed vehicles in a trafc scene:

X � p1, p2, . . .pt, . . . , pT , (1)

where t � 1, 2, . . . , T is the timestamp and
pt � [(x1

t , y1
t ), . . . ,(xn

t , yn
t ), . . . ,(xN

t , yN
t )] represents the

observation states of all vehicles at time t, including the
target vehicle and surrounding vehicles. xt and yt are the
coordinates of vehicles at time t. N is the number of vehicles.

Te predicted trajectory in the future time range L is
represented as

Y � P
tar
T+1,

P
tar
T+2, . . . , P

tar
T+t, . . . , P

tar
T+L , (2)

where PT+L � (xtar
T+L, ytar

T+L) represents the future position of
the target vehicle at time T + L.

In summary, the problem of using historical observation
data X to predict the future trajectory Y of the target vehicle
can be formulated as fnding a mapping relationship F

between Y and X:
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Y � F(X). (3)

4. Model Overview

In this section, we introduce our deep learning-based tra-
jectory prediction method. Figure 2 illustrates the proposed
model, named TCN-SA, which consists of a TCN-based
encoder-decoder structure. To extract both local and global
interaction features among vehicles, we embed convolution
pooling modules and multihead attention modules. Detailed
information for each part is as follows.

4.1. Encoder-Decoder Structure Based on TCN. To
capture the time dependence of historical vehicle data X, we
employ a TCN encoder. Specifcally, we feed the feature
sequence X into the TCN encoder as input and obtain its
output, denoted as Xenc ∈ RN×T×H, where H is the di-
mensionality of the TCN layer’s hidden state.

Both the TCN encoder and decoder have similar
structures, as shown in Figure 3. Figure 4 illustrates the
encoder-decoder structure based on TCN. TCN utilizes
causal convolution and dilated convolution. Causal con-
volution is a time-constrained model that only allows
accessing information up to the current time step t and its
past values in the upper layer, while future information
cannot be accessed. On the other hand, dilated convolution
introduces a hyperparameter called dilation, which specifes
the spacing between the values in the kernel.Tis enables the
convolutional layer to process temporal data with larger
receptive felds while keeping the same number of param-
eters. Te formula for dilation convolution can be expressed
as follows:

Yt,i � 

D

d�1


K

k�1
Wk,d · X(t·d)+k−1,d, (4)

where Y represents the output feature map, t represents
the time step, i represents the output channel, W is
the convolution kernel, K is the kernel size, and D

represents the input feature dimension. We use

a convolution kernel of length K and dilation rate d in this
formula, where each element of the convolution kernel
Wk,d is weighted and summed with d adjacent elements
from the input X, and the results are accumulated to
obtain the output Yt,i.

4.2. Social Pooling Module. Te TCN encoder can only
capture temporal dependencies between time steps and
cannot capture motion correlations between vehicles. To
address this issue, we adopt a similar approach as in article
[44] to construct a social tensor among vehicles and then use
a social pooling layer to capture the motion correlations
between vehicles. To reduce computational complexity, we
use only a total of 7 cars from the scenario in Figure 1 to
construct a 9 × 9 social tensor. We then use two layers of
2 × 2 convolutional layers with padding� 1 and a pooling
layer to build the social pooling module. Te constructed
social tensor is shown in Figure 2.

4.3. Interaction Module Based on Multihead Attention
Mechanism. As the social pooling layer is built upon con-
volutional neural networks which are restricted by con-
volutional kernels, they can only capture local features.
Terefore, we believe that the social pooling layer can only
capture local vehicle interaction features rather than global
interaction features. To address this issue, we have designed
a global interaction feature capturing module based on
multihead self-attention mechanism.

As shown in Figure 5, frstly, we use the encoding vector
output by the TCN encoder to generate the query vector, key
vector, and value vector. Te formula for generating Q, K,
and V is as follows:

Qj � WqjX
t
enct,

Kj � W
j

kX
t
enc,

Vj � WvjX
t
enct,

(5)

where j represents the j-th attention head and Wq, Wk, Wv

are learnable weight matrices.
Ten, we can calculate the attention coefcients based on

Q, K, and V vectors:

αj � softmax
QjK
⊤
j

��
dk

⎛⎝ ⎞⎠, (6)

where dk is the dimensionality of the Kj vector.
Te output vector of the multihead self-attention

mechanism is as follows:

I � Concat head1, . . . , headj W
O

, (7)

where headj � αjVj and WO is a learnable weight matrix
used to map the concatenated vector back to the original
dimension.

After the above operations, the vector I we obtain has
aggregated the features of all other vehicles.

Figure 1: Te trafc scene in this paper, where the green one is the
target vehicle (TV) and the grey ones are the surrounding vehicles
(SVs).
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4.4. Distance-Based Spatial Information Embedding. To
embed spatial information between vehicles in the process of
capturing interaction features, we constructed a spatial em-
bedding based on distance. As shown in Figure 6, we frst
calculate the relative distance dij between each pair of vehicles,
then divide dij by a scaling factor a (where we take α � 90) to
obtain dij

′, and use dij
′ to construct a distance adjacency matrix

D. Finally, we perform softmax normalization on the distance

adjacency matrix D to obtain the spatial embedding repre-
sentation matrix S:

Dij �
dij

90
,

S � softmax(D),

(8)

we integrate the obtained spatial embedding information into 6.

. . .

X1

E1 E2 E3 E4 Et

X2 X3 X4
Xt

. . .

Context Vector

Encoder

Decoder

D1 D2 D3 D4 Dt

Y1 Y2 Y3 Y4 Yt

Figure 4: Encoder-decoder structure based on TCN.
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Figure 5: Interaction module based on multihead self-attention mechanism.
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αj
′ � softmax

Qj K
⊤
j 

��
dk

⎛⎝ ⎞⎠ + S. (9)

We can thus embed the relative spatial relationships
between vehicles in the process of capturing interaction
features.

5. Experiments

5.1. Dataset. Our model was trained on two publicly
available vehicle trajectory datasets: I-80 and US-101 from
NGSIM [50], which record trajectories at a frequency of
10Hz in real highway scenarios. Both datasets contain ve-
hicle trajectories for 45minutes under light, moderate, and
heavy trafc conditions, providing rich scenes for evaluating
the robustness and efectiveness of the proposed network.

To ensure a fair comparison, we followed the training
strategy outlined in reference [44]: we downsampled the raw
data to 5Hz and divided the trajectories into multiple
segments every 8 seconds, with the frst 3 seconds of each
segment used as the past time range and the remaining
5 seconds as the prediction time range. In total, the sample
data are split with the ratio of 7 :1 : 2 into training sets,
validation sets, and test sets.

5.2.Metric. To assess performance in a quantitative manner,
the root mean square error (RMSE) is utilized tomeasure the
disparity between predicted and ground truth trajectories.
Te RMSE is computed by taking the square root of the
average of the squared diferences between corresponding
elements in the predicted and ground truth trajectories:

RMSEt �

�����������������������

x
tar
t − x

tar
t 

2
+ y

tar
t − y

tar
t 

2


, (10)

where xtar
t and ytar

t are the predicted coordinate values of the
target vehicle at time step t.

5.3. Compared Models. Te baseline models we use for
comparison are as follows:

Constant velocity (CV): we use a constant velocity
Kalman flter as our simplest baseline.

C-VGMM+VIM: as our second baseline, we have
utilized maneuver-based variational Gaussian mixture
models along with aMarkov randomfeld-basedmodule
for vehicle interaction, which is described in [51].
GAIL-GRU: Tis is a Generative Adversarial Imitation
Learning model [52]. As both studies used the same
dataset, we will directly cite the results from the
original paper.
Convolutional Social Pooling LSTM (CS-LSTM): After
establishing a grid of size 13 × 3, the target vehicle is
placed at the center of the grid, and then surrounding
vehicles are put into the grid to build a social tensor,
and then the interactive information is extracted for
prediction [44].
Nonlocal Social Pooling (NLS-LSTM): LSTM is used in
an encoder-decoder structure that captures social in-
teraction by combining operations that focus on both
nearby and more distant interactions [53].
Social GAN (S-GAN): the model utilizes a combination
of a recurrent sequence-to-sequence model and
a generative adversarial network in order to gather
information from diferent agents, which enables the
generation of multiple possible outcomes that are so-
cially realistic [54].

5.4. Ablation Experimental Models. Te ablation experi-
mental models we use for comparison are as follows:

Encoder-decoder (TCN-based): In order to conduct
basic ablation experiments, we have chosen a sequence
to sequence structure based on the TCN model for our
model.Tis will enable us to compare diferent versions
of our model and identify the impact of removing
specifc components.
Ours (removing convolutional social pooling module):
to validate the efectiveness of our embedded con-
volutional social pooling module in extracting local
interaction features, we removed this module from our
model for ablation experiments.
Ours (removing multihead attention interaction
module): to validate the efectiveness of our embedded

0

1

2

3 4

5 6

d01

d02

D =

1 dij/90

1dij/90

Figure 6: Example of using distance to construct spatial distance embedding.
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multihead attention interaction module in extracting
global interaction features, we removed this module
from our model for ablation experiments.

5.5. Experimental Results and Analysis

5.5.1. Comparison between Diferent Models. Table 1 shows
the RMSE results of diferent models under diferent pre-
diction horizons. In Table 1, each row represents diferent
prediction horizon, and each column shows the RMSE of
diferent models in their respective prediction perspectives.
Smaller RMSE values indicate better performance, and the
text highlighted in bold black represents the optimal value
for each prediction horizon, corresponding to the best-
performing model. We found that the frst three models
showed greater RMSE in both short-term and long-term
predictions. Te last four models obtain lower RMSE by
taking into account the information or interaction in-
formation of other surrounding vehicles. As CS-LSTM and
NLS-LSTM are models based on the LSTM framework, their
performance diferences are not signifcant. S-GAN com-
bines social rules in GAN to generate multimodal results, so
its performance is slightly inferior to LSTM-based frame-
works. Our proposed model utilizes TCN to capture tem-
poral dependencies, using convolutional social pooling
layers and multihead attention to capture global and local
interaction features between vehicles, respectively. In most
cases, our model’s performance is signifcantly better than
the baseline model.

5.5.2. Comparison between Diferent Ablation Experiments.
We conducted three sets of ablation experiments: removing
the social convolutional pooling layer, removing the at-
tention interaction layer, and removing both the attention
interaction layer and the social convolutional pooling layer.
Table 2 shows our results.

When completely removing the interaction module (i.e.,
simultaneously removing both the attention interaction
module and the convolutional pooling module), the model
degrades into a TCN-based Seq2seq model, that is, the
interaction information between vehicles is not used, under
various prediction horizons, the model’s performance sig-
nifcantly deteriorates, and it also shows the importance of
interaction characteristics between vehicles from the side.
However, when only removing either the social pooling
module or the attention interaction module individually, the
model’s performance improves signifcantly compared to
the Seq2seq model. We believe that in the case of using only

the social pooling module or only the attention interaction
module, the single interaction feature obtained (local in-
teraction feature or global interaction feature) is insufcient to
refect the true interaction dynamics between vehicles. It is
only when combining local and global interaction features
that better performance is achieved. Tis also indirectly in-
dicates that utilizing more auxiliary information is advan-
tageous for improving the predictive model’s performance.
Furthermore, it suggests that there is a complementary efect
between local and global interaction features.

5.5.3. Visualization of Prediction Results. As shown in
Figure 7, we randomly selected one sample and visualized its
results under diferent prediction horizons. Te predicted
horizons represented from top to bottom are 1 s, 3 s, 4 s, and
5 s, respectively. As the prediction horizon increases, we can
observe that the longitudinal error of the predicted trajectory
gradually becomes larger (the gap between the green line and
the black line widens). Tis is a normal phenomenon be-
cause trajectory prediction is a complex nonlinear temporal
prediction problem, and as the prediction horizon increases,
the prediction error also gradually accumulates and
increases.

As shown in Figure 8, the three columns from left to
right represent three lateral maneuvers: lane keeping, right
lane changing, and left lane changing. Te three rows from
top to bottom represent three longitudinal maneuvers:
uniform speed driving, deceleration driving, and accelera-
tion driving. Tree lateral maneuvers and three longitudinal
maneuvers can form a total of nine possible future driving
maneuvers. With regard to lane-keeping scenarios, we ob-
served that our prediction model demonstrates relatively
good performance, regardless of whether the vehicle is ac-
celerating, decelerating, or maintaining a constant speed. In
lane-changing scenarios, we have observed that both lateral
and longitudinal errors are larger in comparison to lane-
keeping scenarios. Tis is because our prediction only in-
volves single-modal prediction. In scenarios such as lane
changes to the left or right, our model may give a result that
tends towards the average mode, resulting in slightly larger
errors in these two scenarios. Overall, compared to CS-
LSTM, our model can provide results that are closer to the
real trajectories.

As for other models that perform worse or similar to CS-
LSTM, we did not provide visualizations because our data
are directly sourced from the respective method’s papers,
following the same approach as the original CS-LSTM paper
[44]. Te premise for doing so is that all methods were
experimented under fair conditions.

Table 1: Experimental results of diferent models.

Metric Prediction
horizon (s) CV C-VGMM+VIM GAIL-GRU CS-LSTM NLS-LSTM S-GAN TCN-SA

RMSE (m)

1 0.73 0.66 0.69 0.61 0.56 0.57 0. 4
2 1.78 1.56 1.51 1.27 1.22 1.32 1.1 
3 3.13 2.75 2.55 2.09 2.02 2.22 2.14
4 4.78 4.24 3.65 3.10 3.03 3.26 2.87
5 6.68 5.99 4.71 4.37 4.30 4.40 4.08
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Table 2: Experimental results of ablation.

Metric Prediction horizon
(s)

Without social
pooling

Without attention
interaction Seq2seq (TCN) Complete model

RMSE (m)

1 0.55 0.57 0.64 0. 4
2 1.18 1.17 1.56 1.1 
3 2.38 2.14 2.97 2.14
4 2.94 2.89 4.28 2.87
5 4.16 4.13 6.03 4.08

Bold values indicate the best result within each predicted horizon.
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Figure 7: Te prediction efects with diferent predicted horizons.
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Figure 8: Visualization of prediction results under diferent driving maneuvers.
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6. Conclusions

Tis paper proposes a hybrid deep learning vehicle trajectory
prediction model based on the TCN encoder-decoder
structure, which can not only capture the temporal de-
pendencies between historical data but also capture the
interaction features between vehicles. Compared with
classical models, the efectiveness of our proposed model has
been verifed, achieving good results in both long-term and
short-term predictions. To capture the interaction features
between vehicles, we used two modules: the social con-
volutional pooling module and the multihead attention
interaction module, where the social convolutional pooling
module can capture the local interaction features between
vehicles, and themultihead attention interactionmodule can
capture the global interaction features between vehicles.
Trough ablative experiments, it has been verifed that these
two modules are indispensable. Using only one of them
cannot fully capture the intervehicle interaction features.
Only when both modules are used in conjunction can the
model achieve its maximum efectiveness. We also found
that adding interaction information between vehicles sig-
nifcantly improved the prediction performance. However,
the utilization of surrounding vehicle information is just
a simple exploration. Diferent positions and quantities of
surrounding vehicles may have diferent efects on the ex-
perimental results. In future work, we will explore how to
select and utilize surrounding vehicle information to im-
prove prediction performance. Furthermore, this paper did
not investigate the model’s performance in complex road
scenarios. In future work, we will select appropriate datasets
for further experiments to explore the model’s robustness in
more complex terrains or trafc conditions.

Data Availability

Researchers for the Next Generation Simulation (NGSIM)
program collected detailed vehicle trajectory data on the
specifed freeway segments of US-101 and I-80, as well as the
specifed arterial segments of Lankershim Boulevard and
Peachtree Street. Data were collected through a network of
synchronized digital video cameras. NGVIDEO, a customized
software application developed for the NGSIM program,
transcribed the vehicle trajectory data from the videos. Tese
vehicle trajectory data provide the precise location of each
vehicle within the study area every one-tenth of a second,
resulting in detailed lane positions and locations relative to other
vehicles. Tis dataset is widely applied in the feld of vehicle
prediction. Te dataset can be obtained from https://data.
transportation.gov/Automobiles/Next-Generation-Simulation-
NGSIM-Vehicle-Trajector/8ect-6jqj.
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