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Decision-making is an important component of autonomous driving perception, decision-making, planning, and control
pipeline, which undertakes the task of how the ego vehicle makes high-level decision-making behaviors (such as lane change and
car following) after sensing the environmental state, and then these high-level decision-making behaviors can be transmitted to
the downstream planning and control module for specifc low-level action execution. Based on the method of deep reinforcement
learning (specifcally, Deep Q network (DQN) and its variants), an integrated lateral and longitudinal decision-making model for
autonomous driving is proposed in a multilane highway environment with both autonomous driving vehicle (ADV) and manual
driving vehicle (MDV). Te classic MOBIL and IDMmodels are used for the lateral and longitudinal decisions of MDV (i.e., lane
changing and car following), while the lateral and longitudinal decisions of ADV are dominated by deep reinforcement learning
models. In addition, this paper also uses the nonlinear kinematic bicycle model and two-point visual control model to realize the
low-level control of both MDV and ADV. By setting a reasonable state, action, and reward function, this paper has carried out a
large number of simulation experiments on the proposed autonomous driving decision-making model based on deep rein-
forcement learning in a three-lane road environment. Te results show that under such scenario setting conditions, the deep
reinforcement learning-based model proposed in this paper performs well in autonomous driving safety and travel efciency. At
the same time, when compared with the classical rule-based decision-making model (MOBIL&IDM), it is found that the model
proposed in this paper can signifcantly achieve better results in episode rewards after stable training. In addition, through a large
number of hyper-parameter tuning experiments, the performance of DQN, DDQN, and dueling DQN models, which are also
deep reinforcement learning-based decision-making models, under diferent hyper-parametric confgurations is compared and
analyzed, which can provide a valuable reference for the specifc scenario application of these models.

1. Introduction

Autonomous driving is hot research and practical issue in
the felds of road trafc engineering, vehicle engineering,
and artifcial intelligence in recent years, which is considered
to have great potential in alleviating trafc congestion, re-
ducing environmental pollution, improving trafc safety
performance, and even systematically changing the future
trafc mobility pattern [1]. In order to realize autonomous
driving, a vehicle needs to be able to accurately perceive the
state of itself and the surrounding environment, then make

corresponding behavioral decisions and consequently gen-
erate a safe, efcient trajectory based on perceptual un-
derstanding, and fnally track the generated trajectory as
accurately as possible by controlling the throttle, brake
pedal, and steering wheel [2]. Tis autonomous driving
process is usually described as a modular pipeline as shown
in Figure 1. After the travel user gives the global information,
such as the travel destination and navigation route, the
autonomous vehicle will collect the environmental infor-
mation through its own installed cameras, LIDAR, and other
types of sensors at a certain frequency, and then the collected
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raw sensor data will be input into the perception module for
environmental semantic understanding tasks such as object
detection and tracking. Further, on the basis of state per-
ception and the user’s global travel information, the au-
tonomous vehicle will make local behavior decisions such as
whether to change lanes and further generate behavior in-
structions to the planning module to generate the optimal
trajectory. Finally, the generated trajectory can be tracked by
controlling the throttle, brake, steering wheel, and other
actors.

Since decision-making is an important part that links
perception and trajectory planning and greatly determines
the safety and efciency of autonomous driving, extensive
research around this issue can be found in the literature. In
general, the typical research method of autonomous driving
decision-making can be mainly categorized into 4 classes:
rule-based [3–5], classical machine learning-based [6–8],
deep reinforcement learning-based [9–12], and deep imi-
tation learning-based [13–15]. Among many research
methods, deep reinforcement learning has received great
attention in recent years because it does not need a lot of
human labeled training data, the learning style is closer to
human learning, and the generalization ability is strong.
Despite the above advantages, for the application of deep
reinforcement learning in automated decision-making
modeling, how to construct an efective representation of the
environmental state, how to design an efective reward
function, and how to compare and analyze the performance
diferences between the deep reinforcement learning model
and the traditional rule-basedmodel are still challenging and
needed to be further studied. In view of this, this paper aims
to study the modeling of autonomous driving decision-
making based on the DQN and its variants under the
condition of themixture of autonomous driving vehicles and
manual driving vehicles in a specifc scenario of a multi-lane
highway. It is hoped that this research can provide efective
models for safety, efciency, etc. for decision-making in
multilane autonomous driving scenarios. At the same time,
through a large number of hyper-parameter tuning exper-
iments, we will systematically compare the performance of
several classical value-based DRL models (i.e., DQN,
DDQN, and Dueling DQN) for autonomous driving deci-
sion-making, and further evaluate the performance

diferences between them and other traditional rule-based
decision-making models, so as to provide a valuable ref-
erence for autonomous driving decision-making modeling
in multilanescenarios.

Te contributions of this study include the following
aspects.

(1) An integrated lateral and longitudinal decision-
making model based on deep reinforcement learning
is proposed for autonomous driving in a multilane
highway with mixed trafc composed of MDVs and
ADVs. A large number of simulation experiments
are conducted to verify the efectiveness of the
proposed model.

(2) Extensive simulations are conducted to compare the
model performance between DRL-basedmodels (i.e.,
DQN, DDQN, and Dueling DQN) and rule-based
models (i.e., IDM and MOBIL), results of which
show that DRL-based models are signifcantly su-
perior to rule-based models for autonomous driving
decision making.

(3) Performance comparison between DQN and its
variants (i.e., DDQN and Dueling DQN) is also
conducted, results of which indicate that DDQN and
Dueling DQN do improve the performance of DQN
model for autonomous driving decision-making by
properly estimating Q values and optimizing net-
work structure in terms of training efciency and
reward acquisition.

(4) With diferent ADV penetration, the training ef-
ciency of DQN-series models for autonomous
driving decision-making is compared, according to
the rising of ADV penetration, for a single ADV, the
environment becomes more uncertain and complex,
so the training process of the DQN-series models is
more difcult to be stabilized.

Te organization of this study is as follows. Section 2
presents a brief literature review of decision-making of
autonomous driving. Section 3 introduces our proposed
methodology for modeling decision-making of autonomous
driving and Section 4 conducts a large number of simulation
experiments to verify the proposed models and the results of
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Figure 1: Modular pipeline of autonomous driving.

2 Journal of Advanced Transportation



which are discussed. Finally, Section 5 concludes this
manuscript and briefy discusses future research directions.

2. Literature Review

Decision-making corresponds to a high-level behavior of an
automated vehicle, which decides whether the automated
vehicle will change lanes, follow or turn et al. Because de-
cision-making represents the response of autonomous ve-
hicles on the environmental state observation and driving
goals, and plays a guiding role in the downstream planning
and control module, it has attracted a lot of research in the
literature.

In general, the research on autonomous driving deci-
sion-making can be divided into rule-based, fnite state
machine-based, andmachine learning-basedmethods. Rule-
based methods are based on some predefned parameters
that would tune the algorithm for a specifc environment, in
which the most representative ones are MOBIL [16] for
lateral decision-making and IDM [17] for longitudinal de-
cision-making. A common limitation of these approaches is
the lack of fexibility under dynamic situations and diverse
driving styles [18]. Since both driving contexts and the
behaviors available in each context can be modeled as fnite
sets, a natural approach to automating this decision-making
is to model each behavior as a state in a fnite state machine
with transitions governed by the perceived driving context
such as relative position with respect to the planned route
and nearby vehicles. In fact, fnite state machines were
adopted as a mechanism for behavior control by most teams
in the DARPA Urban Challenge [19]. However, because the
context of open road autonomous driving is highly complex,
dynamic, and uncertain, it is intractable to build all possible
driving contexts and their corresponding behaviors into
fnite state machines in essence, which makes the fnite state
machine destined to be a simplifed modeling method for
autonomous driving decision-making and difcult to use in
real complex scenes [20]. Machine Learning (ML) based
methods have a very good generalization ability for un-
known scenes when they are properly trained through a
large number of data samples, and there is no need to
manually specify rules in advance [21]. Vallon et al. [22]
proposed a support vector machine (SVM) model to capture
the lane change decision behavior of human drivers. After
the lane change demand is generated, the maneuver is ex-
ecuted using an MPC. By extracting the features from
surrounding vehicles that are relevant to the lane-changing
of the subject vehicle, Bi et al. [23] used a randomized forest
and back-propagation neural network to model the process
of lane-changing in trafc simulation. ML-based methods
above for autonomous driving decision-making research fall
into the supervised learning paradigm, so it is necessary to
collect a great amount of real-world driving behavior data
and annotate a large number of manual driving decision-
making behaviors, which is usually very time-consuming
and labor-intensive. More importantly, it is difcult to pose
autonomous driving as a supervised learning problem as it
has a strong interaction with the environment including
other vehicles, pedestrians, and road networks [10]. In recent

years, another machine learning paradigm, reinforcement
learning (especially Deep Reinforcement Learning, DRL),
which learns the task in a trial-and-error way that does not
require explicit human labeling or supervision on each data
sample has been widely used in research of autonomous
driving decision-making and control. Ngai and Yung [24]
adopted a multiple-goal reinforcement learning (RL)
framework to model complex vehicle overtaking maneuvers.
For lane-keeping assisting decision-making issues, Sallab
et al. [10] adopted Deep Q-Network Algorithm (DQN) and
Deep Deterministic Actor-Critic Algorithm (DDAC) to
model discrete actions category and continuous actions
category of autonomous driving respectively. Wang and
Chan [25] applied deep reinforcement learning (DRL)
techniques to fnd optimal control policy for automating
decision making on a ramp merge. Te proposed methods
also have the potential to be extended and applied to other
autonomous driving scenarios such as driving through a
complex intersection or changing lanes under varying trafc
fow conditions. Hoel et al. [26] proposed a Deep Q-Network
model automatically to generate a decision-making function
to handle speed and lane change. For navigation at occluded
intersections, Isele et al. [27] used Deep RL methods to
provide efcient automated decision-making strategy, which
is able to learn policies that surpass the performance of a
commonly-used heuristic approach in several metrics in-
cluding task completion time and goal success rate and have
limited ability to generalize. Although great achievements
have been made in the research of autonomous driving
decision-making using DRL, applying RL to real-world
applications is particularly challenging, especially for au-
tonomous driving tasks that involve extensive interactions
with other vehicles in a dynamically changing environment.
One signifcant barrier of applying RL to real-world prob-
lems is the required defnition of the reward function, which
is typically unavailable or infeasible to design in practice.
Inverse reinforcement learning (IRL) aims to tackle such
problems by learning the reward function from expert
demonstrations, thus avoiding reward function engineering
and making good use of the collected expert data [28, 29].
However, because of the expensive reinforcement learning
procedure in the inner loop, it has limited application in
problems involving high-dimensional state and action
spaces [30]. To overcome the limitation, some state-of-the-
art works were conducted, such as generative adversarial
imitation learning (GAIL) [30], guided cost learning (GCL)
[31], and adversarial inverse reinforcement learning (AIRL)
[32]. Although imitation learning theoretically provides a
more stable training process, and there is no need to ex-
plicitly specify a reward function, it still needs to collect a
large number of expert driving data as a demonstration
compared with deep reinforcement learning and faces the
problem of distribution shift [33].

In view of the learning advantages of DRL in the complex
interactive autonomous driving decision-making, this paper
attempts to explore a more intelligent decision-making
strategy through efective environmental state representa-
tion and a fne design of reward function in a specifc
multilane mixed driving scenario based on DQN and its
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variants. Further, combining the proposed DRL-based de-
cision-making models with the low-level efective control
model, we will conduct a large number of simulation ex-
periments to determine optimization confguration of var-
ious hyper-parameters associated with the decision-making
models. In addition, the performance of the proposed de-
cision models will be compared with the traditional rule-
based model to validate the efciency of our models. Tis
research is expected to provide a valuable reference for the
application of deep reinforcement learning in autonomous
driving decision-making research.

3. Methodology

In this section, we frst give the detailed description of the
problem that we are addressing in this paper. Next, the rule-
based lateral and longitudinal decision-making models of
MDVwhich act as the interacted surrounding trafc of ADV
are presented. Ten decision-making model of ADV is
constructed based on DQN by specifying the state repre-
sentation, action set, and reward function. Finally, a low-
level control model based on a nonlinear kinematic bicycle
model combined with two-point visual control is presented
to implement the output from the decision-making model of
both MDV and ADV.

3.1. Problem Statement. Te autonomous driving decision-
making scenario concerned in this paper is shown in Fig-
ure 2 . Tis multilane autonomous driving scenario consists
of multiple lanes driving in the same direction, in which
ADV (in red color) and MDV (in grey color) are in a mixed
driving state.Te Decision-making of MDV is driven by two
rule-based models that are MOBIL and IDM. MOBIL is
responsible for lateral decision-making and IDM is re-
sponsible for longitudinal decision-making, which will be
introduced in detail later. Te lateral and longitudinal de-
cision-making of ADV is both achieved by a DRL-based
model (i.e., DQN), which is the major research concern of
this paper. Te output of decision-making models of both
MDV and ADV will immediately transmit to the low-level
control model which is realized by the nonlinear kinematic
bicycle model to generate specifc vehicle action execution.
Te research problem of this paper can be summarized as
how to train a safe and efective deep reinforcement learning
model by properly representing the environmental state,
action set, and reward function of autonomous vehicles in
the aforementioned mixed driving scenarios of manual
driving and autonomous driving.

3.2. Decision Making of MDV

3.2.1. Longitudinal Decision of MDV. IDM (Intelligent
Driver Model) [17] which is a rule-based car following
model is employed to model the longitudinal decision
making of MDV. IDMwas originally proposed in the feld of
adaptive cruise control (ACC) to generate appropriate ac-
celeration for the ego vehicle based on its relative driving
state with the leading on a single lane. Te longitudinal
decision-making formulas described by IDM are shown in
Eq. 1-2.

a � amax 1 −
u

ud

 

δ

−
d∗(u,Δu)

d

2

 ⎛⎝ ⎞⎠, (1)

d
∗
(u,Δu) � dmin + uT +

uΔu
2

�����
bamax

 , (2)

where, a is the instant accelarationof ego vehicle, which is
needed to be determined in each decision step; amax is the
maximum acceleration of the ego vehicle; u and ud is the
current and desired speed of the ego vehicle; Δu is the speed
diference between the ego vehicle and its leading vehicle; d

is the gap between the ego vehicle and its leading vehicle;
dmin is the minimum safety gap between the ego vehicle and
its leading vehicle; T is safe time headway; b is the desired
acceleration of the ego vehicle;

As it is seen in the equation (1) and (2), the original IDM
model only restricted the acceleration of the ego vehicle by
maximum acceleration amax; however, the minimum de-
celeration is not indicated. So, a condition depicted by
equation (3) is added by us to limit the minimum decel-
eration of the ego vehicle.

a �
a, a≥ amin

amin, otherwise,
 (3)

where, amin is the minimum deceleration allowed.
In practice, the MDVs on each single lane execute the

IDM longitudinal decision-making model respectively and
then generate their own acceleration decisions in each time
interval. If there is no leading vehicle in front of an MDV, its
Δu and d is set to 0 and dmax (maximum gap for empty lane).

3.2.2. Lateral Decision of MDV. MOBIL (Minimizing
Overall Braking Induced by Lane Change) [16] which is a
rule-based lane change model is adopted here to make lateral
decision of MDV. MOBIL determines whether lane change
is safe and accessible according to the relative acceleration

ADV MDV

Figure 2: Multilane highway scenario.
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between the ego vehicle and the vehicles on the adjacent
lanes. MOBIL’s decision-making process is divided into two
steps: frst, according to the limit of safety standards, the
deceleration of new following vehicles should not be too low
when lane changing occurs, which is described in (4).

anew−follower > bsafe, (4)

where, anew−follower is the acceleration of new following ve-
hicles after lane change of the ego vehicle, which can be
calculated by IDM; bsafe is the maximum safe deceleration.
Second, if the frst condition defned in equation (4) is met,
MOBIL will check the second condition defned in equation
(5) to make a fnal decision about whether trigger a lane
change of the ego vehicle.

aego − aego + p anew−follower − anew−follower(  + q aold−follower − aold−follower( > ath, (5)

where, aego, aego are the new acceleration of the ego vehicle
calculated by IDM after lane change and the old acceleration
before lane change; anew−follower, anew−follower are the new and
old accelerations respectively of the new follower vehicle
when lane change of the ego vehicle occurs;
aold−follower, aold−follower are the new and old accelerations
respectively of the old follower vehicle when lane change of
the ego vehicle occurs; p and q are politeness factors re-
spectively of the new and old following vehicles; ath is a
predefned threshold value. Equation (5) indicates that only
when the collective acceleration gain is greater than a
predefned threshold, the lane change behavior of the ego
vehicle can be truly triggered.

3.3. Decision Making of ADV. Both lateral and longitudinal
decisions of ADV are modeled by the DRL method which
here refers to DQN specifcally. DQN was originally pro-
posed byMnih et al. [34] for playing Atari games, which is an
efective DRL algorithm for discrete decision problems by
combing deep learning and reinforcement learning. Tradi-
tionally, the Q value function corresponding to a specifc
state and action is represented by a table, which is hard to
handle the problem with a large space of state variable. DQN
overcomes this problem by using a deep neural network to
represent the Q value function as Q(s, a, θ) instead of a table,
where θ represents the learnable parameters of the neural
network.

(1) Q value functionQ(s, a, θ)of ADV. Each decision-
making action (e.g. left change and right change) of
one ADV at the arbitrary time step is realized by
choosing the action with the best-expected return
according to the strategy of ε -greedy, which needs to
establish the Q value function, Q(s, a, θ) of each
state-action pair (s, a) · (s ∈ S, a ∈ A, where S, A are
state and action sets respectively). Here, a fully-
connected neural network which takes one specifc
state as input and the corresponding Q value of each
available action as output will be used to represent
the Q value function.

(2) Updating rule ofQ(s, a, θ). Te updating rule of
Q(s, a, θ) is described in Equation .

Qk+1(s, a) � Qk(s, a) + α r(s, a) + cQk s′, a′(  − Qk(s, a) , (6)

where, Qk(s, a), Qk+1(s, a) represents the Q values of
kth and k + 1th step, respectively; r(s, a) is the in-
stant reward received by executing action a under
the state s; c is the discount factor of future return;
α ∈ [0, 1] is the learning rate which is used to trade-
of between old and new learned experiences; s′ is the
state of next step after ADV takes action a under the
state s; a′ is the adopted action by ADV under state s′
according to ε -greedy strategy with the kth Q value
function (current or unupdated Q value function).

(3) Exploration strategy of ADV. In the process of
updating of ADV’s observed state, a suitable action
must be determined for every step based on the
function of the current state and Q(s, a, θ). If the
action of ADV is taken completely according to the
past experience; that is, the ADV chooses the action
with the largest corresponding Q value, it is possible
to be restricted in the existing experience and unable
to fnd out the new action behavior with larger value;
on the other hand, if ADV only focuses on exploring
new actions, the majority of actions will be worthless,
which leads to a very slow learning speed of Q
function. Here, ε-greedy strategy which can makes a
good balance between experience and exploration
[35] is adopted here to select a suitable action under a
specifc state.

π(a|s) �
argmaxa′Q s, a′( , 1 − ε

randomly select an action fromA, ε,

⎧⎨

⎩

(7)

where, π(a|s) is the action exploration function of
ADV; ε represents a small probability, usually
smaller than 0.05.

(4) Bufer Replay. Each update of ADV’s Q function
requires a lot of state-action pairs and corresponding
instant rewards which can be collected only when
ADV interacts with the environment. Tis leads to
sample inefciency which is a usually criticized
problem in deep reinforcement learning. Bufer re-
play originally proposed by Mnih et al. [34] is
adopted here to alleviate this problem and improve
the performance of the DQN algorithms. A role of
the replay bufer is crucial in terms of accessibility to
a variety of data from various time steps, which
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makes time-independent learning possible, and it
allows the DQN algorithm to learn a robust decision
policy

(5) State, Action and Reward of ADV.
State. Efective state representation directly afects
the performance of the deep reinforcement learning
algorithm. In the DQN algorithm, the state is the
input of the Q network, which represents the ADV’s
observation of the surrounding environment. For
lane change and car following decision making, an
ADV should be able to observe its own state (such as
speed and position) and the states of other vehicles
within a certain range around it. Tis research uses
an ego-centric reference frame as proposed by Bai
et al. [36] to represent the states observed by the ego
vehicle. Firstly, each lane of the highway is divided
into equidistant cells longitudinally, length of each
cell is set as the average car length. In each decision
step, taking as the cell occupied by ego ADV as the
center point, a span of 10 cells in the longitudinal
direction is considered as the observable range of this
ego ADV. Given there are 3 lanes in the driving
direction of ADV, there are total of 30 cells’ states
should be referred by ADV to make decision. Each
cell’s state should be described by whether it is oc-
cupied by MDV and the current speed of the oc-
cupying MDV (if not occupied by a MDV, the speed
of the cell will be set to zero). So, at each step, totally
60 variables (totally 30 cells in censoring range and
each cell is described by two variables to indicate
whether it is occupied and the speed of occupied
vehicle) will be used to represent the surrounding
environment state observed by ADV.
Action. Te decision-making of ADV includes both
lateral and longitudinal actions. Te action space of
ADV is described in Table 1.
Reward. Te design of rewards is crucial to the ef-
fectiveness of a reinforcement learning algorithm. In
order to encourage high-speed travel and realize
complete collision avoidance, reward function
should try to balance between travel safety and travel
efciency. Meanwhile, the unconscious violation of
the egovehicle during lane change (such as changing
from the edge lane to the curb) should also be
prohibited. In other words, the criterion for a good
decision is that no collision and violation occur. So,
totally, reward function proposed in this research is
composed of three parts: safety-related reward, ef-
fciency-related reward, and lane change-related
reward, which are defned separately in Equation
(8)–(11).
Safety-related reward:

rs

0 noCollision

−100 otherwise.
 (8)

Efciency-related reward:

re � l
uego − umin

umax − umin
, (9)

where, uego, umax, umin represents the current speed
of ego ADV, the maximum and minimum allowed
speed; l is the reward factor.
Lane change-related reward:

r1 �
1 lang change success

−1 otherwise.
 (10)

Total reward:

rtotal � λsrs + λere + λlrl, (11)

where, λs, λe, λl are weight coefcients of diferent
reward components, which can be adjusted to bal-
ance between safety and efciency. Here, λs, λe, λl are
set to be 0.5, 0.4, and 0.1, respectively.

3.4. Low-Level Control ofMDVandADV. After receiving the
action instruction from the decision-making (car following
or lane changing), the low-level controller will control the
vehicle accordingly to realize this instruction. Here, non-
linear kinematic bicycle model is used for the simulation of
dynamics of both ADV andMDV.Te control inputs for the
kinematic bicycle model are the front steering angle δf and
the acceleration a, in which δf is calculated by a two-point
visual control model of steering [37], and a is calculated by
IDM. Te description of two-point visual control model can
be seen in Figure 3 . Te model uses two tangent angles (i.e.,
θn and θf in Figure 3) of two reference points in near and far
regions to calculate steering angle δf, which is described in
Equation (12).

δf � kfθf + knθn + kI  θndt, (12)

where, kf, kn, kI are the unable parameters of the propor-
tional integration (PI) controller. ln, lf are determined by the
positions of near and far reference points. When lane change
occurs, for empty target lane, ln, lf are fxed, while for an
occupied target lane, ln remain fxed but lf will be the
distance between the new leading vehicle and the ego
vehicle.

Table 1: Action space of ADV.

Action Description
a1 Lane change to left
a2 No lane change (keep current lane)
a3 Lane change to right
a4 Acceleration
a5 Deceleration
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4. Numerical Experiment and Results

In this section, the proposed DQN-based multilane highway
decision-making policy is evaluated by extensive simulation
experiments.

4.1. Settings

(1) Simulation Scenario. Te simulation scenario for
evaluating the automatic driving decision-making
model based on DQN proposed in this paper is a
highway composed of three lanes driving in the same
direction, which is shown in Figure 2. Te length of
this highway is set to 4 km. Once a simulation epi-
sode is started, MDV will be continuously generated
according to the negative exponential distribution
from the leftmost starting point at each lane of the
highway, with the average arrival rate of trafc fow λ
set as 0.25 veh/s default. By tuning the value of the
parameter λ, we can conveniently train and evaluate
our proposed decision models under various trafc
density conditions. Also, we can assign diferent
values of λ two diferent lanes, therefore, the im-
balance of trafc fow between lanes will be in-
creased, which will potentially trigger more lane-
changing needs to better evaluate our proposed
model’s applicability. Te maximum time step of
each episode is set to 200 and the time span of each
step is set to 1 second, that is within each second,
ADV and MDV should make corresponding actions
according to the environmental state and their own
decision-making models (ADV is driven by DQN-
based model while MDV is driven by IDM and
MOBIL). One episode will be terminated, and the
next episode is started immediately when a collision
occurs or the maximum episode duration is arrived.

(2) Parameters of IDM and MOBIL. In the simulation
experiments, MDVs are driven by IDM and MOBIL
for making a longitudinal and lateral decision. Te
related parameters of IDM and MOBIL are set
according to Tables 2 and 3, which are mostly taken
from [38].

(3) Parameters of low-level control model. In the low-
level control layer, the parameters of the two-point
visual control model are set according to Table 4.

(4) Hyper-Parameters of DQN-based Decision Model.
We use a fully connected neural network with two
hidden layers to realize theQ value function of ADV.
Te number of neurons in the frst and second
hidden layer is 128 and 64 and, the number of
neurons in the input layer and output layer is 60 and
5, respectively, since each state is represented by a 60-
dimension vector and the Q network will output
corresponding values for 5 possible actions defned
in action sets. Te activation functions of hidden
layers and output layer are set as RELU and linear,
respectively. Also, the best values of other main
hyper-parameters are chosen using the tree-struc-
tured parzen estimator (TPE) [39] through extensive
simulation experiments, results of which are listed in
Table 5.

Current Lane

Target Lane

Far Reference PointNear Reference Pointln

lf

θn θf

Figure 3: Two-point visual control model.

Table 2: Parameters setting of IDM.

Parameters Description Values
amax Maximum acceleration 0.6m/s2
amin Minimum deceleration −20m/s2
δ Acceleration exponent 4
dmin Minimum gap 2m
T Safe time headway 1.6 s
b Desired deceleration 1.7m/s2
dmax Maximum gap for empty lane 10000m

Table 3: Parameters setting of MOBIL.

Parameters Description Values
bsafe Maximum safe deceleration −4m/s2
p Politeness factor for new following vehicle 1
q Politeness factor for old following vehicle 0.5
ath Changing threshold 0.1m/s2

Table 4: Parameters setting of two-point visual control model.

Parameters Description Values
ln Distance to near point 5m
lf Distance to far point 100m
kf Proportional gain far point 20
kn Proportional gain near point 9
kI Integral gain near point 10 s− 1
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4.2. DQN-Based Decision Model Performance Analysis. In
this section, we show the results about the performance
evaluation of the DQN-based decision model of ADV. One
metric (i.e., Training Loss) which is used to evaluate the
learning performance of the proposed model, and two other
metrics (i.e., Average Collision Rate, ACR and Average
Episode Reward, AER) which are used to quantify the safety
and efciency of the proposed model are defned as follows:

(1) Training loss: Te core task of DQN model training
is to update the Q-value network according to the
Equation (6) step by step with a batch of samples. In
Equation (6), the item “r(s, a) + cQk(s′, a′)−
Qk(s, a)” refects the deviation between the esti-
mated Q value and the true Q value. With the in-
crease of training steps, it is expected that this
deviation (i.e., Training Loss) to be smaller and
smaller, which indicates that the learning of DQN
tends to be stable.

(2) Average Collision Rate (ACR). ACR is equal to the
number of collisions in each episode divided by the
total number of decisions made by ADV. Te col-
lision counts both rear-end collisions and side-im-
pact collisions. ACR refects the safety performance
of the autonomous driving decision-making model.

(3) Average Episode Reward (AER). AER is the total
reward obtained in each episode divided by the
number of decisions made. AER refects the com-
prehensive performance of the autonomous driving
decision-making model with respect to safety, ef-
ciency, and lane change success rate.

Te loss of the DQN model under 4000 and 65000
training steps are depicted in Figures 4(a) and 4(b) re-
spectively. In Figure 4(a), no signifcant loss decrease is
found, while in Figure 4(b), loss shows a trend of increasing
frst, then decreasing, and fnally stabilizing.Tis reveals that
when the number of training steps reaches enough, the
DQN-based decision-making model proposed in this paper
can achieve very good training performance.

Further, in order to evaluate the safety and efciency of
our proposed model, the changing curve of ACR and AER
with respect to episodes is also depicted in Figures 5(a) and
5(b). It is obvious that although both ACR and ACR show a
certain degree of oscillation, their average values tend to
decrease and increase steadily.Te results show that with the
increasing of training steps, the decision-making model
based on DQN proposed in this paper can achieve very good
results in terms of driving safety and efciency.

In order to make the changing trend of ACR and AER
more clearly to be seen, we used a simple diferential fltering
method to process the time series values of them, and the
results are shown in Figures 6(a) and 6(b).

4.3. Comparative Analysis between DQN and MOBIL&IDM.
In this section, in order to further verify the efciency of our
proposed DRL-based model, we conduct simulation ex-
periments to compare the safety and efciency of our
proposed DQNmodel with rule-basedmodels (i.e., IDM and
MOBIL). For ADV, we use DQN-based decision-making
model and IDM combining with MOBIL to drive them for
extensive simulation experiments separately, the AERs
recorded are shown in Figure 7. It can be seen that MOBIL
has a high average reward in the initial stage of the ex-
periment, but with the increasing of training steps, DQN
reaches an average reward higher thanMOBIL by about 10%
after full convergence, which means that DQN can do better
in this multilane highway environment where exists dy-
namic and complex interactions between ADV and MDVs.

4.4. Other Variants of DQN-Based Decision Model. In this
section, we further try other variants of the DQNmodel (i.e.,
DDQN (Double DQN) and Dueling DQN) to depict ADV’s
decision-making behavior. DDQN was proposed as a spe-
cifc adaptation to the DQN algorithm to reduce the ob-
served overestimations [40], while Dueling DQN uses a
diferent network architecture with what is used in DQN to
separate the estimation of the state value function and the
state-dependent action advantage function [41]. Both
DDQN and Dueling DQN are considered could improve the
performance of DQN in some extent, so they are attempted
to model the decision making of ADV, and the performance
comparison between them and DQN are conducted
separately.

4.4.1. DQN vs. DDQN. We systematically compare the
model performance between DQN and DDQN with respect
to ACR, AER, loss and Q value, results are shown in
Figures 8(a)–8(d) respectively.

Figure 8 shows that in respect to the decision accuracy
and the number of convergence episodes, the two algorithms
show relatively similar learning efciency (DDQN is faster in
the early stage and DQN catches up in the later stage), and
DDQN has more stable oscillation than DQN in terms of
AER, ACR, and network loss, while the network loss and
ACR are somewhat lower than DQN.

Te Q value of DDQN is signifcantly lower than that of
DQN, and it can be seen that after optimization by DDQN,
the decision of the agent tends to be more conservative,
which can theoretically have a higher decision accuracy in
the application process.

4.4.2. DQN vs. Dueling DQN. Te second improvement of
DQN is the modifcation of its network structure. Both DQN
and DDQN are single-branch network structures, and the
improved Dueling DQN is a dyadic network structure. With

Table 5: Optimal hyper-parameters of DQN-based model.

Hyper-parameters Best values
Learning rate, α 0.001
Batch size 64
Size of replay bufer 100000
Discount factor, c 0.9
ε for Greedy exploration 0.01
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Figure 4: Training loss of DQN-based decision model of ADV.(a) 4000 steps. (b) 65000 steps.
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Figure 5: ACR and AER with respect to training steps.(a) ACR. (b) AER.
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Figure 6: ACR and AER with respect to episodes after processing with diferential fltering.(a) ACR. (b) AER.
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Figure 8: Performance comparison between DQN and DDQN. (a) ACR. (b) AER.(c) Loss. (d) Q value.
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the unchanged input, the output of Dueling DQN will go
through two fully connected layer branches corresponding
to state values and dominance values, updating the scores of
all actions in each iteration, instead of just taking the
maximum value as in DQN. Te algorithm can increase the
convergence speed to some extent under the infuence of
diferent network structures. Dueling DQN is also compared
with DQN in simulation experiments with respect to ACR,
AER, loss and Q value, and experimental results are shown
in Figures 9(a)–9(d).

Figure 9 shows that for ACR and AER, Dueling DQN
converges almost 10% faster than DQN, can have less os-
cillation performance in a short time, the loss of Dueling
DQN is smaller than DQN, and Q value is comparable to
DQN. Overall, under the same hyper-parameter confgu-
ration (e.g., learning rate), Dueling DQN can indeed per-
form better than DQN in terms of ACR, AER, and loss.

4.5. Performance Analysis of DQN-Series Models with Dif-
ferent ADV Penetration. In the previous sections, the con-
sidered decision-making scenarios of automatic driving on
multilane highway are all mixed travel of a single ADV and
multiple MDVs. In this section, we want to investigate the
performance of DQN, DDQN and Dueling DQN-based
models under diferent ADV penetration (i.e., the

proportion of ADV in all travel vehicles) with respect to
episodes needed to converge (i.e., convergence episode).
Results about a number of convergence episodes of DQN,
DDQN, and Dueling DQN-based models are shown in
Table 6.

In general, as the number of ADVs increases, the deep
reinforcement learning algorithm (i.e., DQN, DDQN, and
Dueling DQN) learns and masters the state of the envi-
ronment more and more difcult, and the average con-
vergence episodes gradually grows, and even fails to
converge in fnite time (i.e., convergence episode >2000).
DQN and DDQN comparing with Dueling DQN converge
more slowly. Te superior performance of Dueling DQN is
attributed to its optimized network structure based on DQN.
DDQN optimizes the update logic of DQN and is able to
acquire higher Q value, but it does not produce a signifcant
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Figure 9: Performance comparison between DQN and Dueling DQN. (a) ACR. (b) AER.(c) Loss. (d) Q-value.

Table 6: Comparison of convergence episodes with diferent ADV
penetration.

ADV: MDV DQN DDQN Dueling DQN
1 :100 823 792 691
1 : 50 1767 1743 1531
1 : 30 >2000 >2000 1958
1 :10 >2000 >2000 >2000
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advantage over DQN in the selection of discrete behaviors,
such as vehicle lane change decisions, so the performance
improvement is limited. In general, due to the increase of
ADV, the state faced by each ADV in the mixed travel
environment is more complex, dynamic and in essence
nonstationary, it is difcult for ADV to learn a stable policy
for decision making and consequently leads to much more
convergence episodes needed. Actually, when ADV in-
creasing, multi-agent reinforcement learning [42] can be a
good choice to model their collective decision-making be-
haviors, which may be our research direction to be explored
in the future.

5. Conclusions

Tis paper proposes a reinforcement learning-based deci-
sion-making model for autonomous driving on a multilane
highway with mixed trafc composed of ADV andMDV. By
proper state representation, action set defnition and reward
function design, DQN, DDQN, and Dueling DQN-based
models are developed for automatic making of both lateral
and longitudinal decisions. At the same time, in order to
construct the simulation environment of mixed trafc, we
describe in detail the rule-based decision behavior models
(i.e., IDM andMOBIL) which are used to generated decision
for MDV vehicles. Further, low-level control of both ADV
andMDV is realized by a nonlinear kinematic bicycle model
combining with a two-point visual control model.

Trough extensive simulation experiments, the safety
and efciency for autonomous driving decision making by
DQN, DDQN, and Dueling DQN is verifed. Comparing the
experimental results of DQN and its variant models with the
rule-based decision-making model, it is found that, deep
reinforcement learning-based models for decisionmaking of
autonomous driving are generally superior to rule-based
methods with respect to safety, efciency, and generalization
ability. It is also found, with the increasing of ADV pene-
tration in mixed trafc fow, the training and generalization
of DRL-based models becomes more and more difcult,
therefore, multi-agent reinforcement learning, through joint
consideration of environmental observation and collective
decision-making of ADV vehicles, may be an important
research direction in the future.
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