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Expressway crashes in interchange areas are a critical concern in China, posing signifcant economic and social challenges.
Utilizing three years of crash data from the Beijing–Shanghai Expressway, this study investigates the transferability and het-
erogeneity of crash characteristics between interchange and noninterchange areas, as well as the temporal shifts in factors
infuencing injury severity levels. Te research employs four series of random parameters logit models to estimate three potential
crash injury severity outcomes of severe injury, minor injury, and no injury (based on the most severely injured individual in each
crash) and to identify key determinants, encompassing driver, vehicle, roadway, environmental, temporal, trafc, and crash
attributes. Likelihood ratio tests and out-of-sample predictions are utilized to assess the temporal stability and transferability of
crash area characteristics. Additionally, the marginal efects of various determinants are calculated to understand their infuence
across diferent year periods and crash types. Key variables such as overspeed, single-vehicle, AADT (annual average daily trafc
volume), Lsmin, and other crash type indicators are identifed as signifcant random parameters, demonstrating heterogeneity in
means and variances. Notable distinctions are observed between interchange and noninterchange crashes, indicating non-
transferability, with most signifcant indicators revealing temporal instabilities. Furthermore, factors such as multivehicle in-
volvement, buses, and nighttime conditions are identifed as risk indicators, notably increasing the likelihood of severe injuries.
Tese insights are invaluable for expressway designers and decision-makers, aiding in understanding the contributing mech-
anisms of various elements. Tis study suggests that stricter enforcement measures are crucial to prevent random lane changes,
particularly at interchange entrances and exits. Additionally, efective management strategies and enforcement countermeasures
should be implemented to mitigate crash injury outcomes in both interchange and noninterchange areas.

1. Introduction

In China, 211,074 motor vehicle crashes occurred in 2020,
causing 55,950 fatalities, 214,442 injuries, and property
losses of 1228.0million CNYs [1]. In recent years, the trafc
fatalities caused by expressway crashes accounted for nearly
10% of the total trafc fatalities [2], posing enormous
economic and social threats. Due to the complexities of

infrastructure, trafc, and driving environment, the in-
terchange areas are the bottleneck segments of safety and
efciency in expressways. Hu et al. [3] stated that the crashes
that occurred in interchange areas expressways made up
34.5% of all expressway crashes, while the proportion of
lengths of interchange areas was only 9.5% from 2014 to 2016
in Jiangsu province.Terefore, it is vital to analyze the injury
levels of interchange areas and adopt efective strategies to
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eliminate the risk levels. However, few studies addressed the
injury severity outcomes of crashes that occurred in in-
terchange areas on China expressways.

Recent studies indicated that the determinants afecting
injury severity outcomes include driver, vehicle, roadway,
environmental, temporal, and crash characteristics. Due to
the discrete form of crash data, many discrete-data models
were chosen to analyze trafc crashes, among which the logit
approach is widely used [4]. However, the traditional probit/
logit model assumes that the efects of multiple elements on
injury levels are fxed in diferent crash observations, which
is inconsistent with the natural situation. Moreover, trafc
crashes are complicated interactions among multiple factors
in various crash observations; one specifc factor might
infuence the injury outcomes of various crashes diferently.
Otherwise, not all the data determining the injury outcomes
could be collected, while the missing data or biased in-
formation might lead to unobserved heterogeneities [5]. To
overcome the biased estimation results and errors of model
structure caused by such issues, the random parameters logit
models that allow the parameters to vary across observations
have been shown to have better performance and utilized in
many research eforts [6–17]. Nowadays, the random pa-
rameters logit approaches have been proven to demonstrate
statistical superiority and accuracy and capture more fex-
ibility in estimating the unobserved heterogeneity by con-
sidering heterogeneity in the means and variances [18–22].
For instance, while analyzing the gender diferences in injury
severities of nonhelmeted motorcyclists, Wang et al. [21]
validated that the random parameters logit model with
heterogeneity in the means and variances outperformed
other models based on χ2 tests. Moreover, Hou et al. [23]
also indicated the advantages of this model in predictive
performance.

Other than capturing the unobserved heterogeneities,
temporal instability over year, season, or time of day might
be another critical issue [24]. Te potential explanation
might be the changes in perception, decision, and reaction of
drivers in hazardous situations along with the safety atti-
tudes. (During the driving process, the driver’s decision-
making behavior can be regarded as a continuous trade-of
between the brain’s autonomic response and the controlled
process. Te driver’s autonomic response is instinctive. For
example, when an object or vehicle suddenly appears in front
of the vehicle, the driver tends to make an instinctive au-
tonomic response. Te driver’s controlled process is the
behavior made after thinking for a certain period of time.
For example, when he percepts the road ahead in advance,
the driver could make an appropriate judgment on braking,
lane change, and other behaviors. Both the autonomic re-
sponse and the controlled process will change with the
accumulation of driving experience and the changes in road
environments.Terefore, there are diferent potential factors
afecting the driver’s behavior in diferent time periods, and
even when faced with the stimulation of the same factors, the
corresponding behavior of the driver will change over time,
ultimately resulting in determinants that afect the injury
severity of highway crash and the instability of their efects
on time), which mainly sufer from variations in various

elements including interactions between vehicles, roadway
alignment, environment, the infuence of macroeconomics,
and so on [24]. A growing body of research eforts has
confrmed that the efects of the determinant variables
change by the year [11, 16, 25–29]. For instance, Dabbour
et al. [30] established a year-separate model to analyze the
efects of driver and vehicle characteristics on the driver
injury levels of rear-end crashes in North Carolina from
2004 to 2015. Ten, the year-separate model was compared
with the aggregated model based on the overall sample. Te
estimation results show that the accuracy of the aggregated
model was less than that of the year-specifc model. Tis
might be explained by a structural variation, indicating that
the infuence of the determinants afecting injury severity
will change over the year.

Terefore, this paper intends to reveal the transferability
and temporal variation of the signifcant factors afecting
injury severities in interchange crashes (IAC) and non-
interchange crashes (NIAC). Te transferability of the IA
and NIA crashes could make sense for better understanding
the time-varying efects of determinants on expressway
safety planning, management, and policy in interchange
areas in China expressways. Capturing the unobserved
heterogeneity, the random parameters logit models with
heterogeneity in means and variances are used to reveal the
injury severities based on Beijing-Shanghai Expressway
crash data in 2017–2019.

Figure 1 presents the research fowchart. First, the two
heterogeneity models and collected data are described,
followed by the likelihood ratio tests and out-of-sample
predictions. Ten, the estimation results and correspond-
ing specifc recommendations are discussed. Finally, the
summaries and conclusions are presented. Tese fndings
have signifcant implications for roadway designers and
trafc management to implement appropriate and efective
measurements to eliminate the risk levels of IAC and NIAC.

Tis study aims at (i) investigating the variations in
factors determining injury severities in IAC and NIAC
crashes; (ii) ofering an explicit understanding of how de-
terminants about injury severities in IAC and NIAC vary
over diferent year periods; (iii) distinguishing and inter-
preting the unobserved heterogonous efects. Not only could
the fndings of this paper fll the knowledge gaps in the
temporal instability and the determinants’ transferability
among IAC and NIAC but they also serve as references for
roadway designers seeking tomitigate crash occurrences and
severities in interchange areas.

2. Data Collection

Te crash dataset occurred in the Beijing–Shanghai Ex-
pressway being a 4-lane national expressway was collected
from the trafc management department, which is designed
according to the highway standard with level to rolling
terrains. Te cross-section width is 28.0m, and the design
speed is 120 km/h. A total of 4,238 trafc crashes were
collected from 2017 to 2019. As the number of fatalities is
few, the fatal and incapacitating injuries are merged into one
classifcation: severe injury. Ten, the injury severity was
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classifed into three levels: severe injury (fatal/incapacitating
injury), minor injury (incapacitating/possible injury), and
no injury (property damage only) [29]. Specifcally, the term
“fatal injury” includes not only fatalities that occur at the
scene of the accident but also those resulting from crashes
within 30 days of being injured. Additionally, the term
“possible injury” refers to cases where there was no visible
trauma, but individuals reported experiencing pain and
potential injuries as a result of the crashes. Te statistical
results of the severity of crashes in interchange areas and
noninterchange areas over the years are shown in Table 1,
and Figure 2 shows the injury severity distribution. Table 2
presents the descriptive statistics of signifcant variables in
IAC and NIAC from 2017 to 2019 in terms of the driver,
vehicle, roadway, environmental, temporal, trafc, and crash
characteristics.

3. Methodology

3.1. Random Parameter Logit Approaches. Capturing het-
erogeneity in means and variances, the random parameters
logit approaches are utilized in this paper to analyze the
determinants afecting the injury severity levels of IAC and
NIAC. First, the propensity function could be expressed as
follows [5]:

Sij � βiXij + εij, (1)

where Sij represents the function determining the proba-
bility of injury severity outcome i in crash j, Xij is a vector of
explanatory variables, βi denotes the estimated parameter,
and εij is a stochastic error term assumed to follow the
generalized extreme-value distribution.

A standard multinomial logit model is defned when εij

follows an assumption of extreme-value distribution [31]:

Pij � 
e
βiXij

 e
βiXij

f(β |φ)dβ, (2)

where f(β |φ) represents the probability density function of
the random vector β and φ denotes the mean or variance
vector of the parameters of the probability density function.

While capturing the heterogeneity in the mean and
variance, βij is defned as a vector of estimable parameters
[20]:

βij � βi + δijMij + σije
ωijDij]ij, (3)

where Mij and Dij represent the vectors capturing hetero-
geneity in the mean and standard deviation σij with the
corresponding parameter vector ωij for injury severity i in
crash j, respectively. δij is associated with the estimated
parameters, while ]ij is a disturbance term. Te Mij and Dij

characterize the heterogeneity caused by attributes. (If the
random parameters logit model shows signifcance in the
vector of Mij and Dij, the model characterizes the un-
observed heterogeneity in means and variances. If the model
shows only signifcance in the vector Mij, the model only
characterizes heterogeneity in means).

Te Halton sampling method is adopted to optimize
efciency and prediction performance [31]. Other than
uniform, lognormal, or triangular distribution, the normal
distribution is adopted in this study, which could provide
a better statistical ft for random parameters logit modeling
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Methodology3 year-specific models

- Significant factor
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Figure 1: Outline of study activities.

Table 1: Crash observations for IAC and NIAC across 2017–2019.

Year Classifcation No
injury

Minor
injury

Severe
injury Total

2017 IAC 150 51 23 224
NIAC 1029 331 39 1399

2018 IAC 149 48 12 209
NIAC 1218 399 58 1675

2019 IAC 154 37 6 197
NIAC 1164 315 21 1500

2017–2019 IAC 453 136 41 630
NIAC 3411 1045 118 4574
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approaches [32]. After simulating diferent Halton draws,
500 Halton draws are used based on the maximum likeli-
hood approach considering the trade-of among perfor-
mance accuracy and estimation efciency [33].

3.2. Likelihood Ratio Test. To examine the temporal shifts
of determinants afecting the injury outcomes of IAC or
NIAC across diferent years, along with the transferability
among IAC and NIAC, three series of likelihood ratio tests
(LRTs) are estimated. Te frst two series are used for
temporal instability tests, and the third one is the
transferability tests. According to the research of Behnood
and Mannering [34], there are two kinds of LRTs con-
cerning the temporal instability. Te frst is the pairwise
test, which could propose to determine whether there are
signifcant diferences between each year’s model. An-
other is the global test, which is used to consider all years
as a whole and determine if there are signifcant difer-
ences overall. Moreover, the third LRT being the trans-
ferability tests is conducted to identify overall group
diferences, with the group classifed by the interchange
area and noninterchange area crashes.

Specifcally, the frst pairwise test is used to compare
models in two diferent periods and explore whether the
parameter estimation is stable from one time period to
another:

χ2t1 � −2 LL βt2t1
  − LL βt1

  , (4)

where LL(βt2t1
) is the log-likelihood (LL) value of the model

containing the convergence parameter of t2 using the crash
data in t1 and LL(βt1

) is the log-likelihood value of the model
using t1 data and convergence parameters. To obtain two test
results for each model comparison, the t1 and t2 subgroups
could be reversed in this test, where the degree of freedom of
the model is equal to the number of estimated parameters in
the LL(βt2t1

) model. Te LRT results of interchange and
noninterchange crashes are, respectively, shown in Tables 3
and 4.

Te second LRT being the global test is also used to
explore whether the model parameters in two-year periods
remain temporally stable, expressed as follows:

χ2t2 � −2 LL β2017−2019,g  − 
2019

2017
LL βt,g ⎡⎣ ⎤⎦, (5)
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Figure 2: Injury severity for interchange and noninterchange crashes from 2017 to 2019.
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where LL(β2017−2019,g) is the LL value of the convergence
model for the aggregated data of crash classifcation g (IAC
and NIAC) in the use period of 2017–2019 and LL(βt,g) is
the log-likelihood value of the model using the crash data
and convergence parameter of year t for crash classifcation
g. Te degree of freedom in this test statistic is equal to the
number of statistically signifcant parameters in the separate
model minus the number of statistically signifcant pa-
rameters in the combined model [4].

Te third series of LRT was used to judge the trans-
ferability among IAC and NIAC [14], and the corresponding
test statistics are expressed as follows:

χ2g � −2 LL βjoint,t  − LL βInterchange,t  − LL βNon−interchange,t  ,

(6)

where LL(βjoint,t) is the log-likelihood value of the con-
vergencemodel combining IAC andNIAC data when period
t is used and LL(βInterchange,t) and LL(βNon−interchange,t) are
log-likelihood values of convergence models for IAC and
NIAC at year t, respectively.

3.3. Out-of-Sample Prediction. In addition to the standard
LRT [4], out-of-sample prediction (OOSP) is another ef-
fective method adopted in many studies to analyze the
temporal instability and the nontransferability between
crash types [21, 25, 28, 35, 36].

According to recent studies [23, 25], OOSP is calculated by
adopting one model’s estimated parameters to predict another
model’s observed crashes and explore the nontransferability
among diferent crash models. Tere are two types of OOSP.
Te frst could be used to predict the injury severity levels in
another year by using IAC or NIAC in one year to reveal the
temporal shifts. Another OOSP is estimated by proposing the
estimated parameters of the IAC model to predict the NIAC
data and reveal the diference in its prediction results. Cor-
responding to the estimation model, 500 Halton samples are
also taken for OOSP. OOSP can be carried out by calculating
the mean probability diference, and the simulation approach

implemented to compute the predicted probabilities is specifc
as follows [21, 23]:

Pj(i) �
1
N



N

n�1

e βi+δijMij+σije
ωijDij ]ij( Xij 


I
i�1e

βi+δijMij+σije
ωijDij ]ij( Xij 

, (7)

where notations and symbols have been represented in
equations (1)–(3) and N represents the number of draws
used for individual observations.

4. Temporal Stability and Transferability Tests

As shown in Table 3, the LRT statistic value based on
equation (4) obtained by using the estimated parameters of
the 2017 IAC model using the data of the 2018 IAC is 32.18,
with 10 degrees of freedom. Above all, both the two tables
show that the assumption that signifcant parameters gen-
erated by test statistics in diferent years are equal can be
rejected in all models, with confdence >99.00%.

Concerning the global test based on equation (5), the test
statistics are 149.32 and 570.268, respectively, for IAC and
NIAC, and the degrees of freedom are 8 and 30, respectively.
Te results also indicate that the initial hypothesis that the
same signifcant parameters in the separate IAC and NIAC
models is rejected with a confdence of >99.99%. In general,
the above two LRTs indicate that crash IAC and NIAC both
stay temporally unstable, which is consistent with most
relevant research results [29, 33, 37].

Te test statistics for 2017, 2018, and 2019 are 176.27,
162.36, and 126.81, respectively, and the degrees of freedom
are 18, 17, and 12, respectively. Tese results also indicate
that within the >99.99% confdence interval, the same initial
hypothesis of weekday and weekend crash models in dif-
ferent years can be rejected.

Considering the temporal variability, the probability
diference (mean value) between the OOSP and the original
model is shown in Tables 5 and 6. Te IAC and NIAC
model’s parameters are respectively used to predict the crash
data for the next year. Table 5 indicates that using the IAC

Table 3: Likelihood ratio test results of crash in IAC in diferent years.

t2
t1

2017 2018 2019

2017 — 32.18 (10) [>99.21%] 48.26 (6) [>99.99%]
2018 42.75 (6) [>99.99%] — 39.52 (6) [>99.99%]
2019 52.61 (6) [>99.99%] 36.94 (10) [>99.42%] —
Note. () is the degree of freedom of the model; [] is the confdence level.

Table 4: Likelihood ratio test results of NIAC in diferent years.

t2
t1

2017 2018 2019

2017 — 72.68 (22) [>99.99%] 96.26 (15) [>99.99%]
2018 94.25 (20) [>99.99%] — 85.19 (15) [>99.99%]
2019 79.62 (20) [>99.99%] 109.22 (22) [>99.99%] —
Note. () is the degree of freedom of the model; [] is the confdence level.
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model parameters of 2017 to predict the IAC data of 2018
can overestimate the no injury outcome probability (0.0118)
and underestimate the probability of minor/severe injury
outcomes (−0.0053 and −0.0065, respectively). In addition,
as shown in Table 6, the probability of no injury outcome is
overpredicted when using the 2017 NIAC model to predict
the 2018 NIAC data. Both the two tables also reveal the
potential temporal variability between the year periods.

In addition, Table 7 lists the mean values of probability
diference by usingNIACmodel parameters to predict IACdata,
while Table 8 lists the mean values of probability diference by
using estimated parameters of the IAC model to predict NIAC
data. Table 7 shows that the probability of no injury outcomes is
overestimated, while the likelihood of minor injury levels is
underestimated, with the absolute value greater than 0.01.

5. Out-of-Sample Prediction

Consistent with the results based on the LRT, the results of
OOSP also indicate the nontransferability between crashes
in IAC and NIAC models. Te OOSP of nontransferability
further illustrates the diference in the generation mecha-
nism of IAC and NIAC. Terefore, targeted

recommendations need to be implemented for these two
types of the crash to eliminate the injury severity of IAC
and NIAC.

Te recent studies indicated high degrees of probability
diferences [21, 25, 36], while Yan et al. [38] showed a rel-
atively low injury efect of temporal/crash-type shifts. And
Wang et al. [21] illustrated that the contradictory phe-
nomenon could be attributed to the overall variation in the
integration of the observation size, injury outcomes distri-
bution, and determinants. Te OOSP can further verify the
transferable issues across the three grades based on the two-
unobserved-heterogeneity models. Notably, this can also
confrm the necessity of separating the expressway crashes
into IAC and NIAC.

Generally, the OOSP results also provide a basis for the
nontransferability among IAC and NIAC and temporal
variability across diferent year periods.

6. Results and Discussion

Table 9 shows the goodness-of-ft comparison results of four
models, including three basic logit models (fxed parameter
logit model, random parameter logit model, and random
parameter logit model with mean heterogeneity) and ran-
dom parameter logit model with heterogeneity in mean and
variance (RPLHMV). It should be noted from Table 9 that
for diferent individual models, the random parameter logit
model with mean and variance heterogeneity obtains higher
ρ2. At the same time, there are also lower AIC and BIC,
specifying great improvement in the model’s ft. Tis also
demonstrates the superiority of the RPLHMV proposed in
this paper.

Ten, Table 10 lists the parameter estimation results
based on RPLHMV, indicating an overall good ft with the ρ2
values greater than 0.65. To further study the infuence of
signifcant variables in diferent models on injury severity,
Table 11 also demonstrates the marginal efects of de-
terminants of IAC and NIAC models. A specifc diference
exists in the signifcant variables among IAC and NIAC
models, and the infuencing factors of injury severity vary in
diferent periods. Moreover, note that the infuence degree

Table 5: Probability diference between diferent years based on the IAC model.

Prediction year
Base year

IAC
2018 2019

No injury Minor injury Severe injury No injury Minor injury Severe injury
2017 0.0118 −0.0053 −0.0065 0.0056 −0.0029 −0.0027
2018 — — — −0.0175 0.0089 0.0086

Table 6: Probability diference between diferent years based on the NIAC model.

Prediction year
Base year

NIAC
2018 2019

No injury Minor injury Severe injury No injury Minor injury Severe injury
2017 0.0385 −0.0124 −0.0261 0.0181 0.0097 −0.0278
2018 — — — −0.0156 0.0102 0.0054

Table 7: NAIC model is used to predict the probability diference
of AIC data.

Year
NAIC model to predict AIC data

No injury Minor injury Severe injury
2017 0.0129 −0.0143 0.0014
2018 0.0126 −0.0054 −0.0072
2019 0.0174 −0.0156 −0.0018

Table 8: AIC model is used to predict the probability diference of
NAIC data.

Year
IAC model to predict NAIC data

No injury Minor injury Severe injury
2017 0.0095 0.0049 −0.0144
2018 0.0025 0.0079 −0.0104
2019 −0.0054 0.0148 −0.0094
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and trend of the same determinants will change across the
year and by other crash areas.

6.1. Driver Characteristics. Te driver’s improper operation
is identifed to afect minor injury in the 2017 NIAC model,
and negative values showed that improper operation re-
duced the minor injury likelihood. For example, the mar-
ginal efect values in Table 11 showed that improper
operation reduced the minor injury possibilities by 0.0078,
while the no injury likelihood increased by 0.0076. However,
overspeed does not show signifcance in all models.

6.2. Vehicle Characteristics. Te single-vehicle indicator
signifcantly afects no injury in the 2019 NIAC model and
signifcantly infuences severe injury in the 2017 IAC model.
In addition, the estimation parameters of single-vehicle
crashes specifc to severe injury in the 2018 IAC model
are identifed to be statistically random. Te corresponding
normal distribution ofN (−6.502, 4.809) means that 91.2% of

single-vehicle crashes in 2018 are less likely to involve severe
injuries, while another 8.8% tend to have severe injuries.

Te two-vehicle crash only has a negative correlation
with minor injury outcomes in 2017 NIAC. Te marginal
efect values in Table 11 show that this variable increases the
no injury and severe injury likelihood by 0.0227 and 0.0018,
respectively, and decreases the minor injury likelihood re-
sults by 0.0245. Te diference in the operating speed of two
vehicles might be greater, which increases greater impact
force and the outcomes of crashes [39]. Moreover, multi-
vehicle crash decreases the minor injury likelihood in the
2017 NIAC and 2018 IAC models, indicating the increased
minor injury likelihood in the 2018 IAC and severe injury
likelihood in the 2017 IAC. Te value of marginal efect
shows that this variable presents inconsistent efects on
minor injuries. To be specifc, the probability of minor injury
likelihood decreases in the 2017 IAC model, while it in-
creases in the other three models. However, consistent
fndings exist in the other two injury outcomes, such as
a declined likelihood of no injuries and rising severe injury

Table 9: Goodness-of-ft measures among diferent models.

Fixed parameter
multinomial logit

Random parameter
logit

Random parameter
logit with

heterogeneity in
means

Random parameter
logit with

heterogeneity in
means and variances

IAC NIAC IAC NIAC IAC NIAC IAC NIAC
2017
Number of parameters (K) 6 19 6 20 6 20 6 20
Number of observations (N) 224 1399 224 1399 224 1399 224 1399
Log-likelihood at zero (LL(0)) −245.952 −1536.102 −245.952 −1536.102 −245.952 −1536.102 −245.952 −1536.102
Log-likelihood at convergence ((β)) −56.711 −503.365 −56.711 −499.365 −56.711 −499.365 −56.711 −499.365
ρ2 � 1 − LL(β)/LL(0) 0.769 0.672 0.769 0.675 0.769 0.675 0.769 0.675
Akaike information criterion (AIC) 125.422 1044.730 125.422 1038.730 125.422 1038.730 125.422 1038.730
Bayesian information criterion (BIC) 145.892 1144.357 145.892 1143.600 145.892 1143.600 145.892 1143.600
2018
Number of parameters (K) 10 19 10 20 10 21 10 22
Number of observations (N) 209 1675 209 1675 209 1675 209 1675
Log-likelihood at zero (LL(0)) −229.482 −1839.15 −229.482 −1839.15 −229.482 −1839.15 −229.482 −1839.15
Log-likelihood at convergence ((β)) −74.762 −594.635 −74.762 −593.254 −74.762 −582.326 −74.762 −569.698
ρ2 � 1 − LL(β)/LL(0) 0.674 0.677 0.674 0.677 0.674 0.683 0.674 0.690
Akaike information criterion (AIC) 169.524 1227.270 169.524 1226.508 169.524 1206.652 169.524 1183.396
Bayesian information criterion (BIC) 202.947 1330.318 202.947 1334.979 202.947 1320.547 202.947 1302.715
2019
Number of parameters (K) 6 13 6 14 6 15 6 15
Number of observations (N) 197 1500 197 1500 197 1500 197 1500
Log-likelihood at zero (LL(0)) −216.306 −1647.304 −216.306 −1647.304 −216.306 −1647.304 −216.306 −1647.304
Log-likelihood at convergence ((β)) −72.348 −484.658 −72.348 −481.264 −72.348 −477.469 −72.348 −477.469
ρ2 � 1 − LL(β)/LL(0) 0.666 0.706 0.666 0.708 0.666 0.710 0.666 0.710
Akaike information criterion (AIC) 156.696 995.316 156.696 990.528 156.696 984.938 156.696 984.938
Bayesian information criterion (BIC) 176.395 1064.388 176.395 1064.913 176.395 1064.636 176.395 1064.636
2017–2019
Number of parameters (K) 14 23 14 25 14 27 14 27
Number of observations (N) 630 4574 630 4574 630 4574 630 4574
Log-likelihood at zero (LL(0)) −691.74 −5022.252 −691.74 −5022.252 −691.74 −5022.252 −691.74 −5022.252
Log-likelihood at convergence ((β)) −129.161 −1275.649 −129.161 −1269.516 −129.161 −1261.398 −129.161 −1261.398
ρ2 � 1 − LL(β)/LL(0) 0.813 0.746 0.813 0.747 0.813 0.749 0.813 0.749
Akaike information criterion (AIC) 286.322 2597.298 286.322 2589.032 286.322 2576.796 286.322 2576.796
Bayesian information criterion (BIC) 348.562 2745.145 348.562 2749.736 348.562 2750.356 348.562 2750.356
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likelihood. Tis fnding is consistent with recent studies
[15, 40], indicating that the number of vehicles in the crashes
tends to increase the injury severity levels.

Concerning vehicle types, minibus increases the minor
injury likelihood in the 2019 NIAC model, while bus de-
creases the no injury likelihood in the 2018 NIAC model. In
2018 NIAC, van is positively correlated with serious injury
outcomes, and marginal efects show that van improves the
probability of severe injury outcomes while decreasing the
no/minor injury likelihood. Te truck is positively linked to
minor and severe injuries in the 2018 IAC and 2017 NIAC
models, respectively. Te great vehicle sizes, power, and
worse braking performance of trucks might produce severe
outcomes of the crashes, and impose greater hazards due to
the stronger crash tendency of trucks [41]. However, the
marginal efect shows that truck makes diferent impacts on
injury severity results in the two models. In contrast, truck
increases the minor injury likelihood by 0.0256 in 2018 IAC
and decreases the severe injury likelihood by 0.0022. In
contrast, truck decreases the minor injury likelihood by
0.0010 and increases the likelihood of severe injuries by
0.0055 in the 2017 NIAC model. Tis may be because in
interchange areas, cars tend to run at a lower speed, and the
speed diference between trucks and cars is decreased, thus
weakening the crash consequence. Also, the speed variation
between cars and trucks in noninterchange areas is larger,
increasing the injury outcomes of crashes.

In 2018, heavy trucks in noninterchange areas were
positively correlated with minor injuries, and the marginal
efect showed that the minor injury likelihood increased by
0.0131. Te possible reason might be the fact that the ma-
neuverability and braking performance of heavy trucks are
relatively poor. In general, the car driver may be negligent
and misestimate the safety distance between the car and the
truck, resulting in rear-end collisions [15].

6.3. Roadway Characteristics. For roadway attributes, the
signifcant variables that afect injury severity mainly include
Rpresent, Lpresent, Lsmin, and Lsmax. Among them, Rpresent is
positively correlated with severe injury likelihood in the 2018
IAC model. Te marginal efect shows that when the hor-
izontal curve radius of this road section increases by 1%, the
severe injury likelihood increases by 0.0533. Te possible
explanation is that the greater the horizontal curve radius is,
the drivers are more inclined to a higher operating speed,
and the probability of all kinds of crashes occurring in the
interchange area is higher.

Lpresent not only decreases the no injury likelihood in the
2019 NIAC model but also increases the minor injury
likelihood in the 2018 NIAC. Te marginal efect shows that
this variable is consistent among the two models, specifcally
as it increases the minor injury possibilities and decreases
the no injury/severe injury likelihood.

Lsmax is negatively correlated with the possibility of
minor injuries in noninterchange area crashes in 2017 and
2018. Marginal efects show that with a 1% increase in Lsmax,
the minor injury likelihood in NIAC decreased by 0.0206
and 0.0673, respectively, in 2017 and 2018, while the no/

severe injury likelihood increased correspondingly. Previous
studies have shown that steeper slopes indicate a shorter line
of sight, so the drivers have a shorter time to react appro-
priately to the upcoming crash [42–44]. Another explana-
tion may be the driver’s compensation mechanism for
potential risks. Due to the reduced sight distance, drivers
tend to operate more cautiously and conservatively and
eliminate injury severity outcomes obviously [45].

In addition, Lsmin is identifed as a signifcant random
parameter on the results of severe injury in the 2019 NIAC
model. Also, the normal distribution of N (−0.00463,
0.00215) indicates that 98.3% of 2019 NIAC tends to de-
crease the severe injury likelihood with increased Lsmin and
increase the severe injury likelihood for another 1.7% of
observations.

6.4. Environmental Characteristics. For environmental
characteristics, sunny, cloudy, rainy, snowy, and icy roads
are signifcant in the models. Among them, all the other
weather parameters are efective only in the NIAC models,
except for the icy road in the 2019 IAC model. In the 2019
IACmodel, icy road increases the severe injury likelihood by
0.0099.

Tere is a positive correlation between sunny weather
and severe injury in the 2017 NIAC model, while the
marginal efects demonstrate that the extreme injury like-
lihood increases by 0.0045 on sunny days. In addition, both
cloudy and snowy days are positively relevant to minor
injury outcomes in the 2018 NIAC model, and the marginal
efects show that cloudy and snowy days increase the minor
injury likelihood by 0.0232 and 0.0058, respectively. How-
ever, rainy weather is positively correlated with severe injury
in the 2019 NIAC model, increasing the severe injury
likelihood by 0.0042. Moreover, some recent studies argue
more minor and severe injuries during poor weather con-
ditions [14, 46, 47], while other research eforts indicate
contradictory fndings [17].

6.5. Temporal Characteristics. Monday is positively corre-
lated with severe injuries in the 2018 NIAC model. Tuesday
is negatively correlated with no injuries in the 2018 NIAC
model and positively correlated with severe injuries in the
2019 IAC model. Te results indicate the temporal variation
of the two variables to some extent. At the same time,
Wednesday shows a positive correlation with the severe
injuries in NIAC for the three years, while it was not sig-
nifcant in the NIAC models, revealing the non-
transferability of crash occurring among the two diferent
areas. Te marginal efect shows that the severe injury
likelihood in NIAC increased by 0.0069 to 0.0091 on
Wednesday.

As for the time of each day, the severe injury likelihood
increases in both early morning and night time. Te main
reason may be poor visibility in the early morning and night,
and easy fatigue or speeding driving, signifcantly increasing
the probability of severe crash consequences [48]. For ex-
ample, in the 2018 IAC model, the severe injury likelihood
during early morning increases by 0.0819, while the
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probability only increases by 0.0143 in the 2018 NIAC
model, indicating that IAC tends to involve more severe
injuries in the early morning. At the same time, in the 2017
and 2018 NIAC models, the afternoon time decreases the
minor injury likelihood, while the efects on severe injury are
relatively small. It is mainly due to the good light and driving
environment in the afternoon, so drivers are more likely to
percept potential risk scenes and take efective operations to
slow down or avoid collisions [45].

However, the infuence trend of spring on the injury
severity among 2017 and 2019 NIAC models is inconsistent.
Specifcally, the no injury likelihood increases by 0.0074 in
2017, while the likelihood decreases by 0.0083 in 2018,
specifying the temporal variability of the infuence trend to
some extent. Summer is positively correlated with the
probability of minor injuries only in the 2019 NIAC model.
In winter, the severe injury likelihood increases in the 2017/
2019 IAC models and 2017/2018 NIAC models, indicating
more severe injuries during winter. Te main explanation
might be that the crashes occurred in Jiangsu Province,
where the average temperature in winter is close to zero,
resulting in frequent icing on the road in winter, aggravating
the injury severity outcomes. Moreover, the adverse weather
conditions during these months could afect the driver
perception reaction time, especially under snow and rain
weather [49].

6.6. Trafc Characteristics. AADT (annual average daily
trafc volume) shows a normal efect across all models,
declining the probability of minor and severe injuries while
rising the no injury likelihood.Tis fnding is consistent with
previous studies because increasing trafc volume reduces
the driving speed of vehicles [42, 45]. However, high-speed
vehicles can lead to serious consequences of crashes.

Interestingly, certain diferences exist in the degree of
efects between IAC and NIAC models. For example, the
degree of impact of AADT in the interchange area is greater
than that in the noninterchange area. Specifcally, when
AADT increases by 1%, the decreased probability of severe
injuries in IAC is 1.1–2.3 times compared to that in NIAC.

6.7. Crash Characteristic. Sideswipe type signifcantly afects
severe and minor injuries in the 2017 and 2019 NIAC
models, respectively. Te marginal efect shows that this
crash type decreases the no injury likelihood and increases
the severe injury likelihood among both models. However,
in the 2017 NIAC model, a negative correlation exists be-
tween hitting fxed objects and severe injury outcomes. Te
marginal efect indicated that hitting fxed objects decreases
the severe injury likelihood by 0.0031. On the other hand,
of-road crashes were positively correlated with minor injury
results in 2019 NIAC.

Interestingly, other crash types were negatively and
positively correlated with minor injuries among the 2017
NIAC and 2018 IAC models, respectively. However, the
marginal efects were utterly opposite in three injury severity
levels. Specifcally, the severe injury likelihood in other
crashes in the IAC decreased by 0.0085 in 2018, while the

severe injury likelihood in NIAC increased by 0.0010
in 2017.

For the rescue response time, the rescue response time
exceeding 60minutes increases the probability of severe
injury in the 2018 NIACmodel, and themarginal efect value
is 0.0174.

6.8. Heterogeneity in Mean and Variance. It can be found
from the model results that among the crashes in the 2018
NIAC model, the parameter on Tuesday increases the mean
value of the random parameter single-vehicle crash by 4.707,
indicating an increased likelihood of severe injuries when
single-vehicle crashes occur on Tuesday. At the same time,
themean value of the random parameter Lsmin in 2019 NIAC
increased by 0.00215 in the early morning. Te severe injury
likelihood increases in road sections with large Lsmin in
NIAC. Tis also reveals the potential relationship between
the Lsmin and early morning, further indicating that the
severe injury likelihood increases in the early morning time.

In terms of the heterogeneity of random parameter
variance, afternoon decreases the variance of the random
parameter single-vehicle in the 2018 NIAC model by 0.343,
indicating that, in 2018, the afternoon likelihood of single-
vehicle crashes with severe injuries in noninterchange areas
decreased. Te results could be further evidence of better
visibility and driving conditions during afternoon.

Te mean and variance of random parameters only exist
in the NIAC model. Tese heterogeneities improve the ft in
goodness degree and estimation accuracy of the model to
some certain extent. Ten, they capture the potential in-
fuences between parameters and reveal the degree of in-
fuence of the correlation between the two parameters on the
injury severity outcomes.

6.9. Practical Implications. To show the diferences in the
determinants, Table 12 compares the determinants showing
the diferences in temporal shifts and crash areas. Tese
results have specifc guiding recommendations for the safety
measures and decision-making of road designers and trafc
management departments, and the safety improvement
strategies among interchange areas and noninterchange
areas could be proposed as follows:

(1) During the early morning and night time, it is
recommended to set up active luminous warning
messages, speed limit signs, and other reasonable
measures. Tese measurements could prevent
drivers from speeding or fatigued driving, especially
in the interchange entrance and exit areas.

(2) In addition, educational programs should be set up
to enhance safe driving.

(3) Trafc management agencies should intensify eforts
to strictly strengthen the punishment and law en-
forcement of dangerous driving behavior.

(4) Necessary exit signs should be set at appropriate
locations to ensure that drivers have enough time to
change lanes, such as setting solid lane change lines
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or oscillating lines in front of the on-ramp to control
random lane-changing behaviors strictly.

(5) Stricter enforcement measures should be raised to
prevent random lane changes, especially at in-
terchange entrance and exit areas.

(6) For the snow and icy roads in winter, appropriate
facilities such as a monitoring system, speedometer,
and audio warning system should be added to re-
mind drivers to pay attention to the slippery road
surface and reduce the operating speed to improve
highway safety.

(7) Separate lanes should be implemented for cars and
trucks to decrease the interaction among cars and
trucks and eliminate the injury severity outcomes of
the crashes.

(8) During the roadway designing, the horizontal and
vertical alignments of the coordination curve should
be optimized to have continuous coordination of the
road in the three-dimensional geometric parameters.

7. Conclusions

Based on crash data from the Beijing–Shanghai Expressway
across three years (2017–2019), this study analyzes the
diferences between crashes in interchange and non-
interchange areas, along with the temporal shifts in the
determinants afecting the injury severity levels. Based on
this study, the following conclusions are summarized:

(1) By comparing with the other three basic logit models
(fxed parameter logit model, the random parameter
logit model, and the random parameter logit model
with heterogeneity in mean), the RPLMHMV is
adopted with better ft in goodness and simulation
accuracy. Ten, severe injury, minor injury, and no
injury are considered to identify the signifcant vari-
ables among the driver, vehicle, roadway, environ-
mental, temporal, trafc, and crash characteristics.

(2) Te LRT and OOSP demonstrate the efects of
variables vary signifcantly across year periods and
crash areas. In addition, model results and marginal
efects also show that signifcant parameters, cor-
responding infuence trends, and degrees are dif-
ferent in diferent individual models. For example,
although the early morning and AADT have the
same infuence trend, specifc diferences exist in
infuence degree. Moreover, the models’ results show
certain diferences in the risk factors among IAC and
NIAC models.

(3) Future research will be conducted based on more
expressways or regions to reveal the general evaluation
of crash outcomes in the diferent areas of China.
However, generally, the current fnding could help
expressway designers and decision-makers understand
the contributing mechanism to raise proper manage-
ment strategies and enforcement countermeasures to
eliminate the injury severity outcomes targeted at the
interchange and noninterchange areas.

(4) Some limitations exit in the current study has lim-
itations, including the missing variables concerning
demographic characteristics that might lead to un-
observed heterogeneity. Ten, the data sample was
small, for it was collected from two freeways. Te
crash data from more freeways could be collected to
exploremore accurate estimated results. Moreover, it
is noted that the crash number for interchange areas
is limited compared to that for noninterchange areas.
More exploration would be conducted based on
more detailed dataset by proposing advanced
approaches.
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