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Te widespread adoption of electric vehicles (EVs) can help attain economic and environmental sustainability by reducing oil
dependency and greenhouse gas emissions. However, several issues need to be addressed before EVs can become a popular vehicle
choice among the general public. A key issue is the perpetual reduction in EV battery capacity caused by battery degradation over
time with usage. Tis can lead to a reduced driving range and cause “range anxiety” for EV drivers. Tis becomes even more
critical in developing countries where consumers are highly sensitive to battery replacement costs. Tus, to promote EVs in
developing economies, policymakers and vehicle manufacturers need to develop attractive incentive schemes and warranty
strategies preceded by a thorough assessment of the useable EV battery lifespan for a wide range of users. Tis paper develops a
multiparadigm modeling framework to compute battery degradation for a large population of EVs by capturing the efects of
travel patterns, trafc conditions, and ambient temperature.Te proposed framework consists of four diferent building blocks: (i)
a microscopic trafc simulation model to generate speed profles, (ii) an EV power consumption model, (iii) a battery equivalent
circuit model, and (iv) a semiempirical battery degradation model. Te proposed framework can also be used to assess the battery
life-cycle of electric-powered automated vehicles by adjusting their travel patterns accordingly. A case study is presented using
travel diary data of around 700 households from the U.S. National Household Travel Survey of 2009 to simulate household travel
patterns and corresponding battery lifespan distribution.

1. Introduction

Te transportation sector’s share of energy consumption has
been steadily increasing in developing economies like India
[1]. Tis makes the transportation sector in developing
countries one of the major contributors to urban air pol-
lution [2]. Electric vehicles (EVs) have zero tailpipe emis-
sions, making them a promising alternative to conventional
fossil fuel-based vehicles for curbing greenhouse gas emis-
sions [3]. EVs can also potentially reduce national oil de-
pendency as the renewable and nuclear energy sectors grow.
Several automobile companies have already introduced EVs
to the market. For example, in 2021, Volvo announced a plan

to cease ICEV production from 2030 onwards and to
produce only BEVs and PHEVs [4]. Policymakers are also
currently ofering incentives to encourage the purchase of
EVs [5]. For example, under the clean vehicle rebate project
[6], the California Environmental Protection Agency
(CalEPA) provides a rebate of up to $7,000 for EV purchases.

Despite international eforts, the greater adoption of EVs
still faces several challenges. For example, the reduced
maximum driving range due to battery degradation can
accentuate range anxiety (i.e., the fear of running out of
battery charge before completing the trip) among EV drivers
over time [7, 8]. Te costs associated with battery replace-
ment from degradation can further deter EV purchases. Tis
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impending inconvenience and economic burden make af-
fordable EVs unattractive for new automobile buyers, es-
pecially in developing countries where consumers are more
sensitive towards costs. Te scarcity of information on
battery degradation and contributing factors also plays a
critical role in increasing consumer skepticism. A thorough
understanding of the efects of travel patterns, driving
characteristics, and environmental factors on EV battery
lifespan would assist vehicle manufacturers and policy-
makers in designing appealing incentive schemes and
warranty strategies to increase EV adoption [9]. It can also
help consumers make informed decisions based on their
travel patterns and driving behaviors.

In this context, this study proposes a multiparadigm
modeling framework to estimate the useable battery lifespan
of a large population of EVs. Te useable battery lifespan is
defned as the duration within which the maximum EV
battery capacity degrades below a certain threshold of its
original capacity and needs to be replaced for regular use. It
is an important factor in deriving the energy consumption
estimation model for EVs [10]. Te generally accepted
battery degradation threshold before it needs replacement is
considered to be 20 to 30% of its original capacity [11, 12].
Te proposed modeling framework consists of four diferent
building blocks: (i) a network-level microscopic trafc
simulation model to obtain realistic drive cycles or speed
profles (i.e., a series of vehicle speeds versus time) of the
vehicles; (ii) an EV power consumption model to compute
the power profle from the speed profle; (iii) a battery circuit
model that converts the power profle to a battery current
fow profle; and (iv) a semiempirical battery degradation
model that simulates battery lifespan based on current fows
and ambient temperature. Te multiparadigm approach
provides the fexibility to use the most suitable modeling
methods at each step. Some studies have used multi-
paradigm or multistage approaches in EV-related research,
including digital battery lifespanmanagement [13]; however,
to the best of our knowledge, they have not been used to
understand the impacts of travel patterns on the battery
lifespan.

Battery degradation or battery aging can be classifed
into two diferent mechanisms: calendar aging (during
storage) and cycle aging (during use). Aging happens as a
result of structural disordering, variation in electrolyte
composition, or loss of active material caused by thermo-
dynamic instability [14, 15]. Calendar aging is mainly caused
by the growth of a protective layer at the anode called solid
electrolyte interphase (SEI), which results in the loss of active
material (e.g., lithium) and increased electrode impedance
[14, 16]. Cycle aging is mainly caused by structural changes
and chemical decomposition of active material at the
cathode and changes in SEI at the anode from electrolyte
reactions during charging and discharging [17]. Although
total degradation is considered as the summation of both
calendar aging and cycle aging, their degradation mecha-
nisms are not independent, and interactions occur [17]. Tis
study focuses on modeling Li-ion battery degradation since
most commercially available EVs use lithium-ion (Li-ion)
battery packs [8]. Due to the inherent complexity of aging

mechanisms and their interactions, several semiempirical
battery degradation models [11, 18–21] and statistical
models [22] based on experimental data have been proposed
in the past literature.

Several eforts have been made in the past to quantify the
useable battery lifespan of EVs. For example, Marano et al.
[23] and Onori et al. [24] proposed a model to compute
battery degradation for plug-in hybrid electric vehicles
(PHEVs) using depth-of-discharge (DoD) (i.e., the per-
centage of battery capacity used before recharging) and
battery temperature using linear combinations of standard
driving schedules like the Urban Dynamometer Driving
Schedule (UDDS) [25], which limits its applicability to a
large population of EVs with diverse travel patterns and
driving behavior. Guenther et al. [26] investigated vehicle-
to-grid applications for synthetic drive cycles using a sim-
plistic energy-based battery model, which ignores the efects
of internal resistance and cell voltage at diferent state-of-
charge (SOC) (i.e., the percentage of battery capacity
available). Peterson et al. [27] analyzed vehicle-to-grid ap-
plications using UDDS and concluded that using a realistic
drive cycle is important to quantify battery degradation as
DoD may provide misleading results. Some studies have
evaluated the impacts of battery recharging strategies on
battery degradation using a combination of DoD, SOC, and/
or temperature [28, 29]. However, these models assume a
very simplistic drive cycle with little or no variation in speed
and, hence, the current fow through the battery.
Remmlinger et al. [30] presented a method to compute the
degradation index relative to the degradation of new bat-
teries by using the measurement values of cell voltage and
current fow. Pelletier et al. [31] provide a brief overview of
several Li-ion battery degradation models that can be used
for EV applications. Te proposed multiparadigm frame-
work extends the existing battery lifespan computation
frameworks by introducing a microscopic simulation layer
to assess heterogeneity in travel patterns and driving be-
havior. Yang et al. [32] developed a novel analytical
framework to determine battery degradation based on travel
demand and the ambient high temperature of the battery.
Teir results show that battery life ranges from approxi-
mately 5 years in Florida to 13 years in Alaska, the United
States. Tey also showed that if an EV continues to operate
after the 30% battery degradation limit, the greenhouse gas
emissions and energy consumption can be signifcantly
increased. Xu et al. [33] proposed a Q-learning-based
strategy to minimize Li-ion battery degradation and energy
consumption.TeQ-learningmethod is an adaptive optimal
control algorithm that uses the Bellman equation of dynamic
programming. It is shown that Q-learning decreases the
battery capacity loss and increases the lifespan by 13-20%. A
summary of the literature on battery degradation models is
presented in Table 1.

Te key contributions of this research are threefold.
First, this study proposes a multiparadigm modeling
methodology to derive the useable lifespan of battery of a
large population of EVs. Second, this study integrates a
microscopic trafc simulation model to account for the
driving behavior heterogeneity for battery lifespan
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estimation. Tird, each component of the multiparadigm
method ofers the fexibility to incorporate even newer
models or real-world data without changing the framework’s
overall structure. For instance, real-world vehicle speed data,
if available, can replace the trafc simulation model.

Te following section introduces the multiparadigm
modeling framework to quantify battery lifespan for a large
population of EVs and discusses each building block in
detail. Ten, a case study for the city of Indianapolis, U.S., is
presented, and the results are discussed to illustrate the
impacts of travel patterns, driving behavior, and tempera-
ture on battery lifespan. Te paper concludes with a dis-
cussion on potential applications of the proposed framework
and insights for policymakers, vehicle manufacturers, and
other stakeholders to aid greater EV adoption.

2. Methodology: Multiparadigm
Modeling Framework

Te proposed framework is composed of four modeling
stages. Tis framework requires household vehicle travel
patterns as input, which can be obtained using resources
such as the U.S. National Household Travel Survey [38]. At a
minimum, household vehicle travel patterns should include
details about departure time, travel time, and distance
traveled for all trips made by a particular vehicle on a given
day. Te microscopic trafc simulation model based on a
real-world road network is calibrated using available trafc
demand data to generate realistic drive cycles. Each trip in
household travel patterns is then matched to a suitable drive
cycle generated by the trafc simulation model. Te speed
profles are then fed into an EV power consumption model
to compute the power profles. A battery equivalent circuit
model is then employed to get a time series of current fow
and SOC of the EV battery. Tese data are subsequently

inputted to a semiempirical battery degradation model to
calculate the battery state-of-health (SOH) (i.e., the ratio of
current battery capacity to its original capacity).

2.1. Microscopic Simulation Model. Trafc simulation
models are widely used to capture nonlinear interactions
between vehicles and infrastructure at a microscopic level.
Such models can simulate vehicle dynamics and output
dynamic variables like position, speed, and acceleration for a
large number of vehicles. In this framework, a time series of
vehicle speeds is needed to compute the power requirement
from the EV battery for propulsion. Te simulation model
needs to be calibrated using travel demand data between
origin-destination pairs for the given road network. Te
aforementioned information can be gathered from multiple
sources, like regional trafcmanagement websites and open-
source online resources (e.g., OpenStreetMap). Te realism
of the simulation model can be further enhanced by in-
cluding more information such as trafc management in-
frastructure (e.g., trafc signals) and driver behavior (e.g.,
car-following model parameters). Te simulated drive cycles
are then used as input for the EV power consumption model
discussed below.

2.2. Electric Vehicle Power Consumption Model. EV power
consumption depends directly on the vehicle speed profle.
Since the kinetic energy of a vehicle depends on its speed, it
is necessary to capture changes in the speed at a microscopic
level to accurately compute the vehicle’s power require-
ments. Some simulation packages such as ADVISOR [39]
and Autonomie [40] can compute energy consumption and
MPGe (miles per gasoline equivalent) using drive cycle data.
Tese tools simulate a detailed EV drivetrain system and
hence are computationally expensive. Since a key application

Table 1: Summary of the literature on battery degradation models.

Study Degradation model Cycle
life

Calendar
life Input

Marano et al. [23] Damage accumulation model Y N Current severity relative to battery size (i.e., C-rate),
temperature, DoD, and SOC

Peterson et al. [27] Integrated driving and energy use profle
modeling framework Y N C-rate, discharge power rate, DoD, and driving

profle
Remmlinger et al.
[30]

Internal resistance dependent
degradation model Y N Temperature, SOC, and power demand

Onori et al. [24] Weighted Ah-throughput model Y N Temperature and DoD
Guenther et al.
[26] Energy-based battery model Y Y Temperature and power demand

Ouyang et al. [34] Prognostic and mechanistic model Y N C-rate and temperature

Yang et al. [32] Pseudo two-dimensional battery capacity
fading model Y Y Temperature, travel demand, and driving profle

Calearo et al. [35] Integrated thermal and SOC dynamics
model Y Y Temperature and SOC

Motapon et al.
[36] Physical degradation model Y N C-rate, temperature, and DoD

Olmos et al. [37] Empirical degradation model N Y C-rate, temperature, DoD, and SOC
Xu et al. [33] Control-oriented cycle-life model Y Y C-rate, temperature, and SOC

Our study Semiempirical trafc simulation-based
degradation model Y Y C-rate, temperature, travel demand, and driving

profle
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of the proposed framework is to quantify battery degrada-
tion for a large population of EVs, it is important to select a
computationally efcient model at each step. Tis study
adopts a physical model proposed by Van Haaren [41] to
compute power consumption. Tis approach is used for the
following reasons: (i) the model parameters are ftted using
real-world Tesla Roadster data [42], and (ii) the computa-
tional runtime is signifcantly lower than the simulation
packages mentioned before. Tis framework provides fex-
ibility to use other similar EV power consumption models
that take speed data as a primary input [43, 44].

Te physical model used in this study computes the net
vehicle power loss/gain (Pnet) as the sum of two components.
First, the power required to maintain a constant speed
(Pcons). Second, vehicle power requirements at variable
speed during loss/gain in kinetic energy while accelerating or
braking (Pkin). Te power loss/gain due to road grade is
assumed to be zero but can be added to this model by
considering the power gain/loss due to the change in po-
tential energy of the vehicle (Ppot). Te total power loss (in
Watts) at constant speed is the sum of power losses due to
aerodynamics (Par), drivetrain (Pdr), rolling friction (Prr),
and ancillary systems (Pan) as expressed in equations (1)-(6).
Te parameter defnitions and values are presented in Ta-
ble 2. Some of the parameter values are adapted to match the
[43] model, a plug-in electric compact car that accounted for
more than 23% of plug-in EV sales in the U.S. in 2013 [45].

Par �
1
2
ρAvehCdV

3
, (1)

Pdr � αdrV
3
mph + βdrV

2
mph + cdrVmph + cdr, (2)

Prr � crrmgV, (3)

Panc � 180, (4)

Ppot � mg(V sinθ), (5)

Pcons � Par + Pdr + Prr + Pan + Ppot. (6)

Te total kinetic energy (in Joules) of the vehicle (Ekin)
consists of linear kinetic energy (Elin) and rotational kinetic
energy (Erot). For simplicity, the model assumes that the
rotational kinetic energy is approximately 5% of the linear
kinetic energy. Te power loss/gain at variable speed is the
change in kinetic energy (ΔEkin) for the given time interval
(Δt) as expressed in equations (7)-(9).

Elin �
1
2

mV
2
, (7)

Ekin � Elin + Erot � 1.05Elin, (8)

Pkin �
ΔEkin

Δt
. (9)

Te net power loss is multiplied by the battery-to-motor
efciency factor to account for the inefciencies in electrical

to kinetic energy conversion. Similarly, the regeneration
efciency factor is multiplied to account for the energy
recuperation from the regenerative braking system in case of
net power gain. Te net power consumption of EVs is
bounded by their battery limits as expressed in equation (10).
Tis framework assumes these limits as −7 kW (Pmin) and
100 kW (Pmax).

Pnet �

Pmax,
Pcons + Pkin( 

βeff
≥Pmax ,

Pcons + Pkin( 

βeff
, Pcons + Pkin( ≥ 0,

βrbs Pcons + Pkin( , Pcons + Pkin( < 0,

Pmin, βrbs Pcons + Pkin( ≤Pmin.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

2.3. Battery Equivalent Circuit Model. Cycle aging primarily
depends on the current fow through the battery during
charging or discharging (or C-rate). A 1C rate is defned as
the theoretical discharging current drawn from the battery
that will discharge the entire battery in an hour at its rated
nominal voltage. A 2C rate implies double the amount of
discharging current corresponding to the 1 C rate; that is, it
will discharge the battery in half an hour. Tis framework
implements a battery equivalent circuit as illustrated in
equations (11)-(16). Te parameter values for Reference [46]
are obtained from its owner’s manual [46] and advanced
vehicle testing activity data [47]. Model parameter defni-
tions and values are presented in Table 3. Te model uses 1-
D lookup tables to get the cell internal resistance Rint(t)
during charging/discharging and open-circuit voltage
VOC(t) at diferent SOC, as illustrated in Figures 1 and 2,
respectively. Due to the lack of data, the internal resistance
and open-circuit values are assumed to be constant until the
battery’s end-of-life (EOL). Tis assumption can be relaxed
by using 2-D lookup tables containing internal resistance
and open-circuit voltage values with respect to both battery
SOC and SOH, if such data are available.

Vcell(t) � VOC(t) − Rint(t) · Icell(t − 1), (11)

P
max
chg (t) �

−V
max
out V

max
out − VOC(t) · Ns( 

Rint(t)
· Nt ,

(12)

P
max
dis (t) �

V
min
out VOC(t) · Ns − V

min
out 

Rint(t)
· Nt, (13)

Pout(t) �

P
max
dis (t) Pout(t)≥P

max
dis (t)

Pout(t) P
max
dis (t)≥Pout(t)≥P

max
chg (t),

P
max
chg (t) Pout(t)≤P

max
chg (t)

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(14)
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Icell(t) �
Pout(t)

V
c
out(t) · Ns

· Np,

Irate(t) �
Icell(t)

Kcell · δsoh
,

(15)

δsoc(t) � δsoc(t − 1) − Irate(t) · Δt. (16)

2.4. Battery Degradation Model. Battery degradation is af-
fected by several factors such as battery temperature, SOC,
C-rate, and total current throughput (Ah-throughput) [48].
Some models approximate the total Ah-throughput as a
product of constant depth-of-discharge and the number of
cycles [23]; thereby, ignoring the efects of SOC and C-rate.
Tis framework adopts a semiempirical battery degradation

model proposed by Wang et al. [21] that includes three
important parameters: time (or battery age), temperature,
and C-rate. It computes calendar aging (Qcal) as a function of
time (τ) and temperature (T) and cycle aging (Qcyc) as a
function of temperature, C-rate (Irate), and lifetime Ah-
throughput (Iah). Te model parameters are ftted using
experimental aging data for high-power density 1.5 Ah,
18650 cylindrical cells with LiMn1/3Ni1/3Co1/3 + LiMn2O4
(NCM+LMO) cathode and a graphite anode. Teir results
indicate that the predicted values are within ±5% of the
measured battery capacity loss. Te model can be expressed
as equations (17)-(19).

QT � Qcal + Qcyc, (17)

Qcal � fτ0.5
· exp −

Ea

RT
 , (18)

Table 2: EV power consumption model parameters.

Parameter Defnition Value
V Vehicle speed in meters per second
Vmph Vehicle speed in miles per hour
ρ Air density (kg/m3) 1.225
Aveh Vehicle front area (m2) 2.27
Cd Drag coefcient 0.28
αdr Drivetrain coefcient 1 0.004
βdr Drivetrain coefcient 2 0.5
cdr Drivetrain coefcient 3 29.3
cdr Drivetrain coefcient 4 375
crr Rolling resistance coefcient 0.0075
m Vehicle mass (kg) 1520
g Gravity (m/s2) 9.81
θ Road grade 0
Δt Discrete time step (s) 1
βeff Battery to motor efciency 0.85
βrbs Regeneration efciency 0.4
Pmax Maximum power output (W) 100,000
Pmin Minimum power loss or maximum regeneration/recharging power gain (W) −7,000

Table 3: Battery equivalent circuit model parameters.

Parameter Defnition Value
Ns Number of cells in series in each module 96
Np Number of parallel modules 2
Nt Total number of cells in battery pack 192
VOC(t) Cell open-circuit voltage at time t (V) Using lookup-table
Rint(t) Cell internal resistance at time t (Ω) Using lookup-table
Icell(t) Cell current at time t (A) Icell(0) � 0
Vcell(t) Cell terminal voltage at time t (V)
Vmin

out Minimum battery terminal voltage (V) 336
Vmax

out Maximum battery terminal voltage (V) 403.2
Pout(t) Battery power requirement at time t (W)
Pout(t) Actual battery power output at time t (W)
Pmax
dis (t) Maximum battery power output while discharging at time t (W)

Pmax
chg (t) Maximum battery power input while charging at time t (W)

Irate(t) C-rate at time t

Kcell Rated cell capacity (Ah) 33.1
δsoc(t) Battery state-of-charge at time t

δsoh Battery state-of-health
Δt Discrete time step (seconds) 1
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Qcyc � aT
2

+ bT + c  · exp (dT + e) · Irate  · Iah. (19)

To account for the variable C-rate and temperature, the
model is modifed by taking the diferentiating total ca-
pacity loss function with respect to a discretized time step
(Δτ). For each time step, the current fow is assumed to be
constant, and instantaneous capacity loss (DT) is computed
as the sum of instantaneous capacity loss Dcap and in-
stantaneous cycle loss Dcyc by taking the diferential of their
respective functions. Te sum of instantaneous capacity
loss is updated to get the total capacity loss until the battery
replacement threshold limit (δrep) is reached. Hence, the
battery lifespan is equal to the number of days elapsed
before the total capacity loss reaches the specifed threshold
limit. Because Reference [49] has a rated nominal cell
capacity of 33.1 Ah and the data are calibrated for 1.5 Ah
cells, a correction factor (βcorr) equal to the ratio of rated
nominal capacities is multiplied by the cycle loss. Equations
(20)-(22) describe the modifed model, and Table 4 shows
the parameter values.

DT � Dcal + Dcyc, (20)

Dcal � 0.5fτ− 0.5
· exp −

Ea

RT
 , (21)

Dcyc � aT
2

+ bT + c  · exp (dT + e) · Irate(τ) 

· Icell(τ) · βcorr.
(22)

Tis model uses ambient temperature as a proxy for
battery temperature, thereby assuming that the thermal
efects on internal resistance and cell current are negligible.
Tis assumption can be addressed by including a suitable
electrochemical-thermal model in the framework (see
Reference [50] for a review) or by using a 1D lookup table
to link battery temperature with the environment tem-
perature and battery cell characteristics (e.g., [51, 52]. Te
model parameters are calibrated for discharging current
only. Tus, it is assumed that charging and discharging will
have a similar impact on cycle aging based on the absolute
value of Irate.

3. Data: Case Study

A case study is presented using the proposed framework for
the city of Indianapolis, Indiana, U.S. Real-world household
vehicle travel pattern data were extracted from U.S. National
Household Travel Survey (NHTS) of 2009 [38]. Te NHTS
dataset contains 1-day travel diary data of 821 vehicles (with
vehicle type as “car”) in the state of Indiana. Te key var-
iables of the NHTS dataset include household ID, vehicle ID,
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vehicle type, trip departure time, trip arrival time, and trip
travel time for all trips made by the household in a single day.
Since most afordable EVs have a driving range of about 80-
100 miles, vehicles with trip distances exceeding 80 miles for
any single trip are excluded from the analysis to avoid
situations with EVs running out of battery in the middle of a
trip. In the preliminary data analysis, we observed that
several vehicles having longer total daily distance did not
have sufcient time between trips to recharge the battery.
Tus, based on our preliminary data inspection, we also
excluded vehicles with total daily distance exceeding 120
miles from the analysis. Tese distance-based exclusion
criteria reduced our dataset to 760 vehicles. A microscopic
trafc simulation model is created to generate realistic drive
cycles for the vehicles using the simulation software Aimsun
[53]. A detailed road network of Indianapolis containing all
major freeways, most urban roads, and some minor roads is
built in AIMSUN (see Figure 3). A dynamic 15-minute time
period origin-destination trafc demand matrix is simulated
for a 24-hour time horizon with an additional 1-hour warm-
up period. Te trafc demand is calibrated using NHTS trip
data for Indiana. Te departure time period, distance
traveled, travel time, and speed profle of each simulated
vehicle are recorded. We generated 41,736 unique simulated
drive cycles. Each NHTS trip is matched to a simulated drive
cycle which has the least Euclidean distance in terms of both
trip distance and average speed. NHTS households with
missing simulated drive cycle data for any number of trips
are excluded from the analysis. Since most afordable EVs
have a driving range of about 80-100 miles, vehicles with a
trip distance exceeding 80 miles for any single trip or total
daily distance exceeding 120 miles are also excluded. In the
end, a total of 3,225 trips made by 697 vehicles were ana-
lyzed.Most parameter values in the battery equivalent circuit
model and degradation model are taken for Reference [43]
with a 24 kWh Li-ion battery. Te battery degradation
threshold is taken as 30%, that is, the battery is considered to
be unusable once its SOH is 70%. Daily average temperature
values for Indianapolis in the year 2018 (see Figure 4) are
used in a loop to compute both calendar and cycle aging
[54]. Since degradation computation is performed for each
time step, it allows the use of higher resolution temperature
data (e.g., hourly temperature) for more accuracy. Due to
data limitations, it is assumed that household vehicle travel
patterns remain unchanged until the end of useable battery
life. Tis assumption can be relaxed with the availability of a

richer travel pattern dataset. Te vehicle is assumed to be
fully charged to its SOH level at the start of every day.
Opportunistic charging behavior is assumed during the day
with a constant charging power of 7 kWh.

4. Results and Discussion

Te impacts of driving behavior and travel patterns on
battery lifespan are analyzed using the proposed multi-
paradigm modeling framework. Figure 5 shows the daily
distance traveled distribution for the case study data. More
than 80% of households travel less than 50 miles per day.
Using simulated drive cycles allows the analysis of hetero-
geneity in driving behaviors such as average speed and speed
deviation. Te average speed and speed deviation for all
households’ combined daily drive cycles of all trips are il-
lustrated in Figure 6.Te population means of average speed
and speed deviation are 37.9mph and 16.4mph,
respectively.

Most automobile manufacturers ofer battery warranties
based on either battery age, total distance traveled, or their

Table 4: Battery degradation parameter values and units.

Parameter Value and unit Parameter Value and unit
a 8.61 e− (1/Ah-K2) Iah Lifetime current throughput (Ah)
b −5.125 e− (1/Ah-K) Irate(τ) C-rate at time τ
c 0.7629 (1/Ah) Icell(τ) Cell current at time τ (A)
d −6.7 e− 3 (1/K-(C-rate)) βcorr 1.5/33.1
e 2.35 (1/(C-rate)) Ea 24500 (J/mole)
f 14876 (1/day0.5) R 8.314 (J/K-mole))
τ Time (in days) T Temperature (K)
Δτ Discretized time step (in days) δrep 30%

Figure 3: Road network of Indianapolis, U.S., used in the
simulation.
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combination as a threshold. For example, Reference [46]
covers the necessary repairs needed to return battery ca-
pacity to about 75% of the original capacity for a period of 5
years or 60,000 miles, whichever comes frst [49]. Te case
study analysis results indicate that almost 50% of the bat-
teries reach their SOH threshold within 5 years and 90%
within 8 years. Te useable battery lifespan distribution is
illustrated in Figure 7. In terms of total distance traveled
before EOL, the 50% and 90% quantiles for battery lifespan

are approximately 44,500 miles and 72,500 miles,
respectively.

To analyze the impact of driving behavior, the average
speed and speed deviation for each household are classifed
as “higher” or “lower” groups based on their value compared
to their respective population means. Te results indicate
that there is little or no diference between the higher and
lower average speed groups for the same total distance
traveled before EOL (see Figure 8). On the contrary, an
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Figure 4: Daily average temperature values for Indianapolis, U.S., in 2018.
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apparent decrease in battery lifespan can be observed among
households with higher speed deviation than those of lower
speed deviation (see Figure 9). A higher speed deviation
entails more fuctuations in kinetic energy due to acceler-
ation and deceleration (see Section 2.2), which increases the

vehicle’s overall power consumption. Hence, the diference
in lifespan is caused by this additional amount of power
required, and thereby, the current fows through the battery
to balance the fuctuating kinetic energy at variable speed.
Tese fndings illustrate the importance of using realistic and
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Figure 7: Useable battery lifespan distribution.
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Figure 8: Battery lifespan vs. total distance traveled for average speed-based classifcation.
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diverse drive cycles over combinations of standard driving
schedules to account for diferences in driving behaviors.

 . Concluding Comments

Tis study presents a multiparadigmmodeling framework to
quantify the useable battery lifespan of a large population of
EVs.Te inclusion of a microscopic trafc simulation model
in the framework enables the analysis of driving behavior
heterogeneity in battery lifespan estimation. Each building
block of the multiparadigm approach provides the fexibility
to include newer models or real-world cases without af-
fecting the framework structure. For example, the trafc
simulation model can be replaced by real-world vehicle
speed data if such data are available. Tis study uses the
vehicle and battery specifcations of Reference [49] in the
case study, but the proposed framework can be used to assess
other EVs, such as e-rickshaws, by changing the parameter
values accordingly. Te impacts of vehicle travel patterns
and driving behavior (e.g., speed deviation) on EV battery
lifespan under regional temperature trends can provide
useful information for vehicle owners, policymakers, and
vehicle manufacturers. Te framework can be used by ve-
hicle owners to assess the lifetime cost of EV ownership,
including battery maintenance cost, insurance cost, and
battery resale value, based on their travel needs, driving
behavior, and geographic location. In addition, policy-
makers can use battery lifespan distribution for regional
temperature and trafc conditions to design incentive
strategies, such as tax credits and extended battery war-
ranties, to regulate EV adoption trajectories. It allows vehicle
manufacturers to factor in regional conditions and con-
sumer driving behaviors while evaluating the performance
and economics of diferent batteries by modifying the
battery equivalent circuit model and degradation model
accordingly. Te proposed framework can be utilized to
enhance EV research applications such as battery man-
agement strategies (e.g., maximum/minimum SOC range) to
enhance battery lifespan, battery recharging strategies, ve-
hicle-to-grid applications, etc., by including realistic vehicle
travel patterns and driving behavior. Furthermore, there is
an ongoing argument among researchers to promote elec-
tric-powered autonomous vehicles (AVs) over gasoline-
powered AVs to limit greenhouse gas emissions andmitigate
negative environmental impacts. Te proposed framework
can be used to assess the battery life and, thereby, life cycle
environmental impacts of a large population of electric-
powered AVs. Tis research can be extended in diferent
directions. Te frst potential future research direction is to
integrate the electrochemical-thermal efects into the battery
degradation model. Tis integration enables for more ac-
curate battery health state monitoring as it accounts for the
external measurements of terminal voltage, applied current,
and surface temperature of the battery [13, 55, 56]. Te
second research direction is to compare the efects of travel
patterns on fuel consumption between EVs and traditional
internal combustion engine vehicles. Te third research
direction is to consider the battery degradation model for
diferent types of batteries used in EVs. Te battery

degradation of diferent EV batteries varies based on the
charging/discharging rate, number of cycles, and tempera-
ture. Te detailed information for some recent battery
technology is presented by Zhao et al. [57] andMathieu et al.
[58]. Te disaggregate battery degradation model should be
calibrated for each type of EV to increase the accuracy of the
results.
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