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Cellular signaling data have become increasingly indispensable in analyzing residents’ travel characteristic. Especially with the
enhancement of positioning quality in 4G-LTE and 5G wireless communication systems, it is expected that the identifcation
accuracy of fne-grained travel modes will achieve an optimal level. However, due to data privacy issues, the empirical evaluation
of the performance of diferent identifcation methods is not yet sufcient. Tis paper builds a travel mode identifcation model
that utilizes the gated recurrent unit (GRU) neural network.With 24 features as input, this method can identify four trafcmodes,
including walking, bicycle, car, and bus. Moreover, in cooperation with the operator, we organized an experiment collecting
cellular signaling data, as well as the corresponding GPS data. Using the collected dataset as ground-truth data, the performance of
the method presented in this paper and other popular methods is verifed and compared. Te results indicate that the GRU-based
method has a better performance, with a precision, recall, and F score of 90.5%. Taking F score as an example, the outcome of the
GRU-based method is about 6% to 7% higher than methods based on other machine learning algorithms. Considering the
identifcation accuracy andmodel training time comprehensively, the method suggested in this paper outperforms the other three
deep learning-based methods, namely, recurrent neural network (RNN), long short-term memory network (LSTM), and bi-
directional long short-term memory network (Bi-LSTM). Tis study may provide some insights for the application and de-
velopment of cellular signaling-based travel information collection technology for residents in the future.

1. Introduction

Understanding travel behaviors is important for urban
transportation planning and management. A traditional
data collection method is to organize residents’ travel sur-
veys, which include face-to-face household surveys, or
questionnaires completed by telephone, e-mail, and web
online.Tese kinds of approaches often lead to some defects,
which typically include the huge implementation costs, an
uneven sampling rate, the relatively low response rate, and
the poor data quality [1, 2]. Since the early 2000s, scholars
have developed several methods to collect residents’ travel
information based on GPS data. Compared to traditional

manual surveys, GPS-based methods can reduce the re-
sponse burden and investigation cost. GPS-based travel
information also trends to be more accurate and with more
details [3]. However, this method requires participants to
take a specifc GPS recording device along or install GPS
recording software on their mobile phones, resulting in
a series of issues such as data privacy, increasing imple-
mentation cost, or higher mobile Internet communication
costs. Tese shortcomings limit the implementation scale of
GPS-based methods.

During the past decades, with the growth and spread of
wireless communication services, the estimation of resi-
dents’ mobility and urban travel characteristics according to
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cellular signaling data has attracted wide attention. Cellular
signaling data are a kind of passive tracking data. Tey are
generated when a cellular phone is linked to a communi-
cation base station due to various communication services,
such as turning on/of, making calls, sending text messages,
or connecting to the mobile Internet. Tus, the data can
register the phone user’s trajectories in the base station
networks. On the basis of the potential mapping relationship
between the real trip trajectories and the connection se-
quences of base stations, inferring the user’s trip details
using cellular signaling data can be expected [4, 5]. Com-
pared with travel survey and GPS data, cellular signaling data
have the advantages of 24-hour uninterrupted collection,
wide spatial coverage, and high sampling rate. Meanwhile,
the operators need not install additional acquisition
equipment, so it can achieve relatively low data collection
cost. Based on these technical advantages, scholars have
conducted extensive research on travel information iden-
tifcation methods based on cellular signaling data (refer to
Literature Review section).

Tis study proposes a travel mode identifcation method
based on the gated recurrent unit (GRU) neural network.
With 24 features as input, the method can identify four
common and typical travel modes, containing walking,
cycling, cars, and buses. Furthermore, we design and con-
duct feld data collection experiments to collect labeled
ground-truth datasets, which are fnally provided by the
local communication operator. In the experiments, partic-
ipants’ GPS data and trip diaries are simultaneously col-
lected to check and label the cellular signaling data. Finally,
we use the collected ground-truth datasets to verify and
compare the classifcation ability of the suggested method
and other methods based on machine learning or deep
learning algorithms in travel mode recognition, including
random forest, support vector machine (SVM), BP neural
network, recurrent neural network (RNN), long short-term
memory network (LSTM), and bidirectional long short-term
memory network (Bi-LSTM).

Te paper is arranged as follows: after introducing the
identifcation procedure and GRU neural network model in
Sections 2 and 3, this paper describes the data collection
experiment and analyzes the temporal-spatial characteris-
tics. Section 4 describes the model parameters and the
verifcation results of the identifcation methods, while
Section 5 describes the discussion and conclusion. Te data
are used with the permission of the volunteers, and no data
privacy issues occur.

2. Literature Review

In the early 2G or 3G environment, only a few studies
explored the travel information extraction method. Intel
employed a method to estimate the moving speed of a cel-
lular phone by observing the change of GSM signal intensity
or the frequency of cell area transitions. Based on the as-
sumption that the speed falls within a certain range for
a specifc transportation mode, they could infer the phone
user’s travel mode. However, their method was limited to
classifying the travel modes that are easy to detect, including

stationary, walking, or making a drive [6]. Wang et al.
utilized a k-means clustering method to separate the travel
time of all trips into several groups for a given OD based on
anonymous cellular signaling data, in order to estimate the
percentage of travelers using diferent travel modes [7].
Overall, in an early 2G or 3G wireless communication en-
vironment, the location frequency of the cellular signaling
data is fairly low, so it is difcult to recognize the individual
trafc modes.

Since 2015, scholars have realized that cellular signaling
data have good potential to distinguish between road trips
and rail trips. Wireless communication base stations are
generally arranged along both sides of roads or tracks, so
there is a mapping relationship between phone users’ base
station connection sequences and trafc facility networks.
Larijani et al. proposed a rail trip identifcation method
based on rule-based heuristics (RBH), which can identify the
inbound and outbound stations and travel paths. Tey also
developed an APP to help passengers plan travel routes [8].
Tomas Holleczek et al. suggested a similar procedure and
organized a manual survey at Orchard Station in Singapore
to validate the accuracy. Te outcomes indicated that the
proposed approach’s identifcation errors for the number of
people entering or leaving the station per hour are both
approximately 9.5% [9]. Horn et al. proposed a method to
extract railway travel mode and departure time based on
cellular signaling data. After comparing with the train op-
erating data of the railway department, the identifcation
error of the train departure time using this method is less
than 5minutes [10]. Hasan Poonawala et al. presented
a model to identify road trips or rail trips, combining the
hidden Markov model with the topological properties of
diferent trafc networks [11]. Yamada et al. of Osaka
University also focused on using the speed characteristics of
cellular signaling data and trafc facility network data to
distinguish road trips or rail trips. Tey further proposed
a simulation model to verify the identifcation accuracy [12].
Tese methods rely on speed as the main indicator, which
makes it difcult to diferentiate between transportation
modes that have similar speed profles, such as buses and
cars. Moreover, the current frequency and accuracy of
cellular signaling data are insufcient to capture the subtle
variations in speed that could help distinguish between
these modes.

In recent years, with improvements in location fre-
quency and accuracy, some researchers have begun to ex-
tract residents’ multiclass travel modes from mobile phone
data. Combining cellular signaling data with trafc facility
network data, Qu et al. put forward a mode split model
applying RBH with logit model to identify walking, cars, and
buses [13]. However, the study only compared the per-
centage of diferent travel modes with the real mode shared
data obtained from the US census, which cannot fully ex-
plain how accurately the model can identify individual travel
modes. Danafar et al. uses the Bayesian probability method
to identify walking, cycling, cars, and public transportation
(bus, subway, and tram) [14]. However, this study has not
verifed the accuracy of the method for individual travel
mode recognition. On the basis of 4G cellular signaling data,
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Kimberley et al. proposed two supervised methods, RBH
with random forest (RF) and RBH with a fuzzy logic model,
and an unsupervised method combining RBH with k-
medoid clustering, to identify multiclass transport modes,
involving walking, cycling, car, metro, train, and tramcar. To
verify the accuracy of the algorithms, two simultaneous
collection experiments of cellular signaling data and GPS
data were conducted in Switzerland. Te evaluation results
indicate that the complex model that combines RBH and RF
outperforms the other methods, achieving a diferentiating
accuracy of 73% [15]. Tis research is a rare empirical study
on the identifcation accuracy of fne-grained travel modes.

Despite the evidence from previous studies on the fea-
sibility of extracting fne-grained travel modes from cellular
signaling data, some challenges remain unresolved. First, the
evolution of mobile communication technology has sig-
nifcantly improved the positioning quality of cellular sig-
naling data. As described in subsequent sections, the current
average location frequency of cellular signaling data can
reach a level of less than 60 seconds, which is much higher
than that of cellular signaling data in the early 2G or 3G era.
Tus, more studies are required to ascertain the extent to
which the accuracy of detecting fne-grained travel modes
can be enhanced by this high-frequency cellular signaling
data. Second, limited by privacy policy, it is difcult to obtain
personal cellular signaling data, which poses great difculties
for technical verifcation. Terefore, the identifcation ac-
curacy of fne-grained travel mode using diferent types of
methods in real 4G-LTE or 5G wireless communication
environment remains to be fully verifed.

Furthermore, a deep learning method has already been
broadly and successfully employed in the feld of travel
information extraction or prediction. Petersen et al. merged
a convolutional layer and a long short-term memory layer
into a new deep neural network to predict bus travel time.
Te model outperformed other methods the authors com-
pared with, including historical average model, pure LSTM,
or Google Trafc, and could fnd the complicated patterns
not discovered by the compared models [16]. Kim et al.
proposed a long-term recurrent convolutional network to
extract transportation modes utilizing GPS data. Te modes
are divided into walk, bike, driving, train, bus, and electric
mobility scooter. Te validation results displayed that the
proposed method has a better performance than other
methods from existing studies [17]. Wang et al. presented
a transportation mode recognition model based on a re-
sidual and LSTM recurrent networks, which utilized several
kinds of light-weight sensors internally installed in smart-
phones. Te model introduced the residual units to improve
the model’s learning efciency and enhance the detection
performance of diferent transportation modes. Te rec-
ognition model has been extensively validated and found to
achieve the highest recognition accuracy for eight trans-
portation modes [18]. In summary, existing research has
demonstrated that deep learning algorithms can achieve
high accuracy and robustness in travel information recog-
nition or prediction felds based on GPS data or other high
spatial-temporal granularity data. However, in the feld of
trip information recognition based on cellular signaling

data, which location quality is relatively irregular and
whether the deep learning algorithms can maintain this
advantage need to be further proved.

3. Methods

3.1. Overview. When the phone users travel in the city and
keep connections with communication base stations, their
trajectories can be recorded by the wireless communication
network completely through the cellular signaling data.
Figure 1 illustrates the overview of the main steps for travel
mode identifcation and the key objectives of this paper. For
raw data, a preprocessing procedure should be frst con-
ducted to reduce the impact of the noise data. Second,
through a trip and identifcation method, the data of each
user are segmented into several single trips, each of which
represent a moving trip between a pair of OD and contain
a single transport. Tat means we identify the main travel
mode of each trip. For example, if a trip is completed
“walking-bus-walking,” we consider this trip’s corre-
sponding mode to be the bus. Te trip end identifcation
method designed with the same datasets using in this paper
was described in the literature [19]. Tus, this paper focuses
on the following steps: identifying the travel mode of each
single trip segment. Tird, for each moving trip, a variety of
temporal and spatial features are extracted from the trajectory
and trip characteristics, which are used as input for travel
mode identifcation. Finally, taking advantage of GRU neural
network in processing data with time series and indefnite
length, a deep learning-based model is established to identify
the travel mode corresponding to each trip, including
walking, bicycle, car, and bus. Furthermore, a ground-truth
dataset is used to validate the classifcation ability of the
proposed method and to compare the diferences in accuracy
and efciency between the proposed model and other ma-
chine learning-based or deep learning-based models.

3.2. Preprocessing:DataCleaning. Raw cellular signaling data
usually contain noise data due to wireless communication
disturbances or data transmission errors. Drifting data and
oscillation data are the most common types of noise data.

(1) Drifting data. Drift is a phenomenon, where a mobile
phone abruptly switches to connect to a faraway base station
during its continuous connection to the wireless communi-
cation network. For drifting data, we used a speed-based
method to eliminate noise data. Initially, the shifting speed
between two successive data li and li+1 is computed.When the
speed exceeds a threshold Vd, data li+1 is marked as a possible
outlier. Ten, we compare the Euclidean distance of data li to
li+1, di−i+1, and the distance of data li to li+2, di−i+2. If the di−i+1
is greater than di−i+2, the data li+1 is removed as a drifting data.

(2) Oscillation data. Oscillation, or the ping-pong efect,
refers to the phenomenon of a mobile phone signal
switching frequently among several base stations, leading to
adjacent data exhibiting a handof pattern such as “1-2-1” or
“1-2-3-1.” For oscillation data, a pattern-based method is
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introduced to remove noise data. When the adjacent data
show the oscillation pattern “1-2-1” or “1-2-3-1” and the
time interval between the frst and the last data is shorter
than the threshold To, only the frst and the last data are kept
and the rest are deleted. On the basis of repeated tests, Vd
and To are separately set to 200 km/h and 150 s.

After removing the drifting and oscillation data, we
further processed the duplicated data. When the phone user
generates intensive communication behavior, several cel-
lular signaling data may be continuously generated on the
same base station. Tese data have the same coordinates and
the handover speed is all 0 km/h, which may interfere with
the model’s performance for distinguishing various travel
modes. Tus, for duplicated data, we retained the frst and
the last data and removed the other ones.

3.3.TripSegment. After preprocessing the individual cellular
signaling data, the next step is to identify its trip ends. For
this purpose, scholars have proposed a variety of identif-
cation methods, which can be primarily classifed into two
types of categories:

(1) Rule-Based Methods. Tese methods usually detect
trip endpoints by comparing the spatial-temporal
features of the cellular signaling trajectories, which
can be diferent in the two states of staying or
moving. As a large-scale dataset, the most direct and
efcient method to process the cellular signaling data
is setting some simple fltering rules, including
distance threshold or time threshold. Calabrese et al.
suggested that the virtual central location formed by

consecutive points is the trip ends of the phone user
when the coverage radius of the consecutive points is
less than 1 km [20]. Wang et al. considered that if
a phone user stays in a certain area for more than
15minutes, the user is considered to be in a stay state
[21]. Schlaich et al. set a similar time threshold as
60minutes [22]. Ni et al. regarded a group of con-
tinuous trajectory points that satisfy the spatial
distance less than 200m and the duration longer
than 30minutes as stay points [23]. Te values of the
thresholds should consider the communication
network characteristics of the research area as much
as possible, and their rationality relies heavily on the
subjective experience of the researchers. Terefore,
the parameters proposed in one study may not be
easily applicable to another city, which hinders the
widespread promotion and application.

(2) Clustering-Based Methods. Tese methods mainly
use the diferences in the shape, volume, or density of
the cellular trajectory clusters in the moving or
staying state to identify trip ends. Clustering algo-
rithms are usually unsupervised algorithms, which
can avoid the infuence of researchers’ subjective
experience to a certain extent. Chen et al. employed
a clustering method based on a statistic model for
extracting clusters, which does not require a pre-
specifed number of clusters. Subsequently, to dis-
tinguish between true activity locations and stay
points duringmovement (trafc jams and waiting for
buses), they used a logistic regressionmodel with two
explanatory variables (a shape variable and a volume
variable) to extract the true activity locations [24].
Jiang et al. proposed an improved DBSCAN method
to identify trip ends. First, they used a genetic al-
gorithm to optimize the clustering radius under
diferent base station densities, and obtained a series
of optimal parameters related to the base station
densities. Second, when using DBSCAN to process
cellular phone points into clusters, the proper
clustering radius is selected according to points’
surrounding BS densities, thereby reducing the
identifcation error that may be caused by the fxed
parameters [25]. However, clustering-basedmethods
sufer from low model efciency due to the large
amount of distance calculation between trajectory
points during execution. Moreover, these methods
face challenges in deploying on distributed com-
puting servers, which limits their applicability to
large-scale (such as city-wide) datasets.

To further enhance the accuracy and robustness of the
trip end identifcation method, we developed a model based
on the random forest algorithm, which leveraged the
powerful performance of machine learning algorithms in
pattern recognition. Te model details and procedures were
reported by Yang et al. [19]. First, we enriched each cellular
signaling data with four types of feature attributes, and
incorporated external data (POI) to increase the distinction
of feature attributes between the “moving” and “staying”

Raw Cellular Phone Data

Pro-Processing
Filtering drifting & oscillation data

Trip Segment
Trip ends identification: segment
trajectories into single OD trips

Feature Selection
Extract motion features from

records and features from OD trip

Travel Mode Inference
GRU Neural Network

Evaluation with goundtruth data

Figure 1: Overview of the methodology.
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states. Ten, we built a random forest model and optimized
the model parameters using methods such as cross-
validation. Finally, we validated the precision and recall of
our proposed model utilizing the same ground-truth data
used in this research. Te results showed that our model
outperformed rule-based methods, clustering-based
methods, and three other machine learning algorithms in
terms of overall identifcation performance. Moreover, the
proposed method could continuously adapt to the identi-
fcation objects and improve the identifcation accuracy as
more input data were available. Furthermore, our method
could be implemented in a distributed computing envi-
ronment, which made it suitable for analyzing travel in-
formation and urban travel characteristics from a large-scale
dataset.

After the identifcation of the trip ends, each user’s
cellular trajectory can be segmented into several single trips,
each of which represent a moving trip between a pair of ODs
and contain a single travel mode. Te following step, as well
as the focus of this paper, is to identify the corresponding
travel mode of each single trip.

3.4. Feature Selection. Features can be used to describe the
diferences in the trajectories of cellular signaling data be-
tween diferent travel modes, which are usually calculated by
the physical characteristics of the trajectories. Te choice of
the feature parameters has a signifcant infuence on the
model identifcation performance. Based on the generation
principle, we select two types of features: motion features
from the cellular records and features from OD trips, which
contain 24 specifc feature parameters.

3.4.1. Motion Features of Cellular Records. First, 21 motion
features are calculated directly from the adjacent cellular
signaling data records of users or records in specifc time
windows, such as average distance, speed, or time. Tese
features refect the motion and trajectory diferences in the
wireless communication network within the same time
range caused by the diferent travel modes’ moving speed.
Te location coordinates of cellular signaling data are ap-
proximately replaced by the coordinates of the communi-
cation base station, which means that it cannot directly
refect the user’s activity trajectory. However, the diferences
in switching rate and frequency between communication
base stations are strongly related to the actual diferences in
moving speed or frequency when the phone users adopts
diferent travel modes. Table 1 shows nine types of features
extracted from the cellular signaling data records, including
21 specifc features. Figure 2 visually shows the diference
between linear distance ZDT and cumulative distance LDT
calculation.

3.4.2. Features from OD Trip. In the daily travel of residents,
the distance and time information from the origin to the
destination has a major infuence on the choice behavior of
travel modes. When the trip distance is long, residents are
usually more likely to choose cars or buses. When the travel

distance is short, residents tend to prefer convenient
transportation modes such as walking or cycling. Even if
some transportation modes may have very similar speed
characteristics in some congested sections, there are still
signifcant diferences in total travel distance, travel time, or
travel speed from a comprehensive perspective. Terefore,
when identifying transportation modes for each trip, adding
travel information between the origins to the destination is
expected to increase the accuracy of travel mode identif-
cation. Terefore, this paper selects three characteristics
between ODs for each trip, including the Euclidean distance
DOD, Euclidean distance DOD, and the average speed VOD.

In summary, this paper selects 24 features as input
parameters of the GRU neural network model. Tese fea-
tures include physical quantities such as distance, speed, and
time with diferent dimensions or units. In order to prevent
diferent dimensions or orders of magnitude from afecting
the accuracy of model training, this paper employs a Z score
standardization method to normalize all features. Te Z
score standardization method utilizes the mean and stan-
dard deviation of the original data for standardization
processing, and the processed data follows a standard
normal distribution. Te Z score standardisation method is
shown in (1), where X∗ denotes the normalized charac-
teristic value, X represents the original characteristic value,
and μ and σ represent the mean and standard deviation of all
samples, respectively.

X
∗

�
X − μ
σ

. (1)

3.5. GatedRecurrentUnit Networks. From the perspective of
machine learning, the detection of travel modes from cel-
lular signaling data has the following characteristics: (1)
Basically, it is a typical “many-to-one” classifcation problem
in the domain of pattern recognition, that is, judging which
travel mode belongs to a single trip (including several pieces
of data). (2) Te cellular signaling data sequence corre-
sponding to a trip clearly has time series features and the
length of the sequence is uncertain. (3) Trajectories gener-
ated by diferent travel modes have signifcant diferences in
speed, distance, base station connection frequency, and
other features. Tese characteristics have some similarities
with the characteristics of pattern recognition problems such
as speech recognition and text classifcation. In deep
learning algorithms, the GRU neural network is a typical
neural network structure that is able to process data with
time series features or serialized data. It can also process data
types with indefnite length and has achieved successful
applications in complex pattern recognition felds, for in-
stance, the computer vision or the natural language pro-
cessing [26, 27]. Terefore, drawing on the successful
experience of GRU in the above felds, we attempt to in-
troduce it to solve the problem of trafc mode identifcation
according to cellular signaling data.

In 2014, Cho Kyunghyun from New York University
introduced a neural network model called GRU (gated re-
current unit). Te GRU neural network can be regarded as
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a simplifed model of LSTM, which preserves the ability of
LSTM to integrate long-term and short-term memory, but
reduces the complexity of the cell structure, the amount of
parameters, and the training time. Te main simplifcation
of GRU is to merge the forget gate and the input gate in
LSTM into a new update gate. Figure 3 illustrates the
structure of the GRU neural network [28].

From an external structure perspective, the input and
output structures of the GRU neural network are similar to
those of the ordinary RNN model. Each unit inputs two
variables and outputs two variables. In Figure 3, xt donates
the input at the current time, Ct is the hidden layer state, yt
represents the output at the current time, and C donates the
GRU structure. It can be seen that the hidden state Ct at time

t relies not only on its corresponding input data xt but also
on the hidden state Ct−1 at the prior time, as shown in (2). U
andW are the weight coefcients between diferent network
components.

Ct � f Uxt + Wct−1( 􏼁. (2)

Te internal structure of the GRU neural network is
displayed in Figure 4 [29]. Te GRU model simplifes the
internal neurons into two gate structures: update gate and
reset gate. In this fgure, xt donates the input of the neuron, yt
is the output of the neuron, Zt donates the GRU output of the
update gate, rt is the output of the reset gate of GRU, and ht

represents the candidate hidden state at the current time. σ
represents the sigmoid activation function.

Cumulative Distance 
Linear Distance
Travel Route

t = 0

t = T

Base Station

Figure 2: Illustration of linear distance and cumulative distance.

Table 1: Motion features from cellular signaling data records.

Motion features Description
Db Euclidean distance between the coordinates of two adjacent data
Tb Te diference between two adjacent data timestamps
Vb Euclidean distance of two adjacent data divided by the time diference

LDT

For data li generated at ti, the distance of adjacent data is calculated and summed as
the cumulative distance LDT in the time window [ti − 0.5T, ti+ 0.5T]. T is set to

5min, 7min, 9min, and 11min, respectively, so we obtain 4 features

ZDT

For data li generated at ti, the distance between the frst and last data is calculated as
the linear distance ZDT in time window [ti − 0.5T, ti+ 0.5T]. T is set to 5min, 7min,

9min, and 11min

VaveLDT

Cumulative distance LDT divided by the time interval from the frst data to the
last data in time window [ti − 0.5T, ti+ 0.5T]. T is set to 5min, 7min, 9min, and

11min, respectively

VaveZDT
Linear distance ZDT divided by the time interval from the frst data to the last
data in time window [ti − 0.5T, ti+ 0.5T]. T is set to 5min, 7min, 9min, and 11min

n For a trip between a pair of OD, n represents the amount of distinct base stations
connected in the whole trip

f Te amount of distinct communication base stations connected, n, divided by the
total travel time of the trip
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As shown in equations (3)–(6), the update gate Zt is
formed by multiplying a weight matrix with a concatenation
vector of the prior hidden state ht−1 and xt.Ten, the sigmoid
activation function is applied to transform the elements in
this vector into real numbers in the [0, 1] range, and this
vector serves as the gate control state of the update gate. Te
reset gate rt is similar to the update gate, but uses the pa-
rameter weight Wr of the reset gate. Te candidate hidden
state multiplies the result of applying the reset gate state
value to the ht−1 vector with xt and concatenates it with xt.
Te concatenated vector is converted into a vector of real
numbers between −1 and 1 using the tanh function. When
outputting information, GRU applies update gates to ht−1
and candidate hidden states, respectively, and sums them up.
Ten the result is used as output information for the current
state. Te abovementioned analysis shows that each neuron
in GRU participates in the decision-making process for each
information output, creating dependencies among the
neurons. In general, reset gates are more active for short-
term dependencies, while update gates are more active for
long-term dependencies [25].

zt � σ Wz ·
ht−1

xt

􏼢 􏼣 + bz􏼠 􏼡, (3)

rt � σ Wr ·
ht−1

xt

􏼢 􏼣 + br􏼠 􏼡, (4)

􏽥ht � tan h W ·
rt ⊗ ht−1

xt

􏼢 􏼣 + bh􏼠 􏼡, (5)

ht � 1 − zt( 􏼁⊗ ht−1 ⊕ zt ⊗ 􏽥ht. (6)

3.6.Model Construction. Figure 5 illustrates the travel mode
identifcation model based on GRU, which consists of an
input layer, a GRU layer, a fully connected layer, and an
output layer. First, the features of each trip segment are
computed based on the cellular trajectory points and fed into
the deep learning model as inputs. For a trip composed of n
cellular signaling data points, 24 corresponding features are
computed for each point, transforming an n-dimensional
vector into an n× 24 matrix. Te n× 24 feature matrix is
employed as the input of the neural network and trained on
the GRU layer. Te GRU layer can not only perform model
classifcation based on the input attribute values at a single
time point, but also efectively capture the correlation be-
tween longer sequence feature values prior to the current
time point, which can better handle data with temporal
dependencies. Te output of the GRU layer is served as the
input for two fully connected neural networks, and fnally,
the output of the fully connected layer is taken as the input
for the output layer. Te output layer converts all output
values from the fully connected layer into probability values
between 0 and 1 through a sigmoid function and outputs the
model results at the last node. Te output layer selects the
travel mode with the longest cumulative time as the fnal
mode for the trip.

Te GRU model is trained by minimizing the loss
function in the training set. Travel mode identifcation is
a typical multiclassifcation problem, so it is more appro-
priate to choose a multiclass cross-entropy loss function, as
shown in equation (7). L represents the loss function, and we
take minimizing the loss function as the model training
objective. Specifcally, the calculated loss value in the
equation represents the error value between the probability
distribution of the neural network output and the real
probability distribution of the label. Te model is trained by
minimizing this error value. X represents the input sample,
and Y represents the result output by the neural network.
Pi,m represents the probability that the i-th input sample is
predicted as the m-th category. In this paper, m represents
four travel modes. Yi,m represents whether them-th category
is the true category of the input sample xi. If it is true, it is 1;
otherwise, it is 0.

L(Y, P(Y | X)) � −
1
N

􏽘

N−1

i�0
􏽘

M−1

m�0
yi,mlogpi,m. (7)

4. Experiments and Data

4.1. Data Collection. To obtain cellular signaling data and
their corresponding real travel information, the research
team conducted a synchronized data collection experiment
in a southwestern city of China. Te experiment was carried
out from September 7 to September 12, September 20 to
September 25, and December 15 to December 22 in 2019,
totaling 19 days. More than 25 volunteers carried out pur-
poseful activities and travelled throughout the city according
to the planned route and plan. To minimize the sample bias
of the collected data, the design of travel plan considers
multiple factors, including purpose of activity, destination

CC C
Ct-2 Ct-1 Ct Ct+1

yt-1 yt yt+1

xt-1
xt xt+1

Figure 3: Te structure of the GRU neural network.
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Figure 4: Te GRU neuron structure.
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type, as well as travel mode. Travel purposes include going to
work, going to school, seeking medical treatment, dining,
entertainment, shopping, leisure, and returning home. Te
stay areas cover diferent areas with diferent base station
densities, such as urban areas and suburban areas. Travel
modes include walking, nonmotorized vehicles, cars, and
buses, which are commonly used in this city.

All volunteers received formal training and participate in
a re-experiment after the training to ensure that they can
profciently complete the data collection tasks according to
the plan in the formal experiment. In the formal experiment,
each volunteer carried a mobile phone with a SIM card from
the local operator, and the phone had a GPS data collection
application installed. During the experiment, the GPS data
collection application remained on, and the volunteers
recorded detailed travel logs, including activity locations,
arrival/departure times, and travel modes. In future re-
search, GPS data and travel logs can be used to determine the
real travel status corresponding to each mobile phone signal
data. Te GPS data recording APP and samples of travel logs
are shown in Figure 6.

With the consent of volunteers who signed confdenti-
ality and authorization agreements, the operators provided
cellular signaling data for all volunteers during the experi-
ment, which provided a rare opportunity for this study to
obtain users’ cellular signaling data and corresponding real
travel information. During the experiment, a total of 179377
pieces of cellular signaling data were generated by all vol-
unteers who collected more than 200 pieces of real travel
chain information. Table 2 displays the typical felds of
cellular signaling data. Global Identifer and User ID can
both act as the unique identity code for each phone user. By
combining LAC (location area code) and CI (Cell ID), the
identity code of each base station can be determined. Based
on the start time and end time, the duration of the com-
munication service can be calculated easily. Te longitude
and latitude in the table represent the location of the base

station that was connected when the communication service
was generated.

Based on cellular signaling data, this paper focuses on
identifying four kinds of travel modes: walking, cycling, car,
and bus. After further extraction and screening of the dataset
for these four modes, 620 travel segments were collected in
this experiment, including 69,059 cellular signaling data.
After preprocessing, the total sample size was 62,020.
Considering that deep learning algorithms require a higher
number of data samples, a sliding time window-based
sample construction method is used to process trips with
more than 60 cellular location records. Te sliding window
length is set to a minimum of 50 cellular location records
with an increment of 10, while a moving step size is set to 10
location records. Te fnal data sample set was obtained by
randomly oversampling the minority class samples to im-
prove the balance of the data samples. Table 3 displays the
sample size corresponding to each travel mode used for
model training. In one-hot encoding form, we added a travel
mode label to the cellular signaling data corresponding to
each trip.

4.2. Data Characteristics. Te location quality of cellular
signaling data is infuenced by the location frequency, which
is determined by the frequency of communication services
generated by users. Using the cellular signaling dataset
collected in the synchronized data collection experiment, we
conducted a statistical analysis of location frequency.
Overall, each volunteer generated an average of 1425 cellular
signaling data per day. As shown in Figure 7, the probability
that the time interval between adjacent data is less than
30 seconds exceeds 70%, with an average time interval of
48 seconds and amedian of 20 seconds. Compared with early
signaling data [30], the location frequency of cellular sig-
naling data in the 4G environment has increased signif-
cantly, providing possibilities for inferring multicategory
and fne-grained travel modes.
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Figure 5: Te structure of the GRU-based model for recognizing travel mode.
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Te accuracy is another factor that afects the location
quality of cellular signaling data, which can be described by
the distance error between the real coordinates and the
coordinates of the base station. In the data collection ex-
periment, cellular signaling data and GPS data are collected
simultaneously. When matched to the data generation time,
a total of 97,267 cellular signaling data were successfully
matched to GPS locations at the same time. GPS data can
represent the user’s real location coordinates, while cellular
signaling data can refect the location coordinates of the
corresponding communication base station. A statistical

analysis of the distance error between these two types of
posited data is conducted. As shown in Figure 8, more than
53% of the location errors are within 300m and more than
73% of the location errors are within 500m. Te average
value of location error is 357m and the median is 278m.

5. Result Analysis and Discussion

5.1. Model Specifcation. Te GRU neural network model
training was completed under the TensorFlow 2.2.0 deep
learning framework installed in Python 3.9.7. Te processor
used for the model training environment is Intel® Core i5-
7200U @2.5GHz, with a memory capacity of 4G and an
operating system of Window 10. Te NVIDIA GeForce
940MX graphics card with 2G video memory was used for
training.

As a complex deep learning algorithm, the GRU neural
network contains a large amount of hyperparameters that
afect the deep learning-based models’ classifcation accu-
racy. To enhance the recognition and generalization ability
of the model, we introduce multiple parameter optimization
strategies during model training and testing. First, we start
by dividing the dataset into two parts: a training set and a test
set. 70% of the data samples were randomly selected as the
training set, and the remaining 30% were used as the test set.
Te training set is applied to train the deep learning model
and adjust its parameters, while the test set is only employed
to test the generalization ability of the fnal model. Second,
during the model training process, we introduce a fve-fold
cross-validation strategy. Te dataset used for training the
model is randomly divided to fve parts, with four parts
served as a training set and one part served as a validation

Track Trip record

Time
00:03

Speed
0.0 km/h

Average Speed
0 km/h

Altitude
0.0 m

Travel Time
04:49

Max Speed
24.16 km/h

Average Speed
14.64 km/h

Max Altitude
488.43 m

Stop Collection Upload 

0.0 km 1.18 km

(a)

Status Condition Time

Stay Leave Home 9:02:55

Bus Walk to bus station 9:07:30

Bus Get on 9:17:28

Bus Get of 9:28:17

Metro Get on 9:35:51

Metro Get of 10:06:45

Stay Walk to Museum 10:23:16

Stay Leave Museum 11:52:34

Car Get on 11:59:21

Car Get of 12:05:56

Stay Arrived at restaurant 12:06:07

Stay Leave restaurant 14:08:45

(b)

Figure 6: Te illustration of GPS data recording APP and travel log data. (a) GPS data recorded by an APP. (b) Travel log data recorded
manually.

Table 2: Samples of cellular signaling data.

Global identifer User ID LAC CI
460∗∗∗∗71 130∗∗∗∗4926 34051 167939598
460∗∗∗∗71 130∗∗∗∗4926 34050 168004374
460∗∗∗∗71 130∗∗∗∗4926 34051 167936011
Start time End time Longitude (°) Latitude (°)
12:54:18 12:54:18 106.713497 26.601376
12:54:20 12:54:20 106.743359 26.592555
12:54:21 12:54:21 106.716586 26.613950

Table 3: Te number of trips for training and testing the
recognition model.

Mode Total number Training set Test set One-hot
encoding

Walking 654 458 196 [1000]
Cycling 628 440 188 [0100]
Cars 627 439 188 [0010]
Buses 660 462 198 [0001]
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set. Tis results in fve well-trained models. After all models’
loss functions converge, we select the model with the lowest
loss value as the best model. Moreover, to prevent overftting
during the training process, we add a dropout strategy to the
fully connected layer of the model. During training, the
model randomly ignores some neuron information so that it
does not rely too much on local features, thereby making the
model’s generalization ability stronger. Te dropout rate
value is set to 0.5. Te fnal parameter settings of the model
are displayed in Table 4.

Te training set was applied to construct the GRU neural
network model with these parameters, and the model loss
curve during training is demonstrated in Figure 9.

Te model loss decreases rapidly as the number of training
times increases, and reaches a minimum value of 0.59 when
the training rounds are 60. Te model has some degree of
overftting at this time.Ten, as themodel continues to train,
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Figure 7: Probability distribution of the time intervals of adjacent cellular signaling data.
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Table 4: Te model parameters of the GRU neural network.

Parameter name Values
Number of layers 3
Number of units [128, 64, 128]
Batch_size 32
Epochs 500
Initial learning rate 0.001
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the model loss slightly increases and stabilizes around 0.9,
which indicates the best overall accuracy and generalization
ability of the model.Temodel training took 18minutes and
1 second in total.

5.2. Te Performance of Identifying Travel Modes. Travel
mode identifcation is a complex multiclassifcation prob-
lem. To evaluate the model’s classifcation ability, the
identifcation results were categorized into three groups:
True Positive (TP), False Negative (FN), and False Positive
(FP). TP represents the right part of all identifed travel
modes, while FN denotes the real travel modes that were not
detected, which can be viewed as the missed part. Similarly,
FP refers to the travel modes that were found but did not
match with real samples, which can be viewed as the in-
correct part. Subsequently, for the purpose of comparing the
overall performance of diferent recognition methods, three
indicators of precision, recall, and F score were introduced as
model assessment indicators. As shown in equations
(8)–(10), precision is the correctly recognized samples of
a certain travel mode to the entire quantity of samples
recognized as that mode. Recall is calculated as the ratio of
the correctly recognized samples of a certain travel mode by
the model to the number of actual samples of that mode. F
score is a weighted harmonic mean of precision and recall
and can more comprehensively refect the model’s classif-
cation ability.

Precision �
TP

TP + FP
, (8)

Recall �
TP

TP + FN
, (9)

F − Score �
2 × Precision × Recall
Precision + Recall

. (10)

Table 5 demonstrates the travel mode identifcation
results of the test set. Te test set contains 770 trips, cor-
responding to four travel modes. Walking has the highest
precision and recall, which are 97.9% and 95.9%, re-
spectively.Tis is mainly due to the lowest moving speed and
achievable travel distance of walking, which leads to more
obvious diferences in most features from the other three

travel modes, making it easier to be recognized. Similarly,
with higher average moving speed and longer travel dis-
tance, car has the second highest precision and recall, which
are 94.4% and 93.4%, respectively. In contrast, the recog-
nition performance of bicycles and buses is relatively poor,
and these two modes are most likely to be misidentifed. Te
main reason is that most roads in the city have dedicated
lanes for nonmotor vehicles, and the average travel speed of
bicycles under the exclusive road rights is close to that of
buses. At the same time, both nonmotor vehicles and buses
can cover short and medium distance trips in the city. Tese
similarities lead to overlapping intervals in the calculation
results of features such as distance and speed for cellular
signaling data generated by nonmotor vehicles and buses,
which in turn causes the model to easily confuse these two
modes. In addition, among the motorized travel modes,
there is a situation of misidentifcation between buses and
cars. One possible reason for this is that the roads are more
congested during peak hours in the morning and evening.
Terefore, the speed and distance diferences between the
two travel modes are not obvious. Tis leads to errors in the
recognition results. Due to the high misidentifcation rate
between buses and nonmotor vehicles and cars, the precision
and recall of bus mode are both 83.5%, which are the lowest
among the four modes of transportation. Overall, the rec-
ognition model constructed in this paper has a positive
performance for the four modes of transportation, and the
precision, recall, and F score can reach 90.5%.

5.3. Comparison of Diferent Algorithms. We frst compare
the travel mode identifcation performance of the model
based on the GRU neural network and models based on
other classical machine learning algorithms, such as random
forest, support vector machine (SVM), and BP neural
network. Figure 10 displays the comparison result. It in-
dicates that the recognition performance of the three ma-
chine learning algorithms is relatively close, with their F
scores ranging from 83.1% to 85.2%. In comparison, the
method based on the GRU neural network has a better
recognition performance, and its F score is about 6% to 7%
higher than that of machine learning methods. As a deep
learning model, the GRU neural network has advantages
such as more neurons, more complex hidden layers, and the
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ability to use long-term or short-term features. Terefore, it
has shown stronger fne-grained travel mode recognition
capabilities.

In this paper, we further compare the accuracy and
efciency of various deep learning-based identifcation
models in the fne-grained travel mode recognition task,

including recurrent neural network (RNN), long short-term
memory (LSTM), bidirectional long short-term memory
(Bi-LSTM), and the GRU neural network proposed. Four
models used the same training and test sets. During the
model training process, similar parameter optimization
strategies were adopted for all four models to ensure that

Table 5: Statistics of travel mode identifcation performance.

Mode Number of
trips

Identifcation results
Precision (%) Recall (%) F scores

(%)Walking Bicycle Bus Car
Walking 196 186 5 5 0 94.9 94.9 94.9
Bicycle 188 6 165 17 0 87.3 87.8 87.5
Bus 188 4 16 157 11 83.1 83.5 83.3
Car 198 0 3 10 185 94.4 93.4 93.9
Total 770 196 189 189 196 90.0 90.0 90.0

90.0%

85.2%

83.1%

85.5%

90.0%

83.9%

83.1%

81.5%

90.0%

84.5%

83.1%

83.5%

76 78 80 82 84 86 88 90 92

GRU neural network

Random Forest
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(%)

F-score
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Figure 10: Identifcation accuracy of diferent types of machine learning methods.
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each model’s parameters were fully optimized. Te results
are provided in Figure 11. It displays that the recognition
ability of the four methods based on deep learning algo-
rithms is not signifcantly diferent. Among them, the F score
of the model based on GRU is the highest, reaching 90%, and
the F score of the model based on RNN is the lowest,
reaching 86.9%. Te error between the two models is only
3.1%. However, the diference in model training time be-
tween the four methods is more obvious. Te training time
of the model based on RNN is 922 seconds, which is the
shortest. Te training time of the model based on Bi-LSTM
is 2309 seconds, which is the longest and 2.5 times that of
the model based on RNN. Te training time of the model
based on GRU is 1081 seconds, which is the second shortest
among the four models and about 17% more than the
shortest model training time. Terefore, in terms of model
recognition accuracy and model efciency, the model
recognition model based on the GRU neural network has
the best overall performance among the four deep learning
models.

6. Conclusions

Using large-scale cellular signaling data to extract residents’
travel information ofers a potential opportunity for com-
prehensive, real-time, wide-area analysis, and monitoring of
urban travel activities. Building an efcient, accurate, and
robust method for travel mode identifcation is one of the
key steps in this process. Te existing travel mode identi-
fcation methods have some limitations, such as the un-
satisfactory performance for fne-grained travel mode
identifcation, and the lack of sufcient empirical evidence
for the existing identifcation technology. Deep learning
algorithms have demonstrated their powerful ability to solve
complex classifcation problems across domains such as
natural language processing and text sentiment analysis.
Tis paper makes two contributions. First, it proposes
a travel mode identifcation method utilizing a GRU neural
network model. Using 24 features as model input, this
method can identify fne-grained travel modes, including
walking, cycling, car, and bus. Second, with the support of
mobile communication operators, this paper designs and
conducts synchronized data collection experiments, obtains
individual detailed cellular signaling data, and empirically
assesses the identifcation performance of the method in this
paper and other existing models.

Te empirical results indicate that the identifcation
model suggested in this paper has a favorable performance
for four modes of transportation, with a precision, recall, and
F score of 90.5%. Tis performance is better than other
identifcation models based on machine learning, including
random forest, support vector machine, and BP neural
network. Moreover, considering both the model recognition
accuracy and the model training efciency, the model based
on a GRU neural network also outperforms the other three
recognition models based on deep learning algorithms,
including recurrent neural network (RNN), long short-term
memory network (LSTM), and bidirectional long short-term
memory network (Bi-LSTM).

Te method presented in this paper also has some as-
pects for optimization and validation. First, due to factors as
experimental cost, the cellular signaling data used for
training and validating the travel mode identifcation model
consist of about 62,000 records. To increase the size of the
dataset for model training, we use the sliding time window
method to generate more datasets. Tis is reasonable in the
theoretical research stage of the model. However, before
applying this method to the big-data platform, more real
data, instead of synthetic data, are required to conduct
adequate model performance validation. Second, as shown
in Figures 10 and 11, the models based on deep learning
algorithms have higher recognition accuracy. However, deep
learning models need more training data and use more
computing resources because of a larger number of pa-
rameters, which implies that the implementation cost of
deep learning-based models is higher. Terefore, in the
implementation process of the big-data platform, the choice
of travel information identifcation model ultimately de-
pends on a comprehensive evaluation of two major factors:
recognition accuracy and computing efciency.

Te current recognition accuracy of cellular signaling
data is not sufcient to achieve the identifcation of travel
mode chains. For example, for the combination of travel
mode walking-bus-walking, it is difcult to identify the
walking trips after departure or before arrival based on
cellular signaling data. In the future, based on the high-
precision positioning technology in the 5G environment,
combined with more source data information, such as vi-
bration, temperature, sound, and other built-in information
of mobile phones, it is expected to further explore and realize
the identifcation method of the abovementioned travel
mode chains.
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