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Timely and accurate prediction of bus passenger fow plays a crucial role in uncovering real-time trafc demand, presenting an
essential and formidable challenge in the realm of bus scheduling and management. Te extensive application of deep learning
methods in transit passenger fow prediction can be attributed to their exceptional ability to efectively capture spatiotemporal
features, resulting in superior performance. However, prevailing deep learning models in transit passenger fow prediction tend to
ignore the data enhancement. Additionally, the predominant focus on a single station in the prediction task presents challenges in
efectively capturing the spatiotemporal features of the entire network. A model named TSD-ST is proposed to better accomplish
the task of predicting short-term transit passenger fow at multistation.Te TSD-STmodel leverages time series decomposition for
data enhancement. Simultaneously, in addition to considering the adjacency graph, the similarity of all the stations of the entire
transit network is also considered and uses multigraph convolution and graph fusion modules.Tis approach enables the TSD-ST
model to efectively capture spatiotemporal dependencies. Experiments based on real-world bus transit datasets confrm that the
TSD-ST model shows better performance in prediction tasks at 30-min, 60-min, and 90-min time scales, with an average
improvement of 21.87%. Te efectiveness of each component has been verifed through ablation experiments.

1. Introduction

Accurate and timely multistation short-term passenger fow
prediction is important for bus transit management and
scheduling. Fluctuations in travel demand or the trans-
portation system’s short-term changes can result in un-
desirable waiting times and congestion for passengers [1],
thereby diminishing the appeal of the bus transit system to
passengers. Short-term prediction of passenger fow enables
bus transit managers to optimize schedules, improve station
passenger fow regulation planning, facilitate vehicle oper-
ation scheduling, and achieve efcient resource allocation.
Tis approach helps meet the demand for passenger fow
while enhancing service quality.

Currently, studies on passenger fow prediction mostly
focus on a single station, but due to the complex spatial
structure and time-varying features of transit networks, the
bus passenger fow at a single station will be simultaneously

afected by the spatial and temporal features of the historical
passenger fow at stations that are directly or indirectly
connected to the entire network [2]. Although some methods
have achieved better results in predicting passenger fow at
specifc stations, complex modeling for each station is in-
appropriate if one wants to understand the state of the entire
network, especially not conducive to future network adjust-
ment and expansion.Terefore, predictionmodels for a single
station cannot dynamically and efectively predict the spatial
and temporal distribution and congestion of the entire net-
work, limiting the real-time passenger fow organization,
formulation, and adjustment of management strategies. Te
task of predicting passenger fow atmultistation is challenging
because transit passenger fow can be afected by many
complex factors [3], such as (1) temporal dependencies: bus
passenger fow is afected by temporal features, and current
passenger fow is correlated with historical passenger fow [4].
Moreover, passenger fow on the same workday or on the
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same nonworkday will show similar trends. (2) Spatial de-
pendencies of bus passenger fow exist not only between
neighboring stations under the infuence of network topology
[5] but also between stations that are far away from each other
but located within similar urban functional areas. In con-
clusion, there exists a demand for a multistation short-term
bus transit passenger fow prediction approach that ade-
quately incorporates both temporal and spatial dependencies.

On the other hand, factors such as weather conditions and
random events can exert an impact on bus passenger fow [6].
It is worth noting that automated fare collection (AFC) data
mainly serve as the source of bus passenger fow data, and
most of it becomes available only after passengers have
boarded the bus. Consequently, the arrival time of the bus at
the station to obtain passenger data introduces signifcant
uncertainty in the data collection process [7]. Tus, it is
necessary to develop a data enhancement methodology that
accounts for both cyclic changes in passenger fow and de-
viations from cyclic patterns resulting from temporary factors.

In recent years, deep learning has been widely applied to
short-term passenger fow prediction tasks [8]. Typical
statistical models, such as autoregressive integrated moving
average (ARIMA) and its variants [9, 10], are usually used
for single time series prediction, which can easily compute
and capture the linear features of the data, but ignore po-
tential dependencies between multiple time series under
relatively complex trafc conditions. Deep learning is much
more complex in terms of structure, with a strong ftting
ability for complex function processing, and is more suitable
for solving short-term passenger fow prediction problems.

Recurrent neural networks (RNN) and their variants,
such as long short-term memory (LSTM) and gated re-
current units (GRU), perform well in time series prediction
and are widely used in mainstream research on trafc
prediction [11, 12]. However, RNN-based models only focus
on capturing local temporal features and ignore spatial
features [13]. In order to consider the spatial dependencies of
the network, some researchers have constructed prediction
models using a convolutional neural network (CNN) after
converting the trafc network into images [5, 14]. However,
CNN-based models only consider the absolute distance
relationship between stations in a two-dimensional Eu-
clidean space and are not conducive to the expansion of
network structures in the real world [15]. Graph convolu-
tional network (GCN) provides a more suitable approach for
modeling spatial similarity of transit networks compared to
CNN, which maintains the real topology of the network and
captures the spatial dependencies between stations [16].
Several researchers have made attempts to enhance the ef-
fectiveness of GCN through various approaches [17–21].
However, it is important to note that GCN-based models
solely focus on spatial features. While some researchers have
attempted to integrate GCN and RNN models to create
combined prediction models [19, 22], most of these com-
bined models ignore data enhancement and lack compre-
hensiveness in capturing temporal dependencies, spatial
dependencies, and other infuential factors. As a result, these
models fail to efectively address the challenge of multi-
station short-term transit passenger fow prediction.

A novel model, named TSD-ST, is proposed for accu-
rately predictingmultistation short-term bus passenger fow.
Te proposed model combines time series decomposition
(TSD) for data enhancement, capturing both cyclic varia-
tions in bus passenger fow patterns and the impact of
temporary random events. Additionally, a dual-view mul-
tigraph convolution and graph fusionmodule is employed to
consider global spatial dependencies. Consequently, this
approach integrates temporal dependencies, spatial de-
pendencies, and other infuencing factors. Te main con-
tributions of this paper are summarized as follows:

(1) A spatiotemporal model (TSD-ST) is proposed to
solve the problem of predicting multistation short-
term bus passenger fow.

(2) Te temporal dependence of bus transit passenger
fow is efectively harnessed through the utilization
of a time series decomposition method, and en-
hancing the quality of the data.

(3) Constructing two types of graphs, namely, adjacency
graph and similarity graph. Trough the utilization
of multigraph convolution and graph fusion, a dual-
view approach is employed to comprehensively
consider the spatial dependencies of passenger fows
between diferent stations

(4) Experiments were conducted using a real-world bus
transit dataset to evaluate the performance of the
TSD-STmodel in predicting multistation short-term
bus passenger fow. Te experimental results dem-
onstrate that the TSD-ST model exhibits excellent
predictive capability.

Te remaining sections of this paper are structured as
follows: Section 2 presents a comprehensive review of pertinent
research in the domain of passenger fow prediction. In Section
3, a systematic overview of the components comprising the
TSD-STmodel is provided. To validate the performance of the
proposed model, Section 4 conducts experiments using real-
world bus transit datasets. Finally, Section 5 summarizes the
fndings of this study and discusses potential directions for
future research.

2. Related Literature

2.1. Statistical Methods. Initial attempts at passenger fow
prediction have focused on linear models. Among the classical
prediction models, linear regression models and Kalman flter-
based methods are more commonly used in the passenger fow
prediction literature. In 2009, a general linear regression
prediction of passenger fow was conducted using public
transportation smart card data [23], and in 2011, a Kalman
flter-basedmethod was developed to predict passenger fow by
using the transaction records of automated fare collection
(AFC) system and the video surveillance systems equipped in
buses and stations equipped with video surveillance systems to
predict the short-term passenger fow at each bus station [24].

Due to the spatiotemporal nature of most of the data
used for passenger fow prediction, among diferent linear
models, autoregressive moving average (ARMA) and
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autoregressive integrated moving average (ARIMA) models
have received attention from researchers. One study pro-
posed an interactive multiple model- (IMM-) based ap-
proach combined with time series methods to predict short-
term passenger fow on bus lines [25]. Tere are several
studies that address the problem of passenger fow pre-
diction through ARIMA [9, 10, 26].

Statistical methods can easily compute and capture the
linear characteristics of the data. However, such methods
rely on static assumptions and are largely afected by fuc-
tuating trafc data [27]. In addition, they are difcult to
refect the nonlinear and complex features of passenger fow.

2.2. Machine-Learning Methods. Traditional machine-
learning methods are better at ftting complex data, and
machine-learning techniques have been widely used by
scholars in the feld of short-term passenger fow prediction.
Some scholars have developed a bus transit passenger fow
prediction model based on least squares and support vector
machines (LS-SVM) for predicting passenger fow on bus
transit lines [28]. A Gaussian process-based approach is
proposed to model and predict bus passenger fow [29].
Some scholars developed prediction models using random
forests and regression trees and used automatic vehicle
location (AVL) and automatic passenger counting (APC)
data from bus feets to predict passenger demand [30]. One
scholar developed a hybrid model combining wavelet and
SVM models [31]. Some scholars have used random forest
regression to predict short-term passenger fow in railroad
transportation systems [32].

Among diferent machine-learning models, artifcial
neural network (ANN) has gained the attention of scholars,
and in 2014, some scholars applied two neural network
models, Elman and BP, to solve the problem of passenger fow
prediction, and the comparison of the prediction results of the
two methods found that the Elman method can achieve
higher prediction accuracy [33]. In 2019, some scholars used
the radial basis function (RBF) network method to solve the
problem of short-term passenger fow prediction at stations,
and the research results show that the prediction accuracy
evaluation indexes are all less than 1.5%, and the model
prediction performance is better [34]. In addition, scholars
have proposed various network models, such as multitask
convolutional neural network (MTUNN) and parallel in-
tegrated neural network [35], and some scholars have com-
bined neural networks with other linear and nonlinear
methods simultaneously in their research [36, 37].

Machine-learning methods are difcult to achieve good
results in complex networks with many nodes [38]. Tis is
because most of them rely on complex artifcial feature en-
gineering, which leads to insufcient robustness in modeling
massive data and cannot handle raw spatiotemporal data.

2.3. Deep Learning Methods. Te emergence of real-time
data collection and information dissemination systems and
the increasing complexity of transportation networks have
accelerated the popularity of deep learning models. In 2017,
some scholars proposed the deep neural network (DNN),

applying the SAE-DNN model for passenger fow pre-
diction, and the results of the study found that the model can
get better prediction results for stations with diferent
passenger fow features [4]. In recent years, several scholars
have proposed the LSTM model to solve the problem of
passenger fow prediction, and the research results found
that the LSTM model has a higher average prediction ac-
curacy of its algorithm compared with other neural network
models [4, 39–41]. Te GRU model has the advantage of
fewer parameters and faster training compared to the LSTM
model [42].

Te emergence of GCN provides a new idea for trafc
network modeling. GCN views the whole network as
a graph, which preserves the real topology of the network
and extracts the spatial features more efectively [16, 18]. In
addition, GCN greatly maintains the global nature of the
network by convolving the entire structured graph, which is
theoretically superior to CNNs that can only capture ad-
jacent spatial patterns due to the limited size of the kernel
window.

Tere are many researchers based on the GCNmodel and
fused it with temporal features to achieve good results in trafc
prediction problems. For example, a difusion convolutional
recurrent neural network (DCRNN) [17] has been proposed
to model trafc fow as a difusion process on a directed graph
and capture spatial dependencies using bidirectional random
wandering on the graph. A new architecture called Graph
WaveNet has been developed which uses an adaptive adja-
cency matrix to capture hidden spatial dependencies [43]. A
novel enhanced dynamic graph convolutional network model
(RDGCNI) [44] has been proposed, which generates graph
adjacency matrices representing dynamic spatiotemporal
dependencies between sites. A parallel-structured deep
learning model consisting of a graph convolutional network
and a stacked bidirectional unidirectional long-term and
short-term memory network (GCN-SBULSTM) has been
proposed [45], which treats the subway network as a struc-
tured graph and introduces a K-hop matrix that combines the
travel distance, the population fow rate, and the adjacency to
capture the dynamic spatial correlation between subway
stations. A deep learning architecture combining residual
networks (ResNet), GCN, and LSTM (called “ResLSTM”) has
been proposed [46], and a novel metro passenger fow pre-
diction based on the optimization of the parameter estimation
of graph convolutional gated recurrent neural network model
(TMFO-AGGRU) [47], and a T-GCNmodel combining GCN
and GRU was proposed [18]. Te graph convolutional net-
work is used to capture the topology of the road network and
model the spatial dependencies, and the GRU is used to
capture temporal variations of trafc data on the road.

3. Methodology

3.1. ProblemStatement. Te transit passenger fow prediction
problem addressed in this study can be classifed as a spa-
tiotemporal prediction problem. As shown in Figure 1, the
bus passenger fow data for each time interval form a spa-
tiotemporal graph. First of all, the bus network structure can
be represented as a graph structureG � (D, L,W), whereD �
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d1, d2, · · · , dN  denotes the set of nodes of all stations in the
bus network, corresponding to the real-world station S, and it
is important to note that the same station belonging to dif-
ferent lines is distinguished into two stations, and N denotes
the number of stations. L denotes the connecting edges be-
tween the bus stations, including the physical connecting
edges and virtual connecting edges. W is the weight of an
edge. In addition, the bus passenger fow is not only afected
by the spatial structure of the bus network but also by the
passenger fow in the historical period. At moment t, the
passenger fow of each station in the network is X(t) ∈ RN×T.
To summarize, the forecasting problem can be expressed as
follows:

M � F(X,G,W), (1)

where M ∈ RN is the predicted bus passenger fow at N

stations at time T′,X ∈ RN×T′ is the historical passenger fow
at station N, F is the deep learning model, G is the spatial
graph structure of the bus network, and W is the learnable
parameters.

Te general framework of the TSD-STmodel is shown in
Figure 2. First, in feature engineering module, the dataset is
decomposed into three items, trend, cycle, and efect, using
time series decomposition (TSD), and the Trend and Cycle
are nested and then trained by GRU. Next, two graph
structures are constructed based on the spatial dependence
of neighboring stations and the spatial dependence of
functionally similar stations, and the output values of the
GRUs are passed through the multilayer GCN, respectively,
and then the outputs of the two graphs are summed up and

put into the temporal attention, and fnally, they are nested
with the efect into the MLP decoder to complete the task of
multistation passenger fow prediction.

3.2. Feature Engineering Module. Passenger fow at bus
stations has obvious cyclical features [48], and unlike other
modes of transportation, bus passenger fow is subject to
greater uncertainty and can be afected by multiple con-
tingencies. Terefore, in order to accurately represent the
time series information, a time series decomposition (TSD)
model is used to extract the temporal features [49, 50].

TSD is a common and fexible conception for mode
decomposition, and its benefts are refected in our ap-
proaches to modeling the time series features, namely, trend,
cycle, and efect. By using the backtracking mechanism of
RNNs to defne the trend vector, the trend term can model
near-future changes, e.g., upward, downward, turning, and
leveling. By ftting a Fourier series, which consists of a set of
triangle signals, the cycle term can model the multiple pe-
riodic patterns in passenger fow changes, including peaks
and of-peaks, day and night, and workdays and nonwork-
days. By telling howmuch the current passenger fow deviates
from the “cycle,” the efect term can model arranged or casual
events, e.g., holidays, extreme weather, and special events.

As shown in Figure 3, the temporal features are analyzed
through trend, cycle, and efect, and equation (2) represents
the relationship between the three features, where Y(t + λ′)
is the predicted value of passenger fow at the moment of
t + λ′, λ′ is the predicted time step, A(tb) is the trend term
obtained from the change of the historical passenger fow
data, the cyclical change is included in C(tf), and E(t)

represents the moment t of the random efect.

Y t + λ′  � A tb(  + C tf  + E(t). (2)

“Trend” feature is used to predict recent changes in the
model (e.g., upward, downward, steering, and fat). Future
trends can be estimated from historical data with respect to
neighboring times, so a backtracking mechanism is used to
defne the trend term, as shown in equation (3), where the
prediction interval λ denotes the size of the step.

A tb(  � [y(t − λ + 1), y(t − λ + 2), · · · , y(t)]. (3)

“Cycle” feature is that the standard Fourier series can be
used to model periodic variations, as shown in equation (4).
Teoretically, the Fourier series can ft any function as long as
there are an infnite number of triangular signals; however, in
practice, it is too costly to build such a model. Terefore, the
number of sines and cosines is critical to the ft. Given the time,
the number of triangular signals N, and the period length T,
equation (4) can be converted to (5). In addition, in equation
(5), let ω � [a1, b1, · · · , an, bn]T, ](t) �[cos 2πt/T, sin 2πt/T,

· · · , cos 2πnt/T, sin 2πnt/T]T, which can be obtained as
equation (6). Tus, the periodicity ftting can be solved as
a multivariate linear regression task. Terefore, the periodicity
characteristic can be expressed by equation (7).

S1 S2 S3

S4
S5

L1

L2

d1 d2 d3

d4

d2

d5

l1 l2

l3
l4

Time

Spatio-temporal Graph

Figure 1: Spatial and temporal graph of bus passenger fow.
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2
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n�1
an cos

2πnt

T
+ bn sin
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T
 , (5)

c(t) �
a0

2
+ ](t) × ω, (6)

C tf  � c(t + 1), c(t + 2), · · · , c t + λ′  . (7)

“Efect” feature is used to consider that, in addition to
trends and cycles, bus transit passenger fow may be afected
by scheduled or fortuitous events, such as holidays, extreme
weather, and special events. Assuming that the passenger
fow at the current time is larger than that of the past cycle,
indicating that the passenger fow at subsequent moments
may also be larger, and the efect feature E(t) can be
expressed by equation (8). It should be noted in particular
that the historical data of passenger fow come from the data

of passengers boarding the bus and swiping the card, and if
there is no bus arriving at the station during the sampling
time interval, there will be a situation that the passenger fow
is 0. In this case, when calculating the E(t), y(t) is taken as
a relatively small value α for calculation, and at the same
time, in order to prevent o(t) from being too large, a pa-
rameter value β is chosen to constrain the upper limit of o(t).

E(t) � o(t) × δ(t),

s.t.

o(t) �

c(t) − y(t)

y(t)
, y(t)≠ 0,

min
c(t) − α

α
, β , y(t) � 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

δ(t) �
1, |k(t)|> ρ,

0, otherwise.

⎧⎪⎨

⎪⎩

(8)
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3.3. Spatiotemporal Module

3.3.1. Temporal Features

(1) GRU-Based Temporal Feature Mining. Aiming at the
features of large, cyclical, and complex bus transit passenger
fow prediction data, a gated recurrent unit (GRU) model is
established to deal with temporal features. As an alternative
to long short-termmemory (LSTM), GRU is widely used for
temporal modeling, which is usually implemented with
standard convolution or full connectivity. GRU has a strong
memory capability, which enables selective memory of the
extracted time series features of passenger fow and back-
ward propagation through hidden nodes. GRU possesses
several advantages over LSTM, including a smaller pa-
rameter count and faster training speed. Tis makes GRU
better equipped to efectively capture the intrinsic patterns
within time series data. Te specifc calculation process is
shown as follows:

ut � σ Wu It,ht−1  + bu( , (9)

qt � σ Wr It, ht−1  + bq , (10)

zt � tanh Wz It, qt × ht−1(   + bz( , (11)

ht � ut × ht−1 + 1 − ut(  × zt. (12)

In spatiotemporal module, A(tb) and C(tf) embed-
dings, which have gone through the feature engineering
module, are nested as It as input to the GRU, and W and b

represent the weights and biases in the training process. Te
fnal output ht is obtained by resetting and updating the
gating control, which realizes the selective forgetting and
remembering of the passenger fow data and achieves the
efective mining of temporal features of passenger fow.

(2) Scaled Dot-Product Attention. Scaled dot-product at-
tention is one part of the attention mechanism proposed in
the transformer model [51], which allows the model to focus
on the relevant part of the input sequence during self-
attention. It is computed from the three input data:
query, key, and value. Scaled-dot attention in this study can
pay more attention to the historical time points that con-
tribute most to the prediction and better capture the tem-
poral relationships. Te calculation formula is shown in
equation (13). Specifcally, the output hidden layer of MLP
graph embedding is processed by three linear functions. Q,
K, and V are obtained, respectively, as shown in Figure 4.

Attention(Q,K,V) � softmax
QKT

��
dk

 V, (13)

where Q, K, and V are the matrix of query, key, and value,
respectively. dk is the dimension of query and keys.

3.3.2. Spatial Features. To comprehensively encode the
relationships between stations, two graphs containing the
physical neighborhood of sites and the correlation between

stations were generated. Among them, the adjacency graph
refects the physical connectivity between stations, while the
similarity graph represents the semantic or functional
correlation between stations. To better utilize this graph
information, multigraph convolution and graph fusion are
used in the neural network model. Tese parallel graph
convolution operators are able to process diferent types of
graph data simultaneously and fuse the obtained results to
capture the spatial relationships and features between sta-
tions more comprehensively.

(1) Adjacency Graph and Similarity Graph. Tis subsection
describes how adjacency graph and similarity graph are
constructed. By defnition, a graph consists of nodes, edges,
and the weights of the edges, so the physical and similar graphs
are denoted as Gp � (D, Lp,Wp) and Gs � (D, Ls,Ws), re-
spectively. It should be noted that, unlike ordinary road
networks, here stations with the same geographic coordinates
but belonging to diferent bus routes are distinguished as
diferent nodes. Physical and similar graphs share the same
nodes but have diferent edges and edge weights. Lp and Ls are
the sets of edges of diferent graphs, and for a particular graph
Gφ(φ � p, s), Wφ ∈ RN×N denotes the weights of all edges.
Specifcally,Wφ(i, j) is the weight of the edges from node i to
node j.

Adjacency graph (Gp) is constructed directly from the
physical topology of the bus transit system under study. An
edge connecting nodes i and j is formed if nodes i and j in Ep

connect stations i and j in the real world. In order to compute
the weights of these edges, we frst construct a physical con-
nectivity matrix P ∈RN×N. As shown in Figure 5, if there exists
an edge between nodes i and j, P(i, j) � 1, otherwise P(i, j) �

0. Finally, we obtain the edgeweightsWp. Specifcally,Wp(i, j)

is computed by the following equation:

Wp(i, j) �
P(i, j)


N
k�1P(i, k)

. (14)

Similarity graph (Gs) is constructed based on similarities
between stations. Typically, stations located within similar
urban functional areas will have similar passenger fow
trends. For example, the boarding passenger fow of bus

Q K V

MatMul

Scale

SoftMax

MatMul

Figure 4: Temporal attention.
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stations in ofce areas will have a signifcant evening peak on
weekdays, while stations in residential areas will have
a signifcant morning peak on weekdays. To quantify this
similarity, this paper uses the Spearman rank correlation
coefcient to measure this relationship.

Te Spearman correlation coefcient is used to deal with
the monotonic relationship between two variables and has
a value between −1 and 1.Te closer the absolute value of the
coefcient is to 1, the stronger the correlation between the
two variables. Bus transit passenger fow datasets often
exhibit a discrete nature and may not adhere to the as-
sumptions of a normal distribution. In contrast to the
Pearson correlation coefcient, the Spearman correlation
coefcient ofers a nonparametric approach that does not
rely on assumptions regarding the distribution pattern of the
data and is also able to deal with nonlinear relationships.
Terefore, when analyzing such datasets, the Spearman
correlation coefcient is deemed more appropriate. For
a sample size, the historical passenger fow data (iT, jT) of
the two stations at T moments are frst assigned a rank
(iT, jT) according to their average descending position in the
overall data. Te correlation coefcient ρ can be expressed as
follows:

r(i, j) �
T iT − iT(  jT − jT( 
�������������������

T iT − iT( 
2

jT − jT( 
2

 . (15)

Te Spearman correlation matrix is defned as follows:

S(i, j) � |r(i, j)|. (16)

On the basis of the Spearman correlation matrix, the
construction of the Spearmanmatrix is fexible. For example,
these virtual edges can be determined by a predetermined
similarity threshold ε or weights can be assigned based on
the similarity values, as shown in Figure 5, which is a simple
example of the Spearman matrix.

Ws(i, j) �
1, S(i, j)≥ ε,

0, S(i, j)< ε.
 (17)

(2) GCN for Multigraph Convolution and Graph Fusion.
Conventional approaches are unable to process graph-
structured data efciently, and it is difcult to perform
deep mining from graph-structured data for prediction tasks.
A widely used graph neural network, graph convolutional
network (GCN), has emerged in recent years, which is capable
of extracting useful feature information by performing graph
convolution operations on graph-structured data. A major
dependency of GCN is the adjacency matrix information;
however, a single adjacency matrix may not be able to ade-
quately account for the bus stops’ complex relationships. In
order to consider these relationships more comprehensively,
TSD-ST extends GCN using multigraph convolution and
graph fusion.

First, two relationship graphs were constructed to rep-
resent the physical adjacencies of bus stops and the corre-
lation relationships between stops, respectively. Together,
these two graphs describe the multiple relationships between
stops. Next, on each relational graph, multigraph convolu-
tional operations and fusion are performed separately to
capture richer feature information. Finally, the two graph
relation structures are fused together to obtain multiple
spatial relations in the transit network. Trough multigraph
convolution and graph fusion, TSD-ST is able to better utilize
the graph structure data to fully exploit the spatial in-
formation between bus stops. Te process of multigraph
convolution and graph fusion is shown in Figure 2. Te input
of convolution is ht � h1t , h2t , · · · ,hN

t , ⊙ is Hadamard
product, Θ denotes the parameters corresponding to the two
graph convolutions, k is the number of layers of graph
convolution,N(i) is the set of neighbor node indices of node
i, μ is a custom parameter, and g(k)

φ denotes the output of the k

layer graph convolution. Te specifc process is as follows:
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Spearman Correlation Matrix Similarity Matrix
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Figure 5: Adjacency graph and similarity graph.
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g(1)
φ � μh +(1 − μ) 

j∈Nφ(i)

Wφ(i, j)⊙Θφh,

g(2)
φ � μg(1)

φ +(1 − μ) 
j∈Nφ(i)

Wφ(i, j)⊙Θφg
(1)
φ ,

· · ·

g(3)
φ � μg(k−1)

φ +(1 − μ) 
j∈Nφ(i)

Wφ(i, j)⊙Θφg
(k−1)
φ ,

gφ � g(1)
φ + g(2)

φ + · · · + g(k)
φ .

(18)

Both MLP embedding and MLP decoder use multilayer
perceptron (MLP), which is capable of learning complex
nonlinear relationships, and the specifc process is as follows:

h(k)
� ReLU W(k)

M h(k− 1)
+ b

(k)
 . (19)

4. Experiments and Analyses

4.1. Dataset and Settings. Te TSD-ST model was validated
using the April 2018 Beijing bus transit dataset, obtained in
real time through the automated fare collection (AFC)
system. Tis dataset includes various information, such as
bus route numbers, passenger boarding times, boarding stop
numbers, and alighting stop numbers. Prior to analysis, the
dataset underwent preprocessing to eliminate erroneous
data, including instances where passengers boarded and
alighted at the same stop, empty data records, and cases

where alighting occurred before boarding. Tis preprocess-
ing step was crucial to ensure data validity. Furthermore, the
dynamic information, such as bus line numbers, boarding
station numbers, and alighting station numbers, was
matched with static line information, encompassing details
such as line names and boarding and alighting station names,
and the corresponding latitude and longitude coordinates. By
combining these datasets, comprehensive bus passenger
travel data are obtained. Finally, diferent running directions
of buses on the same line are distinguished according to the
order of boarding and alighting stations, and these trafc data
are summarized into raw data every 15minutes. Te time
series decomposition (TSD) method is utilized to decompose
the data in advance. Te training set encompasses data from
the initial 24 days, while the test set comprises data from the
fnal 6 days. Te ratio of the training set to the test set is
maintained at 8 : 2.

Six diferent types of lines were selected for the experi-
ment as shown in Figure 6, and the basic information of these
six experimental lines is described in Table 1. According to
these lines, the passenger fow at each of their stations for
three consecutive days and the Spearman rank correlation
coefcients between the stations were statistically analyzed as
shown in Figure 7, and it is evident that there is a more
pronounced temporal dependence and spatial dependencies
in bus transit passenger fow.

To evaluate the TSD-ST approach, all the experiments
were conducted on a Windows workstation equipped with
an NVIDIA Quadro RTX 4000 GPU, an Intel(R) Core(TM)

Bus lines
Line 1
Line 5

Line 27
Line 40

Line 109
BRT Line 4

Figure 6: Selected experimental lines from the dataset.
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i9-10900K CPU, and 64G RAM. According to several ex-
periments, the parameters are set as follows: the number of
epoch is 2000, the learning rate is 0.003, the model is op-
timized using the Adam optimizer, and the loss function
uses the mean squared error (MSE), and in order to better
train and measure the model efect, this paper chooses the
root mean squared error (RMSE) and the mean absolute
error (MAE) as the evaluation indexes. When calculating
E(t), set α� 0.01 and β� 50. Te Spearman matrix was
constructed by setting the threshold ε� 0.6, and the mul-
tigraph convolution and graph fusion process was per-
formed by taking k � 2, using a 2-layer graph convolution for
the computation, and taking μ� 0.5.

MSE �
1
n



n

i�1
yi − yi( 

2
,

MAE �
1
n



n

i�1
yi − yi


,

RMSE �

������������

1
n



n

i�1
yi − yi( 

2




,

(20)

where yi and yi are the true value and predicted value, and n
is the number of all predicted values.

4.2. Experimental Performance. Prediction tasks with dif-
ferent time scales, including 30-min prediction, 60-min
prediction, and 90-min prediction, were conducted to
evaluate the performance of the TSD-ST model. Some
commonly used and latest prediction models were selected
for comparison:

(1) Historical Average (HA): a method of averaging
historical observations as a prediction for the future

(2) Least Absolute Shrinkage and Selection Operator
(LASSO): a linear regression method for feature
selection and sparse modeling

(3) Fully Connected Neural Network (FCNN): a tradi-
tional artifcial neural network (ANN) architecture

(4) Graph Convolutional Network (GCN) [52]: a deep
learning model for processing graph data

(5) Long Short-Term Memory (LSTM) [53]: a variant of
recurrent neural networks (RNN), and LSTM is
widely adopted in the literature for time series
prediction

Table 1: Information on the experimental lines.

Lines Type Departure interval
(min)

Average station
distance: up∗

(km)

Average daily
passenger fow
in April: up

Average station
distance: down∗∗

(km)

Average daily
passenger fow

in April:
down

Line 1 Urban trunk line 5 1.00 25182 0.97 25833
Line 5 Business/tourist line 10 0.59 9708 0.65 9883
Line 27 Commuter line 10 0.73 7651 0.64 7930
Line 40 Commuter line 7 1.00 5968 1.00 6224
Line 109 Business/tourist line 10 0.46 6088 0.51 5600
BRT line 4 Suburban trunk line 10 1.34 21586 1.34 23997
∗Te upward direction of the bus and ∗∗the downward direction of the bus.
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Figure 7: Spatiotemporal features of the experimental data. (a) Passenger fow for three consecutive days. (b) Spearman rank correlation
coefcient between stations.
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(6) Gated Recurrent Unit (GRU) [54]: a special re-
current neural network (RNN) model

(7) Graph Gated Recurrent Unit (GGRU) [47]: the
linear operation in the gated recurrent neural net-
work is replaced by the graph convolution operation,
and GGRU uses attention mechanisms in graph
convolution

(8) Temporal Graph Convolutional Network (T-GCN)
[18]: a spatiotemporal graph convolution model for
trafc prediction

In the experiments, the simplest structure of the proposed
model was frst established, and then, the structures of other
comparative models were determined accordingly, ensuring

that eachmodel had the same number of learnable parameters
and input information. In addition, for the model-agnostic
parameters, we used the most common settings and deployed
the same confgurations fairly to each test, such as the learning
rate, epoch number, and optimizer. Te experimental results
are shown in Table 2.

Te experimental results show that traditional time series
prediction methods such as HA are not suitable for nonlinear
data with complex features such as bus passenger fow, and
deep learning models such as GRU and GCN can learn the
trend in the temporal and spatial dimensions to a certain
extent, but due to the large stochastic of the bus passenger fow,
learning only from a single temporal dimension or spatial
dimension does not efectively capture the features. GGRU

Table 2: Te list of evaluation metrics of compared models.

Metrics
(×10−2)

30min 60min 90min Average

Model RMSE MAE RMSE MAE RMSE MAE RMSE MAE
HA 12.52 7.61 13.64 8.38 14.65 9.12 13.60 8.37
LASSO 11.89 7.78 12.68 8.48 13.33 9.08 12.63 8.45
FCNN 11.86 7.63 12.65 8.35 13.30 8.95 12.60 8.31
GCN 11.84 7.62 12.60 8.33 13.27 8.95 12.57 8.30
LSTM 11.75 7.44 12.51 8.12 13.16 8.72 12.47 8.09
GRU 11.76 7.44 12.50 8.11 13.17 8.74 12.47 8.10
GGRU 11.85 7.58 12.60 8.26 13.24 8.86 12.56 8.23
T-GCN 11.67 7.37 12.22 7.94 12.66 8.36 12.18 7.89
TSD-ST 10.1 5.90 10. 4 6.07 10.58 6. 7 10. 5 6.11
Note. Bolding denotes that the metrics perform best in all models.
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Figure 8: Prediction results and errors for TSD-STand T-GCN fromApril 26, 2018, to April 27, 2018: (a) 30-min prediction results, (b) 60-min
prediction results, (c) 90-min prediction results, (d) 30-min prediction errors, (e) 60-min prediction errors, and (f) 90-min prediction errors.
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and T-GCN, as combinedmodels, synthesize the temporal and
spatial features, but they did not achieve satisfactory results in
experiments. Te TSD-ST model outperformed all other
comparison models across all prediction tasks, exhibiting an
average improvement of 18.08% in root mean square error
(RMSE) and 25.65% in mean absolute error (MAE) on the
three time scales. Specifcally, the RMSE prediction metrics for
30-min, 60-min, and 90-min predictions were improved by
14.82%, 18.42%, and 20.73%, while the MAE was improved by
21.94%, 26.39%, and 28.00%. In comparison with the T-GCN
model, the RMSE was improved by 15.02% and the MAE was
improved by 22.56% on average in the prediction task for the
three time scales. Specifcally, the RMSE prediction metrics on
30-min prediction, 60-min prediction, and 90-min prediction
were improved by 13.20%, 15.38%, and 16.43%, and the MAE
was improved by 19.95%, 23.55%, and 23.80%.

As shown in Figure 8, the TSD-ST model excels in
efectively handling the presence of unavoidable zero values
within the bus transit dataset, demonstrating swift re-
sponsiveness to changes in transit passenger fow, and
accurately capturing the peak periods. Conversely, as the
prediction task’s time scale expands, the performance of the
T-GCN model notably diminishes, particularly when
forecasting peak passenger fows. In contrast, the TSD-ST
model consistently maintains its superior predictive
capability.

In summary, real-world prediction tasks can demon-
strate that TSD-ST is able to learn multiple spatial feature
relationships between nodes of a bus transit network and
capture the fuctuating trend of passenger fow changes in
the time dimension and is more applicable to bus transit
datasets. Te model can excellently fulfll the task of mul-
tistop passenger fow prediction.

4.3.AblationExperiments. To evaluate the efects of diferent
components/modules in the TSD-ST, a series of ablation
experiments were conducted to observe the change in overall
performance by gradually removing certain design com-
ponents/modules.

Te results of these ablation experiments are presented in
Table 3. It can be seen that deleting each component has an
impact on the overall performance. In the 30-min prediction
task, when the components of adjacency graph, similarity
graph, cycle, efect, TSD, and AT & MLP decoder were re-
duced, RMSE values increased from 10.13 to 10.62, 10.90,
10.85, 10.16, 11.28, and 10.23, and MAE values increased from
5.90 to 6.34, 6.53, 6.55, 6.04, 6.90, and 6.14. In particular, when
the similarity graph and time series decomposition (TSD)
components were removed, there was a greater impact on the
results. Tis observation further validates the conclusion of the
previous analysis that bus passenger fow data have obvious
temporal dependencies and spatial dependencies; the similarity
graph captures the similarity between diferent stations to
better utilize the spatial information, while the TSD model
accurately predicts the temporal evolution trend of the bus
passenger fow to make full use of the temporal dependencies.

5. Conclusions and Future Work

Accurate and efective passenger fow prediction can
provide data support for bus transit operation planning and
assist decision-making. In this study, a new deep learning
framework (TSD-ST) is proposed for multistation short-
term bus passenger fow prediction. Te network can ef-
fectively incorporate temporal dependencies, spatial de-
pendencies, and internal and external infuences on bus
passenger fow. Since bus passenger fow will show diferent
trends between weekdays and nonweekdays, time series
decomposition (TSD) can fully consider the temporal
variation of passenger fow to understand the fuctuation
and trend patterns of passenger fow in diferent periods,
and it also takes into account the infuence of random
events. Te similarity graph is introduced, the spatial
similarity between stations is fully considered by the
Spearman rank correlation coefcient, and multigraph
convolution and graph fusion are performed to make up for
the lack of traditional spatial learning limited to topological
relations. Local and global features are modeled more
accurately using GRU, temporal attention, and MLP.

Experimental results on real-world bus transit datasets
show that the accuracy of both the TSD-STproposed in this
paper outperforms the current state-of-the-art models. Te
ablation experiments validate the efectiveness of the TSD
module as well as the similarity graph in improving the
overall accuracy, suggesting that considering the global
spatial correlation of the network rather than the simple
physical adjacency has greater advantages in the task of bus
transit passenger fow prediction. In addition, the relatively
low accuracies of GGRU and T-GCN demonstrate that bus
transit passenger fow prediction is signifcantly diferent
from other trafc prediction tasks, that bus transit passenger
fow datasets have unique features, and that the TSD-ST
model maintains the integrity of temporal and spatial de-
pendencies to a large extent and is more applicable to bus
transit passenger fow prediction.

Improvements can be made in future work. One issue is
the expansion and refnement of the “efect,” such as in-
corporating more temporary factors, such as weather con-
ditions, temporary events, and large meetings, to enhance
the ability of the prediction model. In addition, the TSD-ST
model can be further improved by using more bus transit
passenger fow data from other cities to validate and opti-
mize the model.

Data Availability

Te bus transit data used to support the fndings of this
study are available from the corresponding author upon
request.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

12 Journal of Advanced Transportation



Acknowledgments

Tis work was supported fnancially by the Science and
Technology Planning Project of Guangdong Province (grant
no. 2023B1212060029).

References

[1] Y. Montero-Lamas, M. Novales, A. Orro, and G. Currie, “A
new big data approach to understanding general trafc im-
pacts on bus passenger delays,” Journal of Advanced Trans-
portation, vol. 2023, Article ID 4082587, 15 pages, 2023.

[2] X. C. Li, Y. Z. Peng, Z. X. Wu, and Z. W. Chen, “Short-term
forecast of metro station passenger fow based on deep spatial-
temporal network,” Trafc Transport, vol. 33, pp. 55–61, 2020.

[3] H. Zhang, J. He, J. Bao, Q. Hong, and X. Shi, “A hybrid
spatiotemporal deep learning model for short-term metro
passenger fow prediction,” Journal of Advanced Trans-
portation, vol. 2020, Article ID 4656435, 12 pages, 2020.

[4] L. Liu and R.-C. Chen, “A novel passenger fow prediction
model using deep learning methods,” Transportation Research
Part C: Emerging Technologies, vol. 84, pp. 74–91, 2017.

[5] J. Zhang, Y. Zheng, and D. Qi, “Deep spatio-temporal residual
networks for citywide crowd fows prediction,” Proceedings of
the AAAI Conference on Artifcial Intelligence, vol. 31, no. 1,
2017.

[6] W.Wu, Y. Xia, andW. Jin, “Predicting bus passenger fow and
prioritizing infuential factors using multi-source data: Scaled
stacking gradient boosting decision trees,” IEEE Transactions
on Intelligent Transportation Systems, vol. 22, no. 4,
pp. 2510–2523, 2021.

[7] X. Yang, Y. Zou, and L. Chen, “Operation analysis of freeway
mixed trafc fow based on catch-up coordination platoon,”
Accident Analysis & Prevention, vol. 175, Article ID 106780,
2022.

[8] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[9] S. Shekhar and B. M. Williams, “Adaptive seasonal time series
models for forecasting short-term trafc fow,” Transportation
Research Record, vol. 2024, no. 1, pp. 116–125, 2007.

[10] L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-Moreira,
and L. Damas, “Predicting taxi– passenger demand using
streaming data,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 14, no. 3, pp. 1393–1402, 2013.

[11] R. Yu, Y. Li, C. Shahabi, U. Demiryurek, and Y. Liu, “Deep
learning: a generic approach for extreme condition trafc
forecasting,” in Proceedings of the 2017 SIAM international
Conference on DataMining, pp. 777–785, SIAM, Philadelphia,
PA, USA, June 2017.

[12] Z. G. Cui, R. Ke, Z. Pu, and Y. Wang, “Stacked bidirectional
and unidirectional lstm recur- rent neural network for
forecasting network-wide trafc state with missing values,”
Transportation Research Part C: Emerging Technologies,
vol. 118, Article ID 102674, 2020.

[13] X. Zhang, S. Wen, L. Yan, J. Feng, and Y. Xia, “A hybrid-
convolution spatial–temporal recurrent network for trafc
fow prediction,” Te Computer Journal, p. 171, 2022, https://
academic.oup.com/comjnl/advance-article-pdf/doi/10.1093/
comjnl/bxac171/47465236/bxac171.pdf.

[14] X. Ma, Z. Dai, Z. He, J. Ma, Y. Wang, and Y. Wang, “Learning
trafc as images: a deep convolutional neural network for
large-scale transportation network speed prediction,” Sensors,
vol. 17, no. 4, p. 818, 2017.

[15] Z. Xie, W. Lv, S. Huang, Z. Lu, B. Du, and R. Huang, “Se-
quential graph neural network for urban road trafc speed
prediction,” IEEE Access, vol. 8, pp. 63349–63358, 2020.

[16] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” IEEE
Transactions on Neural Networks and Learning Systems,
vol. 32, no. 1, pp. 4–24, 2021.

[17] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Difusion convolutional
recurrent neural network: data- driven trafc forecasting,” in
Proceedings of the International Conference on Learning
Representations, Sacramento, CA, USA, July 2018.

[18] L. Zhao, Y. Song, C. Zhang et al., “T-GCN: a temporal graph
convolutional network for trafc prediction,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 21, no. 9,
pp. 3848–3858, 2020.

[19] G. Jin, Y. Cui, L. Zeng, H. Tang, Y. Feng, and J. Huang, “Urban
ride-hailing demand prediction with multiple spatio- tem-
poral information fusion network,” Transportation Research
Part C: Emerging Technologies, vol. 117, Article ID 102665,
2020.

[20] B. Lu, X. Gan, H. Jin, L. Fu, and H. Zhang, “Spatiotemporal
adaptive gated graph con- volution network for urban trafc
fow forecasting,” in Proceedings of the 29th ACM In-
ternational conference on information & knowledge manage-
ment, pp. 1025–1034, New York, NY, USA, October 2020.

[21] L. Liu, J. Chen, H. Wu, J. Zhen, G. Li, and L. Lin, “Physical-
virtual collaboration modeling for intra-and inter- station
metro ridership prediction,” IEEE Transactions on Intelligent
Transportation Systems, vol. 23, no. 4, pp. 3377–3391, 2022.

[22] Z. Cui, K. Henrickson, R Ke, and Y. Wang, “Trafc graph
convolutional recurrent neural network: a deep learning
framework for network-scale trafc learning and forecasting,”
IEEE Transactions on Intelligent Transportation Systems,
vol. 21, no. 11, pp. 4883–4894, 2020.

[23] Z. Yang, Q. Zhao, and S. Zhao, “Passenger fow volume
forecasting method based on public transit intelligent card (ic)
survey data,” Transport Standardization, vol. 9, pp. 115–119,
2009.

[24] Z. Chun-Hui and S.-Y. Song-Rui, “Kalman flter-based short-
term passenger fow forecasting on bus stop,” Journal of
transportation systems engineering and information technol-
ogy, vol. 11, no. 4, p. 154, 2011.

[25] Z. Ma, J. Xing, M. Mesbah, and L. Ferreira, “Predicting short-
term bus passenger demand using a pattern hybrid approach,”
Transportation Research Part C: Emerging Technologies,
vol. 39, pp. 148–163, 2014.

[26] Y. Ye, L. Chen, and F. Xue, “Passenger fow prediction in bus
transportation system using arima models with big data,” in
Proceedings of the 2019 International Conference on Cyber-
Enabled Distributed Computing and Knowledge Discovery
(CyberC), pp. 436–443, IEEE, Guilin, China, October 2019.

[27] S. Wu, Y. Zou, L. O. Wu, and Y. Zhang, “Application of
bayesian model averaging for modeling time headway dis-
tribution,” Physica A: Statistical Mechanics and its Applica-
tions, vol. 620, Article ID 128747, 2023.

[28] Q. Chen, W. Li, and J. Zhao, “Te Use of Ls-SVM for Short-
Term Passenger Flow Prediction/Mažiausių Kvadratų
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