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To investigate and compare the lane changing behavior of passenger cars and heavy vehicles during the implementation period
(defned as the interval from the start time to the end time of a lane change maneuver), this study applies the gradient boosting
decision tree (GBDT) method to model the lane changing behavior of heavy vehicles and passenger cars, respectively. Results
show that the lane change models vary with the vehicle types and lane change directions. Diferent factors are considered by the
drivers of passenger cars and heavy vehicles when implementing lane changes to diferent directions. Partial dependence plots of
GBDTmodels reveal that the infuence of independent variables on lane changing behavior is nonlinear and complicated, which
means that the same variable leads to various efects on the lane change decision across diferent vehicle types and lane change
directions. In contrast with other state-of-the-art methods, the proposed method can obtain more accurate results. Te fndings
indicate that it is necessary to build specifc lane change models based on vehicle types and lane change directions for microscopic
trafc simulators and autonomous vehicles.

1. Introduction

Recently, several projects of cooperative vehicle infra-
structure systems have been undertaken all over the world.
Among the numerous projects, the vehicular ad hoc network
(VANET) has an important role in the upcoming “super
smart highway.” In a VANET, all vehicles and roadside
infrastructures are equipped with wireless interfaces and
sensors. Terefore, vehicles are able to perceive the sur-
rounding trafc conditions and communicate with roadside
units and other vehicles, which can help vehicles realize
autonomous driving. However, it will take a long time to
realize full autonomous driving[1–3]. Advanced driver as-
sistance systems (ADASs) and connected and autonomous
vehicles (CAVs) will play important roles in the near future.
Accurate and robust lane change decision-making, planning,
and controlling systems are extremely important in devel-
oping ADAS and CAVs to improve trafc safety, promote
fuel economy, ease urban trafc congestion, and optimize
the utilization of roadways [4, 5].

It is stated in several studies that lane change behavior
has negative impacts on trafc safety operations and is
responsible for trafc breakdown in certain situations
[6–9]. Tus, one of the most important tasks of driving
assistance system is to help drivers take a safe lane change
behavior and reduce the crash risk. Such task is realized by
a subsystem of the driving assistance system, named as lane
change assistance system or merging assistance system,
which can tell the driver whether it is safe or not to change
lanes at the present time based on certain decision rules
[10]. Figure 1 shows a schematic of a lane change assistance
system via VANETs.

However, most of the existing lane change assistance
systems are designed for passenger cars, which are very
diferent from heavy vehicles (e.g., trucks) in size, per-
formance, and maneuverability. According to a report of
the Federal Motor Carrier Safety Administration [11],
large trucks accounted for 3429, 3622, and 3864 fatal
crashes in 2014, 2015, and 2016, respectively. Te per-
centage of truck-involved fatal crashes in all vehicle fatal

Hindawi
Journal of Advanced Transportation
Volume 2023, Article ID 2586372, 15 pages
https://doi.org/10.1155/2023/2586372

mailto:qianwangping@my.swjtu.edu.cn
mailto:ligen@njfu.edu.cn
https://orcid.org/0000-0003-3358-1190
https://orcid.org/0000-0002-9992-9615
https://orcid.org/0000-0002-7228-6736
https://orcid.org/0000-0001-5535-6467
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/2586372


crashes is much higher than the percentage of trucks in
vehicle ownership. Moreover, about half of the fatal
crashes were two-vehicle crashes that involved one large
truck and one nontruck vehicle type. As an active vehicle
interaction behavior, lane changes are one of the main
sources of two-vehicle crashes of one large truck and one
nontruck vehicle. Tus, it is rather urgent to build lane
change models for heavy vehicles, which can be applied to
lane change assistance systems to help drivers make safer
lane change decisions.

Most lane change models are designed for making de-
cisions. Weng et al. [10] stated that it is necessary to model
the merging behavior during the entire merging imple-
mentation period because it usually takes several seconds to
execute the lane change maneuver. As depicted in Figure 2,
the blind areas of heavy vehicles are much larger than
passenger cars during the lane change implementation
period, making heavy vehicles face more risks. Hence, it is
necessary to build a lane change model for heavy vehicles
during implementation. In this study, GBDT is proposed to
analyze the lane changing behavior. As a nonparametric
method, the GBDT has several advantages over the para-
metric models and has been successfully applied in many
felds [12–15]. Firstly, GBDT can provide higher modelling
accuracy than parametric models. Secondly, no pre-
determined assumptions related to data distributions are
needed for GBDT.Tirdly, GBDTcan handle a large number
of explanatory variables at the same time. GBDT is an en-
semble learning technique that combines the classifcation
and regression tree (CART) and the boosting technique. Te
basic scheme of GBDT is to use a series of weak CART to
achieve better results than a single strong learner [16, 17].
Terefore, GBDT retains the excellent performance and
good interpretability of CART and, at the same time,
overcomes the defciency of CART that it is easily disturbed
by perturbations in the training data [18]. Te partial efect
plots provided by GBDT can be directly used to understand
the nonlinear efects of infuencing variables, which is also
one of the most important reasons why we choose GBDT.

Tus, we can use GBDT to deeply analyze lane changing
decisions.

Te remaining of this paper is organized as follows.
Section 2 provides a state-of-the-art review of the existing
studies. Section 3 gives the methodology for how to build a
GBDTmodel. Section 4 describes the data used in this paper.
Results and discussion are presented in Section 5. Finally, the
concluding remarks are presented in Section 6.

2. Literature Review

Gipps [19] is believed to put forward the earliest compre-
hensive framework of lane change behavior. In Gipps’
model, the lane change decision was determined by some
fxed rules, such as safety, route, the location of permanent
obstructions, the presence of heavy vehicles, and speed
advantage. Ten, several studies soon widely used similar
frameworks [20–23]. Tis kind of lane change model is
called the rule-based model, which has the advantage of
simplicity. Te rule-based models are also widely applied to
microscopic trafc simulators, such as VISSIM, Paramics,
and ARTEMIS. However, these models are not easy to
calibrate. Game theory was used by Kita [24] to describe the
give-way behavior during merging process. In recent years,
more complicated rules were developed to better model the
lane change behavior. For example, free, forced, and
cooperated lane changes were proposed and modelled
separately [22]. Furthermore, considering the unobserved
plans of drivers, a framework of latent plans was proposed by
Choudhury et al. [25]. In all the above models, gap ac-
ceptance is considered the most important part. However, it
has been criticized by several studies for the inconsistency in
reality [9, 26–28]. Tus, discrete choice models were pro-
posed to overcome the defciency [29–31]. Te output of
discrete choice models is the probability of a lane change
maneuver. Recently, driver heterogeneity has drawn much
attention and been incorporated in discrete choice models
such as mixed logit, fnite mixture of logistic regression, and
mixed probit models [6, 32]. Nevertheless, the methods used
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Figure 1: Lane change assistance system via VANETs.
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in the abovementioned studies are all parametric statistical
approaches, having some limitations in dealing with the
complex nonlinearity in human behaviors [3], which can be
better addressed by artifcial intelligence or data-driven
methods. Balal et al. [34] proposed a fuzzy logic model and
achieved promising results. Combining the Bayesian net-
work and decision tree, Hou et al. [34] built a mandatory
lane change model for autonomous driving. Classifcation
and regression tree (CART) was also applied to lane change
models [10, 35]. Xie et al. [36] proposed a lane change model
based on deep learning. Moridpour et al. [37] modelled the
lane change decision using a fuzzy logic method for heavy
vehicles.

Most of the above studies focused on lane change de-
cision and treated the lane change behavior as an instant
event. Considering that it takes several seconds for a vehicle
to complete a lane change behavior, more and more re-
searchers realized that it is necessary to build models that can
describe the whole lane change implementation period
[9, 38]. Some of them focused on the longitudinal accel-
eration and deceleration behavior during the implementa-
tion period based on modifed car-following models [39–43]
or data-driven models [7]. Te lane change trajectory was
also investigated in some studies [44]. Besides, several
studies tried to model the decisions during lane change
implementation period based on the dynamic gap accep-
tance model [45], hidden Markov models [46], and cellular
automata models [47]. CARTwas recently applied by Weng
et al. [10] to model the merging behavior in the work zone
during implementation.

Nevertheless, some limitations still exist in the literature.
Firstly, most of the previous studies focused on the lane
change behavior of passenger cars but neglected heavy ve-
hicles. Moreover, the limited studies about heavy vehicles
were mostly based on the NGSIM dataset, which contains
less than 50 lane change maneuvers of heavy vehicles
[8, 37, 39, 48]. Secondly, drivers may either change to the left
or right lane, resulting in diferent behaviors [37, 49].
However, the decisions behind diferent behaviors were
ignored in previous studies. Tirdly, compared with para-
metric methods, data-driven techniques can improve pre-
diction accuracy, while most are black-box methods and
cannot be used to understand the internal mechanism of
lane change behaviors.

To address the above shortcomings, GBDT is used to
model and analyze the lane change decision during
implementation. Diferent from other black-box methods,
GBDT can not only achieve satisfying results but also

provide ways to explore the internal mechanism of the
trained model. GBDT has been successfully used in felds of
transportation and produced promising results
[3, 18, 50–52]. Te main contributions of this study contain
three aspects. Firstly, a data-driven method is applied to
model the lane change decision during the implementation
period and understand the infuence of diferent variables on
the lane change decision behaviors. Secondly, the lane
changing behavior of heavy vehicles is explored and com-
pared to passenger cars based on a large-scale dataset.
Tirdly, the lane change direction is considered, and lane
changes to diferent directions are modelled separately to
investigate the diferent infuencing factors.

3. Methodology

3.1. Gradient Boosting Decision Trees. Boosting technique is
the key to GBDT, and it generates a series of weak learners
sequentially and iteratively. In each iteration, the weak
learner is trained based on the residual of the previous one.
Let X and y denote the vector of input variables and the
response variable, respectively, and the trained learner F(X)

is the weighted summation of all weak learners as follows:

F(X) �� 􏽘
M

m�1
ρm · hm X, αm( 􏼁, (1)

where hm(X, αm) is the base function, αm is the corre-
sponding parameter, ρm is the step-size parameter, m is the
number of the current iteration, M is the number of total
iterations, and X is the vector of input variables.

In each iteration, the boosting technique will estimate ρm

and αm by minimizing the loss function

ρm, αm( 􏼁 � argmin
β,α

􏽘

N

i�1
L yi, Fm−1 xi( 􏼁ρh Xi, α( 􏼁( 􏼁, (2)

where N is the number of training samples. L(y, F(X)) is
the loss function which refects the accuracy of the training
model. Diferent forms of loss functions can be used in
GBDTwhen addressing diferent problems. For example, the
squared loss function is usually used in regression problems.
Te lane change decision problems can be regarded as
typical classifcation problems. Similar to logistic regression
model, the log-likelihood loss function is used in this paper:

L(y, F(X)) � ln 1 + e
− yF(X)

􏼐 􏼑y ∈ −1, 1{ }. (3)

Blind Area

(a)

Blind Area

(b)

Figure 2: Blind area of (a) heavy vehicles and (b) passenger cars.
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No matter which loss function is used, it is not easy to
accurately estimate ρm and αm according to (2). To address
this problem, Friedman [53] proposed an approximation
algorithm based on the assumption that the loss function
always declines fastest in the direction of negative gradient:

gm � −
zL(y, F(X))

zF(X)
􏼢 􏼣

F(X)�Fm−1(X)

. (4)

Two ways were adopted by Friedman [53] to improve the
generalization of GBDT. Firstly, a shrinkage parameter (or
learning rate) ηwas used to scale the contribution of each tree:

Fm(X) � Fm−1(X) + η · ρm · hm X, αm( 􏼁. (5)

A lower learning rate can achieve a better result but
requires more trees to converge. Tus, it is necessary to
choose proper η to seek the balance between the precision
and computing burden. Te second way was the adoption of
random sampling of training data. In each iteration, a
subsample fraction Sfr d is used to draw from the training
sample without replacement to speed up the modelling time
and guard against over-ftting.

A simple or weak CART is trained in each iteration to
improve the model. Te trained trees are only allowed to
grow to a small size J, called tree complexity, referring to the
number of splits. A larger J can help GBDT capture more
complex interactions among variables. However, it will also
degrade the generalization ability.

3.2. Relative Importance and Partial Plots of Variables in
GBDT. Te interpretability is an important advantage of
GBDT over other nonparametric methods, such as NN and
SVM. GBDTcan reveal the internal mechanism of the training
model in two ways: rank the infuences of independent vari-
ables on response predictions and draw the partial dependence
functions of the independent variables on response predictions.

For a single CART, one can get the relative importance of
the variable Xk by [53]

I
2
k Tm( 􏼁 � 􏽘

J

j�1
E
2
j1j X

k
􏼐 􏼑, (6)

where Tm is the decision tree with J leaf nodes in the mth

round iteration. 1j(Xk) is the indicator function indicating
whether the specifc feature variable Xk is chosen as split
variable at node j in the decision tree Tm. E2

j is the per-
formance improvement if Xk is selected as the splitting
variable at node j. I2k(Tm) is the relative importance of the
variable Xk in the decision tree Tm. Ten, the relative im-
portance of the variable Xk in GBDT can be obtained by

I
2
k(F) �

1
M

􏽘

M

m�1
I
2
k Tm( 􏼁, (7)

where I2k(F) is the relative importance of the variable Xk in
the fnal GBDT F.

Te partial dependence plot of a subset of variables XS

on the target variable can be obtained by

F XS( 􏼁 � EXc
F Xs( 􏼁􏼂 􏼃 �

1
N

􏽘

N

i�1
F XS, XiC( 􏼁, (8)

where XC is the complementary set of XS, XS ∪XC � XK is
the set of input variables in the model, and XiC is the value of
XC in training sample (i � 1, . . . , N).

4. Data Preparation

4.1. Te HighD Dataset. To model and compare the lane
change behavior of heavy vehicles and passenger cars, an
enriched vehicle trajectory dataset called highD dataset is
used in this study. Tis dataset was provided by Krajewski
et al. [54] and was initially used to study autonomous
driving. A drone with a 4K-resolution camera was used to
shoot the trafc fow at a great height within a freeway
section of about 420 meters (shown in Figure 3(a)). Trafc
fows in both directions at 6 locations around Cologne in
Germany were recorded during 2017 and 2018. One of the
most important highlights of this dataset is the amount of
data. Te highD dataset contains 60 videos in total, and each
video lasts 17 minutes. About 90000 passenger cars and
20000 heavy trucks are tracked [54], while the commonly
used NGSIM dataset only has 8860 passenger cars and 278
trucks. Te highD dataset has been used for car-following
analysis by Kurtc [55] and achieved promising results. Te
speed analysis by Kurtc [55] showed that there was mostly
free trafc in highD dataset, but it still contained a con-
siderable dataset showing impeded trafc or even jams with
stop-and-go waves because of its large sample size. For
detailed information about the highD dataset, one can refer
to Krajewski et al. [54]. Te highD dataset can be down-
loaded from https://www.highd-dataset.com/.

Among the three locations of highD dataset, the data
collected at location 1 are used in this study because of three
reasons:

(1) Simplicity of the section: Tis section is a basic
segment of freeway with three lanes per direction
(shown in Figure 3(b)). It is about 2 kilometers from
an upstream on-ramp and 2 kilometers from a
downstream of-ramp. Tus, more LCs of heavy
vehicles exist at location 1, and they can be generally
regarded as discretionary lane changes (DLCs) be-
cause of the location.

(2) Diverse trafc conditions: 37 of the 60 recordings
were collected at location 1, and they covered both
free fow and congestion, which could provide
enough data under diferent trafc conditions for
analysis.

(3) Popular speed limitations: the speed limit at location
1 is 120 km/h, which is very common in other
countries and can provide more insightful
observations.

It should be pointed out that it is possible that some
drivers may preallocate long before the of-ramp. However,
according to van Beinum et al. [56], most vehicles pre-
allocate by changing lanes after the exit sign on the side of
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the motorway. For example, in the Netherlands, the frst and
second exit signs are normally positioned at about 1200m
and 600m upstream of an of-ramp, respectively. Tus,
vehicles start to preallocate at about 1000m upstream of an
of-ramp, and 600m is the location where the change in lane
fow distribution is almost at its peak [56, 57]. In Germany,
the frst exiting sign is positioned at about 2000m upstream
of an of-ramp, which is similar to China. According to
Zhang et al. [58], 85% of the vehicles preallocate after 1200m
upstream of an of-ramp. Actually, only one vehicle pre-
allocates before 2000m upstream of an of-ramp. Tus, the
preallocations are neglected in this study.

Te trajectories of vehicles that only made lane change
one time are then extracted from the dataset. However, some
vehicles may initiate lane changing when they frst enter the
segment, and some did not fnish lane changing when they
left the segment. Such trajectories of vehicles were fltered

out. At last, trajectories of 2905 passenger cars and 433 heavy
vehicles were extracted from the dataset.

Previous studies showed that vehicles had diferent
behaviors when they changed to the diferent lanes (faster
lane or slower lane) [37, 39, 49]. Tus, the lane change
direction is distinguished in this study. For the rest of this
paper, we use LCLL and LCRL to refer to DLC to the left lane
(faster lane) and right lane (slower lane), respectively. Te
distribution of diferent DLCs for passenger cars and heavy
vehicles is shown in Table 1.

In Table 1, lanes 1, 2, and 3 denote the rightmost, middle,
and leftmost lanes, respectively. One can fnd that 1355 pas-
senger cars and 213 heavy vehicles change lanes to the left, while
1550 passenger cars and 220 heavy vehicles change lanes to the
right. It can also be found that most heavy vehicles made lane
change in themiddle and rightmost lanes, whilemost passenger
cars made lane change in the middle and leftmost lanes.

420 meters

(a)

(b)

Figure 3: Schematic diagrams of (a) the covered section and (b) the location of the section.
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4.2. Data Extraction. Te lane change implementation pe-
riod can be divided into several time intervals. At each time
interval t, the driver will either choose to continue lane
change (yt � 0) or complete it (yt � 1 defned as time in-
terval that the front center of the vehicle crosses the lane
line). Figure 4 shows the decision-making process during
lane change implementation period. Figure 4 shows the
number of time intervals elapsed when the front center of
the vehicle crosses the lane line. PL and PF denote the
putative leading and following vehicles in the target lane. L
and F denote the leading and following vehicles in the
original lane. In this study, the time interval is determined as
one second, which has also been used in previous studies
[10, 34]. Te number of observations collected for passenger
and heavy vehicles is presented in Table 2.

During the lane change process, the lane change vehicles
are infuenced by the trafc fows in both the original lane
and the target lane, as shown in Figure 5. Te main factors
afecting LC vehicles’ decision making are the speeds, rel-
ative speeds, and gaps in both original and target lanes.
Weng et al. [10] stated that previous studies considered the
above variables separately but ignored the interaction be-
tween them. Tus, a surrogate safety measure combining
vehicle speeds and space gap, called time-to-collision (TTC),
was used by Weng et al. [10]. In this study, the TTC is also
considered as a candidate variable, which is defned as

TTC �
xL − xF − L

VF − VL

, (9)

where xL and xF are the longitudinal position coordinates of
leading and following vehicles, respectively, VL and VF are
the speeds of leading and following vehicles, respectively,
and L is the length of the leading vehicle.

It should be pointed out that TTC is negative when the
following vehicle moves slower than the leading one, which
means that the collision will never occur. In addition, when
the speed of the following vehicle is equal to or slightly
higher than the leading vehicle, TTC will be infnite or too
large. In order to restrict these situations, we will set the TTC
range to (0, 100s], that is, when TTC is negative or greater
than 100 s, it is confgured as 100 s. Another situation is that
xL − xF − L might be negative before the lane change vehicle
encroaches the target lane. In this situation, the subject
vehicle cannot complete the lane change maneuver. Tus,
the TTC is set to 0.

Previous studies [7, 10, 26, 34] showed that the main
factors afecting the decision making of lane change are the

speeds, gaps, relative speeds, TTCs, and vechicle types of the
lane changing vehicle and surrounding vehicles. Te can-
didate variables and defnitions of infuencing factors are
shown in Table 3. Previous studies showed that some of these
variables share high collinearity [59]. One will make great
eforts to deal with the collinearity, which, however, is not
the problem in boosting methods because one will try to
avoid refocusing on a feature when a specifc link between
this feature and the outcome has been learned [60].

5. Application and Results

5.1.ParameterDetermination. It can be found in Table 2 that
the data for the four models are all imbalanced. Te ob-
servations yt � 0 are about 3 to 4 times the observations of
yt � 1. Previousmachine learning techniques, such as CART
or SVM, are quite sensitive to the balance of data. Tus,
under-sampling or over-sampling techniques are needed
before modelling. However, over-sampling may lead to
over-ftting and under-sampling can certainly cause infor-
mation loss. Fortunately, the GBDT method can naturally
deal with this problem. To reduce the information loss and
avoid over-ftting simultaneously, ensemble learning tech-
niques are recommended by He and Garcia [61] because of
the random sampling for the training data. Te subsample
fraction Sfrd for observations of yt � 0 and yt � 1 will be set
to diferent values to ensure the balance of the training data
in each iteration. Specifcally, Sfrd for observations of yt � 1
will be set to 1, and Sfrd for observations of yt � 0 will be set
according to the sample proportion.

Besides Sfrd, several parameters need to be optimized
before developing the fnal models. A large learning rate will
result in over-ftting problem, and 0.001 was recommended
in many previous studies as it can generate the fnal model
with lower predictive deviance and a reasonable tree size
[62, 63].Tus, for all four models, the learning rate is fxed at
0.001.

Te tree complexity J is another important parameter of
GBDTand should be carefully selected because a large J can
refect the unknown interaction information among the
independent variables but may lead to over-ftting at the
same time [53]. To select the optimal tree complexity J, a
series of experiments are conducted by increasing the value
of J from 2 to 10. We conduct a fvefold cross-validation
procedure, which randomly splits the training data into fve
equal subsets and use each subset as the test data while the
remaining subsets are used to train the model. Te negative

Table 1: Te numbers of diferent DLC samples.

Vehicle type LC direction Original lane # Target lane # Numbers Total

Passenger car
LCLL 1 2 312 13552 3 1043

LCRL 2 1 452 15503 2 1098

Heavy vehicle
LCLL 1 2 198 2132 3 15

LCRL 2 1 205 2203 2 15
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Table 3: Candidate variables and defnitions.

Candidate variables Descriptions
τ LC time that has already elapsed
VLC (m/s) Speed of LC vehicle
ΔVPL (m/s) Relative speed between merging vehicle and PL vehicle
ΔVPF (m/s) Relative speed between merging vehicle and PF vehicle
ΔVL (m/s) Relative speed between LC vehicle and leading vehicle in the original lane
ΔVF (m/s) Relative speed between LC vehicle and following vehicle in the original lane
D (m) Gap size between PL and PF vehicles
DPL (m) Gap size between merging vehicle and PL vehicle
DPF (m) Gap size between merging vehicle and PF vehicle
DPL (m) Gap size between merging vehicle and leading vehicle in the original lane
DPF (m) Gap size between merging vehicle and following vehicle in the original lane
TTCPL TTC between merging vehicle and PL vehicle
TTCPF TTC between merging vehicle and PF vehicle
TTCL TTC between merging vehicle and leading vehicle in the original lane
TTCF TTC between merging vehicle and following vehicle in the original lane
δPL PL vehicle type (0 for passenger car and 1 for heavy vehicle)
δPF PF vehicle type (0 for passenger car and 1 for heavy vehicle)
δL Leading vehicle type (0 for passenger car and 1 for heavy vehicle)
δF Following vehicle type (0 for passenger car and 1 for heavy vehicle)

F L

PLPF

Original Lane

Target Lane

LC LC
LC

t = 0 t = 1 t = T
yt = 0 yt = 0

……
yt = 1

Figure 4: Decision making during lane change execution process.

F L

PL

LC

DPL

PF

DPF

DF DL

VPF
VPL

VLVS
VF

Original Lane

Target Lane

Figure 5: Schematic diagram of data extraction.

Table 2: Sample size for passenger cars and heavy vehicles.

Vehicle type LC direction yt � 0 yt � 1 Total

Passenger car LCLL 735 213 948
LCRL 783 220 1003

Heavy vehicle LCLL 5315 1355 3960
LCRL 5186 1550 6736

Journal of Advanced Transportation 7



average log-likelihood (or cross-entropy) is used to deter-
mine the best J:

−ave.LL �
1
N

􏽘

N

i�1
ln 1 + e

− yiF Xi( )􏼒 􏼓. (10)

Figure 6 describes the negative average log-likelihood of
the four models with diferent tree complexities. It is in-
teresting to fnd that the best numbers of J for the four
models are diferent. In summary, Table 4 illustrates the
optimal combinations of parameters for the lane change

models of passenger cars and heavy vehicles.Te numbers of
trees M in the fnal trained models are also presented in
Table 4.

5.2. Accuracy of the Model. Te GBDT model is compared
with CART, which was proposed by Weng et al. [10]. Te
detailed process can be found in Weng et al. [10]. Table 5
shows the prediction accuracy of GBDT and CARTmodels.
One can fnd that the GBDTmethod outperforms CART for
all the types of lane change, indicating that it has important
prospects for GBDT in building lane change models.
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Figure 6: Average negative log-likelihood of the four datasets with diferent tree complexities.

Table 4: Optimal parameters for models of passenger cars and heavy vehicles.

Vehicle type LC direction η
Sfrd

J M
yt � 1 yt � 0

Passenger car CLCL 0.001 1 0.255 5 3774
CLCR 0.001 1 0.299 5 4997

Heavy vehicle HLCL 0.001 1 0.290 7 3093
HLCR 0.001 1 0.281 10 1814

Table 5: Prediction accuracy of GBDT and CART models.

GBDT CART
Vehicle type Direction yt 0 1 0 1

Passenger car

LCLL
Number of observations 3960 1355 3960 1355

Accuracy 83.21% 83.32% 82.95% 79.93%
Overall accuracy 83.24% 82.18%

LCRL
Number of observations 5186 1550 5186 1550

Accuracy 83.69% 83.61% 82.86% 82.65%
Overall accuracy 83.69% 82.81%

Heavy vehicle

LCLL
Number of observations 735 213 735 213

Accuracy 84.90% 84.04% 79.73% 81.22%
Overall accuracy 84.70% 80.06%

LCRL
Number of observations 783 220 783 220

Accuracy 84.29% 84.09% 82.25% 82.73%
Overall accuracy 84.25% 82.35%
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5.3. Results and Discussion. Te variable importance can be
easily obtained in GBDT. Figure 7 describes the relative
importance of the four trained models. Similar to previous
studies on merging behavior [10], we can fnd that the time
elapsed τ is the most important variable in all four models.
However, the ranks of the relative importance of other
variables are signifcantly diferent among the four models.

From Figure 7, one can fnd that the relative importance
values of several variables are rather low, such as the vehicle
type, indicating some redundant or irrelevant variables in
the GBDT models. Terefore, a forward-step-wise feature
selection process is applied in this study. Detailed steps can
be found in Genuer et al. [64].

Table 6 shows the selected variables for the four models,
and some conclusions can be drawn from it:

(1) It is not surprising to fnd that τ is still the most
important variable in all of these four models.
Moreover, 5 to 8 variables remained in the four
models.

(2) All the vehicle type-related variables are dropped in
the models of passenger car, which means the vehicle
type does not infuence the decision of drivers of
passenger cars after initiating lane change.

(3) Te ranks of the frst to fourth variables do not
change after variable selection, and the ranks of other
variables also do not change much, indicating the
GBDT method’s stability.

It can be found in Table 5 that TTCL, DPL, and DL rank
second to fourth for LCLL of passenger cars with the im-
portance value of 29.37, 26.06, and 20.84, while DPL, TTCL,
and DL rank second to fourth for LCLL of heavy vehicles
with the importance value of 55.86, 55.43, and 42.62. It
means that when performing lane changes to the left lane,

the considered variables of passenger cars are very similar to
those of heavy vehicles. Most variables are related to vehicles
in front of the lane change vehicle, which means both
passenger cars and heavy vehicles pay more attention to the
vehicles in front of them in both the original and the target
lane when vehicles change to the left lane. Tis is probably
because when changing to the left lane, the lane change
vehicles pursue a speed advantage and are always moving
faster than their leading vehicles.Tus, they should paymore
attention to vehicles in front of them to avoid crash.

Another interesting fnding is that DPF ranks second for
LCRL of both passenger and heavy vehicles with importance
values of 34.21 and 64.34. It can be observed that the im-
portance values of the variable ranked third for LCRL of
both passenger cars and heavy vehicles are much smaller
than those of DPF, which means both passenger cars and
heavy vehicles pay more attention to the putative following
vehicles when they change to the right lane. Tis is because
the trafc fow in the right lane is generally slower than the
original lane, and drivers will leave more front space when
initiating lane change, which will lead to a small putative
following space.Te third and fourth important variables for
LCRL of passenger cars are DL and DPL, which means the
space gap-related variables are most important for passenger
car drivers to perform CLCR. However, this is not the case
for heavy vehicles, whose ΔVF ranks third and fourth. It
means that when heavy vehicle drivers execute lane changes
to the right lane, they will keep adjusting the speeds as well as
the space gaps. Two TTC variables also remained after
variable selection for both LCLL and LCRL of passenger cars,
which means drivers of passenger cars will face situations
that are more complicated when changing to the right lane,
and safety is more important than other types of lane
changes.
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Comparing the lane changes of passenger cars and heavy
vehicles, one can fnd that the importance values of variables
except τ for heavy vehicles are much larger than those for
passenger cars. For example, the importance values of the
second important variables for LCLL and LCRL of passenger
cars are 29.37 and 34.21, respectively, while they are 55.86
and 64.34 for heavy vehicles, respectively. It means the
drivers of heavy vehicles pay more attention to the variables
related to surrounding trafc. Tis is probably because of
heavy trucks’ large size and poor maneuverability. As we all

know, heavy vehicles’ acceleration and deceleration per-
formance is much worse than passenger cars. Te size of the
heavy vehicle is much larger, which makes the drivers more
cautious about performing lane changes and naturally re-
sults in more attention to their surrounding trafc.

Table 5 shows that diferent variables are considered in
four models, indicating that the decision behavior during the
lane change implementation period varies between vehicle
types and lane change directions. Compared to passenger
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Figure 8: Partial plots of (a) τ, (b) TTCL, (c) DPL, and (d) DL for LCLL of passenger car.

Table 6: Selected variables of four models.

Variables
Passenger cars Heavy vehicles

LCLL LCRL LCLL LCRL
Rank Importance value Rank Importance value Rank Importance value Rank Importance value

τ 1 100 1 100 1 100 1 100
VLC (m/s) — — 5 38.75 3 43.39
ΔVPL (m/s) 6 13.61 — — — — 6 37.31
ΔVPF (m/s) 7 11.98 — — — — 5 40.57
ΔVL (m/s) 5 17.47 — — — — — —
ΔVF (m/s) — — 5 14.41 6 36.20 4 41.53
D (m) — — — — — — — —
DL (m) 4 20.84 3 21.12 4 42.62 — —
DF (m) — — — — — —
DPL (m) 3 26.06 4 16.81 2 55.86 — —
DPF (m) 5 22.99 2 34.21 — — 2 64.34
TTCPL 8 5.26 — — — — — —
TTCPF — — 7 10.69 — — — —
TTCL 2 29.37 6 14.36 3 55.43 — —
TTCF — — — — — — — —
δPL 9 4.27 — — — — 7 16.53
δPF — — — — — — 8 4.35
δL — — — — — — — —
δF — — — — — — — —
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cars, heavy vehicle drivers pay more attention to their
surrounding trafc characteristics.

GBDT can easily explain the complicated relationships
between the independent and dependent variables by
drawing the partial dependence plots, which can be used for
sensitivity analysis. Te partial dependence plots of the frst
four variables in four models are provided in Figures 8–11. It
should be pointed out that the Y-axis in the partial de-
pendence plots in this study refers to the average 1/2 log
odds of completing lane change.

As shown in Figures 8–11, it can be found that the
relationship between independent variables and the
output of GBDTmodels is highly nonlinear. Considering
that τ has the most signifcant infuence on decision
behavior, we will discuss the efects of τ in this section for
demonstration. Te efects of other variables can be easily
observed from Figures 8–11. For passenger cars, the
probability of successful lane change signifcantly in-
creases when τ increases from 1 second to 3 seconds,
which means most passenger cars complete lane change
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Figure 10: Partial plots of (a) τ, (b) DPL, (c) TTCL, and (d) DL for LCLL of heavy vehicle.
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Figure 9: Partial plots of (a) τ, (b) DPF, (c) DL, and (d) DPL for LCRL of passenger car.
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within 3 seconds after initiating lane change. However,
the efective interval of τ is larger for heavy vehicles,
indicating that heavy vehicles will take a longer time to
complete lane change.

It can also be found from the partial dependence plots
that the drivers of heavy vehicles are easier to be afected by
surrounding trafc characteristics. Te partial dependence
plots show that the infuence of independent variables on
lane change decisions is nonlinear and complicated. For
example, the partial plots of VLC for both LCLL and LCRL
show high volatility. Diferent speeds indicate diferent
trafc conditions, which result in diferent lane change
behavior. One can also fnd that the efect of VLC on lane
change decision is quite diferent between LCLL and LCRL
in Figures 10 and 11. It means diferent rules are used by
drivers when changing to diferent lanes.

Te above results show that the lane change behavior
signifcantly varies with the vehicle types and lane change
directions. Specifc models for diferent vehicle types and
lane change directions are needed for microscopic trafc
simulators. Besides, the results also indicate that lane change
rules should be carefully designed for ADAS and CAV of
diferent vehicle types.

6. Conclusions

Tis study employs GBDT to build the decision model
during the lane change implementation. Tis paper uses
vehicle trajectory data collected on German Highways to
validate the GBDT method. Unlike previous studies, this
study modelled lane changes of diferent vehicle types and
directions separately.

Te results showed that the elapsed time τ is the most
important variable in all models. Other variables are

found to play diferent roles in diferent models. Partial
dependence plots of GBDTare drawn to refect the efects
of variables on lane change decisions. It is shown that the
infuence of independent variables on decision behaviors
is nonlinear and complicated, which means that the same
variable has diferent efects on the lane change decision
for diferent vehicle types and lane change directions.
Compared with other state-of-the-art methods, GBDT
can produce more accurate prediction results, making it
a promising tool for autonomous driving.

Te results of this study indicate that it is necessary for
microscopic trafc simulators, ADASs, and CAVs to
build specifc lane change models for diferent vehicle
types and lane change directions. Nonetheless, there are
also some limitations in this study. Firstly, the driving
environment type is very limited since all the data are
collected on highways. Te applicability of the proposed
method of lane change behaviors on urban roads needs to
be tested. Secondly, driver characteristics are not con-
sidered in this study. Furthermore, more data will be
collected to test the generalization of the model built in
this study.
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