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Vehicle trajectory data can reveal naturalistic driving behaviour trends. However, owing to measurement and processing errors,
the trajectory data extracted from videos often contain obvious noise. In merging zones, vehicles tend to accelerate and decelerate
frequently, leading to poor denoising performance of the linear Kalman flter (KF). To address this issue, this study proposes a new
denoising method based on the adaptive Kalman flter, which automatically switches between KF and Unscented KF to ac-
commodate car-following and merging behaviours, respectively. A merging behaviour detection method was designed based on
the PELTmethod and normalized innovation squared (NIS). Te F1 score of 92.9% shows the accuracy of behaviour detection.
According to our results, the proposed method minimizes the range of jerk compared with other methods, reducing it from
−4927.78 to 4960.72 of raw data to −44.92 to 47.14, indicating a signifcant improvement in denoising and trajectory smoothing.
Te goal of this study is to achieve high-precision trajectory data under complex real trafc scenarios.

1. Introduction

Vehicle trajectory data can be used to calibrate and validate
the trafc fow model and provide a broad understanding of
driving behaviour[1].Tese data are available to the research
community and have been widely used in recent years.
Among these data, next-generation simulation (NGSIM)
data have rich information, becoming the de facto basis of
theoretical trafc fow research advances [2]. However,
outliers falling out of a limited range cause quality issues in
the trajectory data [3]. In addition, processing and mea-
surement errors [4] are evitable [5–7]. Moreover, location
and speed amplify noise, negatively afecting the applications
of these trajectory data [8]. To achieve high-fdelity trajec-
tory data, researchers have proposed multistep trajectory
processing methods [9, 10], denoising speed, acceleration,
and space headway [11–13].

Methods for noise removal have improved over the
years. Kalman flter (KF) [14, 15] is the most commonly used
method. Unlike the feedforward method [16], which uses
input signals to predict system response and control, the KF
employs a feedback mechanism to continuously update the
state estimation and adjust it based on the current obser-
vation value. Terefore, KF is an optimal recursive data
processing algorithm [17]. Inaccurate or noisy measure-
ments can be used to estimate the state of a linear system
with high accuracy. It is also used for trajectory prediction
[18, 19]. However, the simple KF is primarily used for
constant-acceleration motion and performs well in trajec-
tory noise removal and prediction under car-following
scenes [20]. It cannot function correctly if vehicles exhibit
complex behaviours, especially when vehicles take two-
dimensional movements and interact with other vehicles
[21, 22]. For instance, in some complex scenarios, turning
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vehicles interact with most trafc fows, which introduce
complex features including variation of trajectories [23].
Furthermore, vehicles in merging areas tend to accelerate
and decelerate more often owing to the strong competition
for space [24]. Terefore, merged areas may be prone to
a substantial number of crashes, causing personal injury and
property damage. Each merging event has a probability of
a near accident [25]. To improve road safety and efciency
levels, a reliable merging area trajectory data are needed to
conduct a thorough study on merging behaviour.

To solve these problems, many researchers have used an
extended Kalman flter (EKF) [26, 27]. For example, Abbas
et al. [28] proposed a multimodel-based EKF used to predict
a set of possible scenarios for a vehicle’s future position,
particularly at an intersection or on a curved path. Te EKF
uses a low-order Taylor expansion to linearize the nonlinear
function; however, the Jacobian matrix of the state vector
may be difcult to calculate for complex dynamics. Tere-
fore, the unscented Kalman flter (UKF) has been proposed
to solve nonlinear dynamics [29–31]. Te UKF performs
better than the simple KF and UKF when the system is
highly nonlinear [30].

Additionally, researchers have proposed approaches
based on maneuver modeling [32, 33]. Tese approaches
meet accuracy requirements with massive data input in the
long run; however, they often result in insufcient real-time
performance. To achieve a balance between accuracy and
real-time performance, the adaptive Kalman flter (AKF) is
a relevant option. Te term adaptive refers to the ability to
adjust the algorithm itself dynamically based on the
changing characteristics of the system and shows great
robustness in antinoise [34]. For example, Xiao et al. [35]
combined the constant turn rate and acceleration (CTRA)
motion model and the UKF to predict vehicle trajectory and
motion states. Compared with the simple KF and EKF, AKF
demonstrates strong adaptability to complicated scenes and
reduces the complexity of data processing, in contrast to
machine learning methods, which require abundant data
and training. However, the aforementioned research does
not address how the adaptive process responds to changes in
the underlying system, particularly when the system exhibits
multiple behaviours that are consistent with complex real-
world situations; thus, further research is limited.

Tis study proposes a method to reconstruct the ac-
celeration data of vehicles in merging zones. First, the
constant-acceleration KF and UKF are used to process the
acceleration data and calculate the NIS of the KF. Sub-
sequently, a method combined with the pruned exact linear
time (PELT) changepoint detection and NIS results is used
to identify merging behaviours. Furthermore, outliers are
identifed and removed during fltering process for noise
removal. Te outlier-handle method satisfed the Markov
assumption made by the KF. Finally, the proposed method is
applied to merge zone open data.

Te main contributions of this study can be summarized
as follows:

(1) A novel adaptive approach to denoise trafc accel-
eration data is proposed based on the characteristics

of car-following and merging behaviours. Tis ap-
proach improves the precision of trajectory data in
complex trafc scenarios.

(2) Merging behaviours are identifed separately from
car-following behaviours. Te power of NIS and
changepoint detection was leveraged to overcome
the limitations of traditional measures such as ve-
locity and acceleration. Tis method provides a new
way to identify diferent car behaviours with ofine
data and facilitate more accurate modeling of
trafc fow.

(3) Mahalanobis distance is used in this study to mea-
sure the distance between an outlier and its distri-
bution, while Chebyshev’s theorem is applied to
determine the threshold for outliers with raw data.
Tis procedure has signifcant guiding signifcance in
outlier removal procedures, especially when pro-
cessing reality data.

Te remainder of this paper is organized as follows:
Section 2 describes the characteristics of the data and ac-
quisition process. Section 3 describes the proposed method.
Section 4 presents the results of the jerk analysis and
a comparison with other methods. Tis paper concludes
with a discussion and conclusions in Section 5.

2. Trajectory Data

2.1. Data Description. Open data downloadable at https://
seutrafc.com/ in the ubiquitous trafc eye database [36]
were used to verify the proposed method. Te video was
recorded at the Kazimen interchange in Nanjing City, China
(Figure 1) using a DJI Mavic Pro. Te unmanned aerial
vehicle (UAV) few for 1184 s at a height of 285m and
covered approximately 352m. Finally, 2513 trajectories were
recorded. After running the image recognition algorithm,
the data contained vehicle IDs, timestamps, lane logs, speed,
acceleration, and vehicle locations that were saved in the
Frenet frame.

Te east-west direction, where the merging zone be-
longs, was selected as the research section. Te results of the
study by Westphal [37] showed that the merging behaviour
of vehicles on ramps only afected the outermost lane of the
main lane. Tus, this study focused on lanes 1–3. Figure 2
shows lane IDs and trafc directions.

First, the macroscopic characteristics of trafc fow are
described. Figure 3 shows that the velocity distribution is
a normal distribution with a 50 km/h mean, consistent with
the actual speed distribution. Reasonable ranges in accel-
eration and deceleration were established as 0m/s2 to 5m/s2

and −6m/s2 to 0m/s2 [38], respectively. Compared to the
raw data, the percentage of acceleration >2m/s2 and de-
celeration <−2m/s2 were 0.05% and 0.01%, respectively,
indicating normal driving conditions.

Second, the outliers of acceleration and deceleration with
a limit range of −6m/s2 to 5m/s2 were analyzed, as shown in
Figure 4. Most acceleration values in Figure 4 fall within the
range of −6m/s2 to 5m/s2, but some outliers exist, such as
maximum deceleration and acceleration values of −150m/s2
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and 50m/s2, respectively. Outliers were handled during the
fltering process to avoid adverse efects on the fnal result
caused by smoothing them before fltering, which violates
the Markov assumption of KF on the observed data.

To determine the frequent interval of merging behav-
iour, moving least squares (MLS) was used to reconstruct the
spatiotemporal evolution of the trafc fow in lanes 1–3.Tis
can ft the instantaneous speed distribution per second for
each vehicle. Figure 5 shows the characteristics of the ve-
locity drop and recovery in diferent spatial and temporal
dimensions.

Figure 5 shows that the driving speed was relatively high
when most vehicles did not merge, particularly in the frst
400 s. During this period, the vehicles primarily moved at
a constant velocity or acceleration. By contrast, the accel-
eration varied, as can be observed in the range of 800 s to

1000 s. Notably, between 200 s and 400 s, lane 1 experienced
a drop in speed followed by a recovery. Te other two lanes
were unafected by this phenomenon with relatively small
changes in speed rate. Note that the dynamics of speed
change were similar, and all of them almost dropped to the
minimum synchronously in a local space-time region where
vehicles merged into main lanes with high probability. Tis
observation provides a preliminary basis for designing the
AKF threshold.

2.2. Data Preprocessing. Te location data in Figure 6 are in
the Frenet frame, which is based on a given curve and
represents a point’s position by displacement along the
reference line and lateral ofset distance. Te Frenet frame is
useful because any road can be standardized as a straight
tunnel, simplifying trajectory planning for curved roads.

Figure 1: Video recognition of Kazimen interchange.
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Figure 2: Schematic of the measured road and trafc directions.

Acceleration<-2/m2

0.05%
Acceleration≥2/m2

0.01%

–5.5 –5.0 –4.5 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5–6.0
Acceleration (m/s2)

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ili

ty

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
ob

ab
ili

ty

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 950
Speed (km/h)

Figure 3: Speed and acceleration distribution histogram.
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However, the Frenet frame has separate coordinate systems
for each lane, making it difcult to represent lane-crossing
behaviours. Terefore, Frenet data should be converted to
a global Cartesian frame.

Te process of converting the data from the Frenet frame
to the Cartesian frame is divided into the following steps:

2.2.1. Selection of Reference Lines. Te reference lines are the
upper and lower boundary lines of the lane and centerline.Te
OpenCV library was utilized to identify boundaries and extract
reference points from aerial videos, and the resulting selection
is shown in Figure 7. Subsequently, the locations of reference
points in the Cartesian frame can be determined based on the
pixel scale e.g., (x1, x2, x3, . . . , xn) and (y1, y2, y3, . . . , yn)
successively. For the centerline, the location of the reference
points can be determined by calculating the median of the
corresponding points in the upper and lower boundaries.

2.2.2. Coordinate Transformation. For any point in the

Frenet coordinate system Pi
f, let P

i
f �

si

di

 , where si is the

projected distance, di is the lateral ofset, and the corre-
sponding point in the Cartesian coordinate system is

Pi
c �

ai

bi

 , which is between two adjacent reference points;

that is, Pi
z �

xi

yi

  and Pi+1
z �

xi+1
yi+1

 . Terefore, we have

xi ≤ ai ≤ xi+1 and yi ≤ bi ≤yi+1. Figure 8 illustrates the re-
lationship between the Frenet coordinate system and the
Cartesian coordinate system. Pi

c can be calculated using the
following equation:

ai

bi

  �
xi

yi

  + Δs
cos θ

sin θ
  + di

sin θ

cos θ
 , (1)

where ∆s is the distance between (ai, bi) and (xi, yi) and θ is
the angle between the line passing through points Pi

z and Pi
f

and the x-axis.
Subsequently, the diference in displacement along the

reference line between Pi
f and the nearest reference point

can be approximated by

∆s � si − 
n

i�0
Pi+1

z − Pi
z

����
����2. (2)

Let P1
z � P0

z. Accordingly, ∆s � si if the nearest reference
point below is the starting point of the reference line.

Substituting ∆s into equation (1) gives the Cartesian
coordinate of Pi

c:

Pi
c �

xi

yi

  + si − 
n

i�0
Pi+1

z − Pi
z

����
����2

⎛⎝ ⎞⎠∗
cos θ

sin θ
  + di ∗

sin θ

cos θ
 .

(3)

3. Proposed Methods

3.1. Adaptive Kalman Filter Design. Te KF was named
after Rudolf E. Kalman, one of the primary developers of
its theory [39]. It can efectively reduce measurement
noise and estimate true values in trajectory processing
while remaining robust to model uncertainties. In vehicle
dynamics, the variance of the acceleration change is
rather small if the vehicle is running at a constant speed
or acceleration. Terefore, the constant-acceleration KF
is applied with the assumption that the initial acceler-
ation equals zero.

For linear discrete dynamic systems

X(k) � FX(k − 1) + w(k), (4)

Z(k) � H(k)X(k) + v(k), (5)
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Figure 4: Scatter plot of the acceleration distribution.
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Figure 5: Visualization of trafc spatiotemporal evolution.
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where X(k) is the state vector at time k and F is the state
transition matrix. w(k) represents the process noise,
a multivariate normal distribution with a mean of 0.

In equation (5), Z(k) is the measurement of the real state
X(k), H is the observation model that maps the real state
space to the observed state space, and v(k) is the observation

noise, assumed to be zero-mean Gaussian white noise with
covariance R(k).

To predict and update the state estimation, KF can be
explained as follows:

X(k|k − 1) � FX(k − 1|k − 1),

P(k|k − 1) � FP(k − 1|k − 1)FT
k + Q(k),

K(k) � P(k|k − 1)HT
(k) H(k)P(k|k − 1)HT

(k) + R(k) 
− 1

,

X(k|k) � X(k|k − 1) + K(k)(Z(k) − H(k)X(k|k − 1)),

P(k|k) � (I − K(k)H(k))P(k|k − 1),

(6)

where X is the a priori state estimate, P is the a posteriori
estimate covariance matrix, and Q(k) is the covariance
matrix of w(k). I is the identity matrix and K is the
Kalman gain.

Finally, the state vector X(k) for constant-acceleration
motion is given by

X(k) �

Lk

Vk

ak

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

x

Vk

ak

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (7)

where Lk is the distance moved, Vk is the velocity, and ak is
the acceleration at time k.

However, dealing with nonlinear processes is difcult for
a standard KF.Whenmerging behaviour occurs, vehicles are
afected by the steering wheel angle and throttle opening;

thus, the acceleration distribution exhibits apparent non-
linear characteristics. If a standard KF is applied to these
accelerations, the nonlinear process will be considered as
large observation noise, leading to a slower prediction
changing trend compared with the observation. Trajectory
data extracted from aerial videos primarily include location,
velocity, and acceleration; thus, they lackmicroscopic data of
steering wheel angle and throttle opening for the standard
KF. Terefore, this study used the UKF to simulate the
merging process.

As this study is primarily concerned with merging be-
haviour, the road cross-section was chosen from the nose of
the ramp, where lanes 1 and 2 overlapped completely with
the specifc scene. In addition to the lateral and longitudinal
displacements, merging behaviour also involves the heading
angle. Terefore, polar coordinates are more suitable to

Figure 7: Selection of reference points.
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represent the merging angle between the driving direction of
the vehicle at time k and the direction of lateral displace-
ment. Tis angle will be included in the state vector X(k) of
the UKF.

3.2. Removal of Outliers. To avoid conficting with the
Markov assumption, we handle outliers during the fltering
process instead of processing them before. Tis ensures that
smoothed outliers do not contain information from previous
or subsequent values. To achieve this, we use the Mahala-
nobis distance to measure the distance between a point and
its distribution.

Dm �

�����������������

(X − u)
TP− 1

(X − u)



, (8)

where u is the mean of the normal distribution, X is the state
vector, and P is the a posteriori estimate covariance matrix.

Figure 4 illustrates that the acceleration data had nu-
merous outliers, which can be classifed into two categories:
those exceed the vehicle’s dynamic limit and outliers within
a reasonable interval but are isolated and deviated from the
overall trend. Tese two categories can be distinguished by
comparing the Mahalanobis distance. Typically, 99.7% of
a normal distribution falls within three standard deviations
from the mean; however, since this distribution is only
approximately normal, Chebyshev’s theorem suggests that
about 96% of data fall within fve standard deviations.
Terefore, in this case, fve standard deviations are used as
a threshold to identify outliers.

3.3. Merging Behaviour Detection. In trajectory data, it is
commonly assumed that merging behaviour occurs in-
stantaneously, with a vehicle’s lane ID changing after a single
frame. However, in reality, merging behaviour takes a var-
iable amount of time to complete, making it difcult to
identify solely based on measures such as a vehicle’s velocity
or acceleration. To address this issue, a new method is
proposed that combines NIS [40] and changepoint detection
to efectively identify merging behaviour.

Te NIS is used to check whether a KF is consistent with
measured residuals and the associated innovation co-
variance matrix. By normalizing the residuals using co-
variance and analyzing the resulting NIS, it is possible to
identify situations where the KF assumption of constant car-
following behaviour may not hold true. In this way, tra-
jectory data that do not correspond to car-following sce-
narios can be fltered out based on predictions and
measurements. Te NIS can be calculated as

c(k) � Z(k) − H(k)X(k|k − 1),

NIS � c(k)
T H(k)P(k|k − 1)HT

(k) + R(k) 
− 1

c(k),

(9)

where γ(k) is the innovation vector.
However, it should be noted that while a drastic change

in the NIS may indicate the emergence of braking in a car-
following scenario, it does not necessarily imply that the
vehicle is merging. Terefore, in order to accurately identify

merging behaviours, it is necessary to look beyond just
prediction and measurements.

To efectively utilize trajectory data, we employed the
PELT changepoint detection method. Tis method can be
easily integrated into the KF and ofers a good balance
between algorithm complexity and detection accuracy, es-
pecially when the data structure is not overly complex. Te
PELT algorithm uses observations to identify potential ac-
celeration changepoints in the time series. It further divides
the time interval when the NIS fuctuates, which helps
capture the variable and complex nature of merging be-
haviour over time. By examining these results, merging
behaviour can be determined from a temporal perspective.
Te PELT detection method is as follows:

min 
k+1

i�1
C oτi−1+1: τi

   + βf(k), (10)

where o denotes acceleration, k is the number of change-
points in the history, and the acceleration time series were
split into k+ 1 distinct segments. τj represents the location of
the jth changepoint for j� 1, . . ., k. To simplify the analysis,
without loss of generality, τ0 � 0 and τk+1 � n were also set. C
is the cost function of each segment, while βf(k) is a penalty
item that prevents overftting, and β is a constant in-
dependent of the position and number of acceleration
changepoints. As a common choice, L2 normalization was
selected as the cost function.

For a given acceleration segment, the PELT method
assumes a constant M for all s<m< t that satisfes

C o(s+1):m  + C o(s+1):t  + M≤C o(s+1):t , (11)

where s and t are the start and end points of the segment,
respectively.

For τ∗ � 1, . . . , t − s + 1, we have

H τ∗(  � minτ∈Rτ∗
H(τ) + C oτ+1:τ∗(  + β , (12)

where H(0) � −β, Rτ∗ represents the set of possible values
for τ, and the number of elements in the set increased with
the recursive calculation. Te initial value is R1 � 0{ }. Let

τ1 � argminτ∈Rτ∗
H(τ) + C oτ+1:τ∗(  + β . (13)

Accordingly,

cp τ∗(  � cp τ1 , τ1 ,

Rτ∗+1 � τ ∈ Rτ∗ ∪ τ∗ : H(τ) + C oτ+1:τ∗(  + M≤H τ∗(  ,

(14)

where cp(0) � NULL and cp(n) is the detected acceleration
changepoint.

Tus, the merging behaviour is identifed further by
detecting the acceleration changepoint.

Te value of β is crucial for the PELT results. Many false
changepoints will be detected if the penalty value is too low.
By contrast, real changepoints may not be found if the
penalty value is too high. In addition to manually selecting
parameters with good performance after several trials, pa-
rameters can be selected according to the following formula:

Journal of Advanced Transportation 7
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β � (0.25n)
1− α2 ln(n), (15)

where α is the sensitivity ranging 0 to 1. When α is 1, it
corresponds to minimizing the Bayesian information cri-
terion (BIC).

By combining NIS and PELT changepoint detection, we
were able to determine the merging behaviour within
a specifed space range and period. Te framework of this
method is illustrated in Figure 9.

4. Results

Vehicle No. 173 was chosen as a case study to examine the
proposed method’s process. Te acceleration data were
analyzed using a constant-acceleration KF and the NIS was
calculated based on measurements and predictions. Fig-
ure 10 displays the results, which revealed fuctuations

between 894 and 898 seconds. Consequently, PELT
changepoint detection was continuously applied to the ac-
celeration data of Vehicle No. 173 (marked in red in Fig-
ure 11) based on observation data. As shown in Figure 11,
the changepoints’ locations fell within an intense growth
period of NIS, indicating merging behaviour occurred. Te
comparison with aerial video (Figure 12) showed that during
the merging zone, Vehicle No. 173 crossed longitudinally
from lane one to lane three, whichmeans merging behaviour
really happened; this result is consistent with our detection
outcome. In total, we used 923 vehicle trajectories for the
experiment and applied our proposed method to these
trajectories. Our method achieved a merging behaviour
detection recall rate of 92.3% and precision of 93.5%,
resulting in an F1 score of 92.9%. Tese fndings indicating
that the proposed method performs well in detecting
merging behaviours.
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Figure 11: Comparison between the result of acceleration changepoint detection and NIS.

Figure 12: Merging behaviour of Vehicle No. 173.
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Directly comparing and verifying the improvement ef-
fect is not feasible since the ground truth is unknown.
Terefore, to evaluate the fltering performance, frst, we
randomly selected multiple trajectory data from diferent
periods. We compared our method with the simple moving
average (SMA) because it can remove high-frequency noise
while preserving the underlying trends and patterns and is
also robust to outliers. Figure 13 shows the comparison of
fltering efect. Te SMA processing lags behind the trend of
raw data for all vehicles except No. 821.Te acceleration data
of No. 821 change abruptly both in the overall and local
trends, which are well balanced by SMA. However, this may
lead to information loss, especially when there is a signifcant
diference between maximum and minimum values.

Secondly, we utilized indirect quantitative indicators,
specifcally jerk analysis, for comparison. Te advantage of
jerk analysis in vehicle acceleration judgment lies in pro-
viding a more comprehensive and precise understanding of
a vehicle’s motion dynamics. By analyzing and comparing
indicators such as the percentage of jerk sign reversal within
a 1-second window, the percentage of the absolute value of
jerk above a given threshold, and the range of jerk between

diferent methods, we can better evaluate themechanical and
human-machine feasibility of acceleration data, and con-
sequently, assess the efectiveness of the denoising process.

Table 1 shows that the proposed method signifcantly
minimized the range of jerk compared with other methods,
reducing it from −4927.78 to 4960.72 of raw data to −44.92
to 47.14. Additionally, a good reduction efect was achieved
in the average value for the percentage of the absolute value
of jerk greater than 15m/s3. For the percentage of jerk sign
reversal within 1 s, the degree of average reduction was
second to that of the SMA. Tese fndings demonstrate the
efectiveness of the proposed method. Note that the maxi-
mum sign inversion of jerk was 100% in all columns owing
to the characteristics of the data itself. Some vehicles entered
lane 3 from lane 4 in a short period of time, and the driving
time was relatively short; therefore, the sign reversal was
100%.

To demonstrate the transferability of the proposed
method, we conducted experiments using the NGSIM I-80
dataset, which is one of the most popular datasets for
studying merging behaviour. Te results are presented in
Table 2, with Jerk analysis results cited from Rafati Fard et al.
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Figure 13: Result of the proposed method compared with the SMA and raw data.
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[10]. As can be seen, the proposed method achieved good
denoising efectiveness in this dataset, reducing the range of
Jerk from −1846 to 1640 of raw data to −54.33 to 53.67.
Additionally, the proposed method achieves good perfor-
mance in the other two indicators.

5. Summary and Conclusions

Tis paper presents a novel approach for processing ac-
celeration data in vehicle merging zones, utilizing the unique
characteristics of car-following andmerging behaviours.Te
proposed method employs an adaptive mechanism that
identifes diferent vehicle behaviours based on the results of
NIS and PELT, taking advantage of the characteristic dif-
ferences produced by AKF. Outliers are detected using
Mahalanobis distance during the fltering process to ensure
the accuracy of predictions and maintain data integrity,
signifcantly enhancing the precision of our method.

Compared to the commonly used simplemoving average
(SMA) method, the proposed approach shows a more ac-
curate fltering result and strong applicability to merging
scenes. Te resulting trajectory data also suggest a more
reliable set of characteristics corresponding with mechanical
and human-machine feasibility. However, to improve the
generalizability of our approach, further studies are required
to investigate the changepoint detection method and pa-
rameters in relation to specifc trafc scenes and trafc fow
characteristics.

In conclusion, our proposed method demonstrates
a signifcant improvement in the processing of acceleration
data in vehicle merging zones. By utilizing adaptive
mechanisms, our approach ofers a more accurate and re-
liable set of trajectory data, which has promising applica-
tions in trafc safety and trafc fow optimization.
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