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Expressway transportation is an essential part of regional development. An efcient expressway system can enhance cities’
connectivity and coordinate long-distance trips between urban areas. Understanding how travel demand afects the fow of
expressways is crucial to designing an efcient expressway management system. However, congested expressways are substantial
obstacles to unimpeded expressway travel. Here, we explore the relationship between demand origin locations and congested
expressways. We extract the time-varying OD demandmatrix from empirical tollgate data collected in Shandong province, China.
Te incremental trafc assignment method is introduced to obtain the trafc fow of expressway road segments. It was found that
congested expressways were generated due to only a few origin locations. In addition, expressway congestion during peak hours
could be efectively alleviated by controlling the travel demand of these origin locations. Terefore, the proposed method can
provide a novel perspective for expressway management.

1. Introduction

Expressway transportation is an indispensable part of the
construction of the national economy. In recent years, with
the continuous increase in trafc demand, expressway
congestion conditions have worsened, leading to more fuel
consumption, polluting gas emissions, and afecting trav-
ellers’ experience [1, 2]. To reduce expressway trafc con-
gestion, in the early stage, a new expressway was constructed
to meet the growth of trafc demand. However, with the
dense expressway network, intelligent management mea-
sures play a more important role in alleviating congestions
[3, 4]. To alleviate the expressway congestion problem, the
widely used trafc management strategies are ramp control
[5, 6], variable speed-limit control [7, 8], mainline and ramp
integrated control [9], dynamic route guidance [10], time-
of-day pricing [11–13], and temporary opening of hard
shoulders [14].

Tollgate station control is an easy-implement control
strategy in the expressway system. Hong-jun et al. [15]
proposed a trafc control system for toll stations to reduce
fuel consumption and reduce congestion for vehicles going
through toll stations. In recent years, the emergence of data
mining technology [16] has provided more information
about strategies for reducing congestion [17, 18]. In par-
ticular, by accumulating massive toll data generated by
tollgate systems, accurate OD information and road trafc
volumes can be calculated [19], which provides data support
for research on tollgate station control strategies [20, 21].
Yang et al. [22] extracted travel data from the toll collection
system of the freeway network in Shandong province of
China to investigate the weather efect on intercity travel
demand. Zheng et al. [23] proposed a new approach of
inferring trafc fow on expressway networks using toll
ticket data to obtain driving time and its variation, dwell
time and its variation, and link fow. Fu et al. [24] developed
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a hybrid neural network for large-scale expressway network
OD prediction based on toll data and delivered a better
prediction performance. Chen et al. [25] presented a method
to predict the exit station’s trafc fow with diferent three
scenes that are ETC, MTC and the mix of ETC, and MTC
combining spatial-temporal matrix and long short-term
memory model. Petrovic et al. [26] proposed a methodol-
ogy based on a combination of recurrent neural networks,
queuing theory, and metaheuristics to predict the optimal
number of active modules in toll stations for continuous-
time optimal control of expressway tolls. In terms of toll
station management and control, some scholars [27] pre-
sented nonparametric regression models to predict the
trafc volume of all stations periodically based on the
analysis of both spatial and temporal business characteris-
tics, while others [28] attempted to analyze the relevant
factors afecting toll station safety through vehicle collision
risk analysis. Tese research results have practical impor-
tance for the risk control and optimal management of toll
stations.

Existing studies on expressway trafc management and
control mainly focus on trafc fow analysis and strategies for
solving single-point toll station congestion and mainline
congestion [29]. Tere is a lack of analysis of highway road
usage patterns, especially analyzing the balance between
trafc demand and road supply and detecting driver sources
[30]. It can combine trafc fow analysis and complex network
theory to explore the causes of congestion, provide a theo-
retical basis for the trafc control strategy, and improve the
efectiveness and fexibility of the strategy [31]. To explore
road usage patterns, some studies have focused on trafc
demand analysis and the equilibrium of road supply and
demand. Wang et al. [32] used large-scale mobile phone data
to obtain trafc demand and explore road usage patterns, and
they found that there are several “driver sources” on road
segments that providemost vehicles.Wang et al. [33] followed
this research and proposed the concept of “dynamic driver
sources,” locating trip origin districts instead of residential
districts as driver sources to support trafc control. Tese
“driver sources” are built on residential districts and dynamic
trip origins, both based on trafc fow analysis. However,
Gong et al. [34] estimated the destination spatial distribution
of vehicles in the research area and analyzed the character-
istics of the “main trafc destinations.” To analyze the main
area causing the most congestion of the whole city, Li et al.
[35] proposed an algorithm to identify congested road seg-
ments and construct congestion propagation graphs to model
congestion propagation in urban road networks. Wang et al.
[36] used radio frequency identifcation (RFID) data collected
in Nanjing to estimate dynamic travel demand and developed
an RFID data-based vehicle routing model that can be applied
to a group of targeted vehicles only, providing more adaptive,
efcient, and feasible routing strategies to mitigate trafc
congestion. Toole et al. [37] combined multiple algorithms to
generate a trafc demand matrix and constructed interactive
visual web pages for the main sources and destinations of
travel, showing the usage patterns of residential areas and
roads. Chu et al. [38] extracted the OD tensor and then used
a new deep learning model, Multi-Conv-LSTM, to predict

future dynamic travel demand. Based on a large-scale New
York real trafc dataset, the prediction model outperforms
existing forecasting methods, and the study can help balance
the supply and demand of roads and optimize on-demand
transportation services. Demissie et al. [39] presented
a methodology to estimate passenger demand for public
transport services using cell phone data. Substantial origins
and destinations of inhabitants were extracted and used to
build origin-destination matrices that resemble travel de-
mand. Te outcome of this study can be useful for the de-
velopment of policies that can potentially help fulfll the
mobility needs of city inhabitants. From the perspective of
complex network theory, Wang et al. [40] explored the spatial
structure characteristics of intercity travel patterns during
National Day, identifying aspects such as the “small world”
phenomenon and a core-periphery radial structure. In ad-
dition, Kiashemshaki et al. [41] utilized ego-centric networks
tomodel the travel patterns of Finnish cities, studying shifts in
mobility patterns during the COVID-19 pandemic. Fur-
thermore, Mimar et al. [42] applied network structure in-
dicators, including centrality and PageRank, to evaluate
welfare levels based on intercity mobility data.

Tis paper estimates the trafc demand of expressway
systems based on empirical tollgate data, explores the re-
lationship between trafc demand and the trafc fow of
expressways, and constructs a bipartite network to analyze
the driver source distribution. Tis paper calls this bipartite
network expressway usage patterns. By identifying the
sources of vehicles on high-volume expressways, a conges-
tion mitigation strategy is proposed. Finally, a visualization
system is developed to support transport management. Te
main contributions of this paper are summarized as follows:

(1) Based on real-world expressway tollgate data, we
propose a road usage pattern analysis model to locate
dynamic expressway driver sources for each seg-
ment, and a visualization system for transport
management has been developed. Te driver source
analysis in this paper is based on accurate tollgate
data, while previous studies were mainly based on
mobile phone data [32, 33]. Terefore, our approach
improves the accuracy and dynamics of driver source
identifcation, making tollgate control strategies
based on driver sources easier to implement in the
closed expressway system.

(2) Based on the driver source information, a simple and
efective congestion mitigation strategy is proposed.
By controlling a few driver sources, efcient con-
gestion mitigation is achieved. Te results from this
paper indicate that the major driver sources may be
far from the target segment, which is crucial for
improving tollgate control that is often close to the
target segment.

2. Data and Methodology

In the present study, vehicle tollgate record data were used to
obtain travel demand information. To identify driver sources
contributing to trafc congestion, trafc demand should be
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assigned to road segments to construct the association be-
tween tollgate stations and road segments and to explore
road usage patterns. Te fowchart of the proposed method
is shown in Figure 1, and there are three key steps in the
main methodology (OD estimation, trafc assignment, and
driver sources detection).

2.1.RoadNetworkData. Te road network data in this paper
were collected from the expressway road network in
Shandong province, which is a coastal province in the
Eastern China region with a population of more than 100
million. Te total length of Shandong province expressway
road network was more than 8,000 kilometres in 2022 [43],
and the expressways were charged for diferent vehicle types.
Te road network data used in this paper are composed of
814 road nodes (i.e., grade separation and tollgate station)
and 1766 road segments (Figure 2(a)). Due to the dense
geographical distribution of interchanges and tollgates
(where trafc volumes changed), the average length of road
segments in Shandong province expressway road network
was around 8.5 kilometers (Figure 2(b)). Te properties of
the segments contain road name, length, design speed, and
number of lanes. Te capacity C of the road segment is
calculated by the lane capacity of the road segment and the
number of lanes. Te lane capacity of road segment is ob-
tained here from the Technical Standard of Highway En-
gineering, which is dedicated to the design and construction
of expressways in China (Table 1). Te free travel time t(free)

of each road segment is calculated by dividing the road
length by the designed speed limit.

2.2. Vehicle Tollgate Record Data. Tis dataset was collected
by the toll collection system (TCS). Tollgate stations are
located at the junctions of urban road networks and ex-
pressway road networks, and the tollgate stations in this
study are densely distributed (Figure 3(a)). A record is
generated when a vehicle enters or exits the expressway road
network through the tollgate station. Records in the pro-
vincial boundary were recorded by the gantry station pro-
vincial boundary where tollgates canceled. For data cleaning,
records with abnormal time information and records
without entrance or exit information were deleted. Around
1.5 million trips generated by one million vehicles were
obtained in Shandong expressway system. Figure 3(b) il-
lustrates the temporal trends in travel demand across the
Shandong expressway system.

2.3. Trafc Assignment. Based on estimated travel demand,
diferent methods of assigning trips to road networks can be
utilized. Te incremental trafc assignment (ITA) [44]
method, which is suitable for large-scale road networks, can
solve this problem by updating travel costs that consider
travel congestion. As shown in Table 2, in the ITA method,
original trips are usually frst split into diferent subtrips that
contain diferent percentages of the original trips. First, one
of the subtrips is assigned to the network using the free travel
time. Ten, the actual travel time in a road segment is

updated using the Bureau of Public Roads (BPR) function.
Ten, the next subtrips are assigned using the updated travel
time, and the process is continued until all subtrips are
assigned to the road network. Incremental trafc assignment
method is an improvement of all-or-nothing assignment
methods, and because of its convenience and the fact that it
considers additional travel costs, it is often used in complex
road networks with a large number of trips [31, 32].

2.4.Driver SourceDetection. In Table4, to quantify the trafc
fow contribution from tollgates to road segments, an array
variable S[x] (x is the ID of a tollgate) is defned. If the trip
route passes through road segment x, S[x] plus one, then the
trafc fow contribution from each tollgate to the segment is
calculated by counting S[x] from all paths in the OD ma-
trices. Sorting and analyzing the trafc contributions of each
tollgate to each segment can refect the diferent congestion
impacts of various tollgates. We defne the top-ranked driver
sources as driver sources providing the most trafc fow on
a road segment as its major driver sources (the major driver
sources in total produce 80% of a segment’s trafc fow).

In Figure 4, the road usage bipartite network is generated
in this paper to explore the relationship between major
driver sources and road segments. In the road usage bipartite
network, road segments and major driver sources are two
types of nodes and links only exist in diferent types of nodes,
i.e., each road segment relates to its major driver sources.
Te weight of the link is the trafc fow contribution from
the driver source to the segment. In the modeling framework
of a road usage bipartite network, the degree of a tollgate and
the degree of a road segment were proposed [31]. Te degree
of a tollgate is the number of road segments for which the
driver source is the major driver source, and the degree of
a road segment is the number of major driver sources of the
road segment [32].

2.5. Comparison with Complex Network Indicators. For
a more thorough understanding of the system’s behavior, we
opted for complex network indicators to make a comparison
to interpret and visualize the relationships and dependencies
within the trafc network data [46, 47]. Specifcally, close-
ness centrality [48] measures the average length of the
shortest path from a node to all other nodes in the network,
providing an indication of how long it will take to spread
from that node to others; betweenness centrality [49] in-
dicates how much a node acts as a bridge’ between other
nodes. Both closeness centrality and betweenness centrality
can thus give us information about the most critical points in
the trafc network, which could be of interest when planning
interventions. Te defnition for driver source and other
complex network indices of key nodes is as follows:

(a) Main driver source MD(v):
If node v is one major driver source of the segment,
MD(v) plus one.

(b) Production Pr(v):
If node v is origin of a trip, Pr(v) plus one.
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(c) Closeness centrality:

CC(v) �
n − 1

ul(v, u)
, (1)

where l(v, u) is the distance between node u and
node v, and n is the number of nodes in the network.

(d) Betweenness centrality:

BC(v) �
i,j≠v Pv(i, j)/P(i, j) 

(n − 1)(n − 2)/2
, (2)

where P(i, j) presents the number of shortest paths
between node i and node j. Pv(i, j) presents the
number of shortest paths between node i and node j,
but those shortest paths must pass through node v.

2.6. Congestion Mitigation Strategy Based on Driver Sources.
As shown in Table 5, the road segments with the V/C greater
than the threshold (0.75) are selected as the congested road
segments.Te driver sources of congested road segments are

Data Preprocessing

OD estimation

Traffic Assignment

Driver Sources
Detection

Tollgate
Data

Road 
Network 

Data

The incremental traffic assignment (ITA) method
is used to solve traffic assignment.

Calculate traffic flow contribution of each
tollgate station to congested segment.

Building a bipartite network of tollgate station
and road network.

Trips of different vehicles types is transformed
to passenger car equivalence (pcu) trips.

Station-based trips convert to node-based trips.

Station-based trips are obtained by continuous
record that a vehicle enters and exit highways.

Figure 1: Flowchart of the proposed methodology.
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Figure 2: Statistics of the expressway network. (a) Map of expressway network. Te width of black lines represents the capacity of road
segments; (b) the length distribution of road segments.

Table 1: Capacity of expressway road lanes.

Capacity
of lane (pcu/h) Design speed (km/h)

2,200 120
2,100 100
2,000 80
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Figure 3: Statistics of tollgate records. (a) Tollgate locations map; (b) hourly recordings.

Table 2: Incremental trafc assignment algorithm. (Te parameters are explained in Table 3)

Input:
Trafc network G � (V, A), ∀a ∈ A;
Capacity of road segment Ca ;
Free travel time of road segments tfreea ;
Trafc demand of OD pair qrs , (r, s) ∈ RS;
Number of iterations N

Output:
Trafc fow of road segments fa, fn

a(n � N);
Routes of each trip Lrs � a1, a2, . . . , ai ;
Travel time of each road segments ta, tn

a(n � N)

Steps:
(1) Initialization
Set current iteration n � 1, the trafc fow of each road segment f0

a � 0, and each OD pair is divided into N equal parts
qn
rs � qrs/N, n � 1 . . . N

(2) Update travel cost
Recalculate the travel time of road segment by

tn
a � tfreea (1 + α(fn−1

a /Ca)β),∀a
where α � 0.15, β � 4 according to the Bureau of public roads (BPR) function [45]

(3) Incremental assignment
Assign n th part OD by using all-or-nothing assignment based on tn

a , the yields a fow pattern wn
a . Update the trafc fow

fn
a � fn−1

a + wn
a,∀a

(4) Stop condition
If n � N, stop the iteration; otherwise n � n + 1, go to step 1)

Table 3: Defnition of variable.

Variables Defnition Unit
Road network

Ca

Te capacity of road segment a, calculated by the lane capacity of the road segment
and the number of lanes pcu/h

t(free)
a

Te free travel time of road segment a, calculated by dividing the road length by the
designed speed limit mins

ta Travel time of road segment a mins
fa Trafc fow of road segment a pcu
Trips
qrs Trafc demand of OD pair from r to s —

Lrs
Routes of each trip from r to s, Lrs � a1, a2, . . . , ai , a1, a2, . . . , ai  are road

segments in the route —

Journal of Advanced Transportation 5



Table 4: Driver source detection algorithm (the parameters are explained in Table 3).

Input:
Trafc network G � (V, A), ∀a ∈ A;
Trafc demand of OD pair qrs , (r, s) ∈ RS;
Trip number N

Tollgate xi ;
Routes of each trip Ln � Lrs � a1, a2, . . . , ai , ∀n ∈ N;
Trafc fow of road segments fa;

Output:
Contribution of driver source xm to segment a, Sxm

a ;
Major driver sources of each segment a, MDa � x1, x2, . . . , xm 

Steps:
(1) Contribution calculation
Set Sxm

a � 0, n � 1;
Cycle the set of route segment of trip n, if trip n goes through segment a, the contribution of trip origin Sxm

a � Sxm
a + 1, until n � N

(2) Contribution accumulation
Sort contribution from tollgate xm to segment a, Sxm

a

Accumulate the contribution from the driver source with the largest contribution to the road segment a, until i�1,2,...,jSxi
a /f

N
a ≥ 0.8

Table 3: Continued.

Variables Defnition Unit
Driver source
Sxm

a Contribution of driver source to segment a pcu

MDa

Major driver sources of segment a, Da � x1, x2, . . . , xm  , x1, x2, . . . , xm  are
tollgates in major driver sources of segment a

—

MD(v)

Main driver source in the road network, if node v is one major driver source of
a segment, MD(v) plus one, node v is the road network node corresponding to

a tollgate
—

Complex network indicators
Pr(v) If node v is origin of a trip, Pr (v) plus one —

CC(v)
Closeness centrality, CC(v) � (n − 1)/(ul (v, u)), where l (v, u) is the distance

between node u and node v

BC(v)

Betweenness centrality, BC(v) � (i,j≠v[Pv(i, j)/P(v, u)])/((n − 1)(n − 2)/2),
where P(v, u) presents the number of shortest paths between node i and node j.
Pv(i, j) presents the number of shortest paths between node i and node j, but those

shortest paths must pass through node v
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Figure 4: Bipartite network and degree of segment/tollgate.
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analyzed and extracted, which are sorted according to the
V/C of the corresponding road segment to identify the driver
sources that need to be controlled.

3. Results

3.1. Time-Varying OD Distributions. Te origin-destination
pairs during a peak hour (10:00–11:00), and an of-peak hour
(18:00 p.m.–19:00) were analyzed. As shown in Figure 5(a)
and 5(b), the color and width of a link illustrate volume over
trip volumes. Te same spatial distribution patterns but
diferent volume quantities in various time windows can be
discovered. During peak hours, expressway trips are mainly
concentrated around the city, and the trips are usually short
to medium distances. Especially around Jinan, Qingdao, and
Yantai, there is a large amount of short andmedium distance
travel. In long-distance trips, the amount of transit trafc
passing through north of Binzhou to the south of Linyi is
relatively large, which might be large transit trips. Tere is
a similar geographical distribution during the of-peak hour,
but the numbers are considerably lower.Te total number of
trips during the peak hour and the of-peak hour is 162,571
and 77,933, respectively, where the number of OD pairs with
the highest number of trips is 1,025 and 593, respectively.

3.2. Trafc Flow Distributions. Trafc fows show diferent
spatial distribution patterns during the two studied time
windows. In Figure 6(a) and 6(b), trafc fows with the
maximum fow reach 5,084 pcu/h in the peak hour and
2,631 pcu/h in the of-peak hour. During the peak hour, the
roads with large trafc fows are mainly concentrated in the
Jiguang expressway, Qingyin expressway, Qingxin express-
way, Changshen expressway, Beijing-Shanghai expressway,
and other expressways around Jinan, Qingdao, and Yantai.
During the of-peak hour, the overall trafc fows are reduced,
especially on the expressways around cities, where the trafc

fows are most considerably reduced. However, there are still
large trafc fows on the Jiguang expressway, Qingyin ex-
pressway, and Changshen expressway.

In this paper, saturation (V/C) and extra travel time are
used as indices to measure the degree of road network
congestion.Te ratio of trafc fow f and road capacity C was
defned here as volume over capacity (V/C). A road segment
with V/C> 0.75 (service level is four) [50] was defned as
a congested road segment. As Figure 7 demonstrates, our
results show that few road segments (21 in the peak hour
time window) had a V/C that was slightly larger than 0.75,
with a maximumV/C of 0.874. For a road segment, the extra
travel time (the diference between the actual travel time and
free travel time) could also be used to measure its level of
congestion [31]. If a driver travels through congested roads,
he or she will experience a large amount of extra travel time.
When comparing Figure 7(b) with Figure 7(a), the results
show that the extra travel time caused by congestion in-
creases substantially, and it is most obvious between 10:00
and 12:00.

3.3. Driver Source Analysis. To further analyze the usage
patterns of road sections, three types of road sections are
selected as cases, i.e., congested road sections (V/C> 0.75),
high-trafc-fow sections (both fow and capacity are large),
and ordinary cases (V/C∼0.25), to analyze the distribution of
driver sources under diferent road conditions. Figure 8
shows that the distribution of driver sources during peak
hours is more concentrated.

By analyzing the diference betweenmajor driver sources
and driver sources, we found that production sources are
usually numerous and unstable (Figure 9), so our analysis of
major driver sources is essential in practice. Because the
number of major driver sources is relatively stable and small,
it is convenient to implement control strategies based on
these locations.

Table 5: Congestion mitigation strategy based on driver sources (the parameters are explained in Table 3).

Input:
OD matrix;
Driver sources of each road segment;
Productions of tollgate i, PR(i);
V/C threshold thrV/C;
Number of controlled tollgates Nn

Output:
Strategy, controlled nodes with responding number of controlled OD i: ri for i inNn 

Steps:
(1) Congested road segments selection:
Sort road segments according to V/C in descending order. Select the road segments with V/C larger than thrV/C;

(2) Sourcing:
Merge the driver sources of congested road segments into one set, the contributions accumulated;

(3) Selecting controlled nodes:
Sort the sourcing set according to V/C in descending order, and keep top Nn sources

(4) Allocating deductions:
wi � (PR(i)/Nn

i PR(i))

(5) Simulating OD deduction:
Remove wi trips randomly from all trips from source i

(6) Selecting controlled nodes:
Recalculated the fow of the road network

Journal of Advanced Transportation 7



Te degrees of driver sources (tollgate) and road seg-
ments can be approximated by an exponential distribution
(Figure 10).Te distributions of the degree of a driver source
and the degree of a road segment refect the road usage
internal relations. First and useful for congestion mitigation,
only a few driver sources provide the major usage of a road
segment. Second, a similar and small number (5–15) of road
segments were used by drivers from each driver source,

which indicates that there is less infuence on the tollgate
control strategy.

Compared with other complex network indices, the
spatial distribution of key nodes is very diferent, as shown in
Figure 11. Distributing the key nodes in the road network
from the network structure and trip distribution is more
conducive to the implementation of emergency security and
control strategies.
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Figure 5: Spatial distribution of trip volumes during a peak hour (10:00 a.m.–11:00 a.m.) and an of-peak hour (12:00 p.m.–1:00 p.m.). Color
and width of a link illustrate volume over trip volumes.
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4. Discussion

Based on controlling tollgates, the changes in extra travel
time and congested road sections after reducing diferent
percentages of OD volumes while controlling various per-
centages of tollgates are shown in Figure 11.Te lighter color
of the heatmap means a more obvious optimization efect,
and the darker color means a less obvious optimization
efect. Te specifc calculation of the heatmap parameters is
as follows:

Cafter − Cbefore( 

Cbefore
, (3)

where Cafter represents the extra travel time or congested
road segments after the implementation of the strategy and
Cbefore represents the extra travel time or congested road
segments before the strategy implementation.

Figure 12 shows that reducing OD volumes and con-
trolling tollgates will efectively reduce expressway conges-
tion. In general, the optimization efect becomes more
obvious as the OD volume decreases, but the optimization
efect does not become obvious as the proportion of con-
trolled nodes increases, which is more efective at 1.5% of
controlled tollgates. Te best optimization is achieved with
1.5% controlled tollgates and a 3% reduction in OD volumes,
which reduces the additional travel time by 35% and the
number of congested road segments by 100%. Te worst
optimization is achieved with 2.5% of controlled tollgates
and a reduction of 3% of OD volumes, which reduces the
additional travel time by 5% and the number of congested
road segments by 20%.

To compare the implementation efects of various strat-
egies, Figures 13 and 14 show the changes in the total extra
travel time and the number of congested road segments after
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Figure 8: Driver source distributions. Te major driver sources of the road segment are denoted by squares, the driver sources of the road
segment are denoted by circles, and the colors represent the ratio of fow contribution. (a) Road 1 (10:00-11:00). (b) Road 1 (18:00-19:00). (c)
Road 2 (10:00-11:00). (d) Road 2 (18:00-19:00). (e) Road 3 (10:00-11:00). (f ) Road 3 (18:00-19:00).
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the implementation of diferent strategies in two cases. Results
show that controlling driver sources are much more efective
than other strategies. When reducing OD volumes by 3% and
controlling nodes by 1.5%, controlling driver sources can
completely eliminate congested road segments. Even though
the combination of control ratios is not efective, it can reduce
the expressway congestion to some extent. Controlling pro-
duction sources is better than the efect of other strategies,

such as controlling closeness centrality. Note that the efect of
controlling production, closeness, and betweenness is worse
than randomly selected node control, indicating that fnding
the driver sources on congested road segments is essential for
managing expressway congestion. Because the production
sources are usually numerous and unstable, controlling driver
sources can better reduce the fow of congested road segments
to efectively decrease congestion.
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Figure 9: (a) Te number of major driver sources and driver sources; (b) the change in the number of major driver sources and driver
sources over time.
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Figure 12: (a) Te reduced proportion of extra travel time changes; (b) the proportion of congested road segments (V/C> 0.75) become
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5. Conclusions

Tis study provides valuable insights into the relationship
between demand origins and congested expressways. By
analyzing empirical data from Shandong province, China,
this study can identify the specifc origins that contribute to
congestion on expressways. Te fndings suggest that only
a small portion of driver sources are responsible for con-
gestion and controlling the demand from these driver
sources during peak hours can help resolve the problem.
Tese results highlight the importance of considering road
usage analysis when addressing congestion on expressways
and can inform strategies for reducing congestion in the
future. However, the current study only focuses on the
expressway system. In the future, we can consider lower
hierarchy roads to provide alternative routes [30, 51, 52] for
congested driver sources. In practice, guidance information
can be published via variable message signs [53].Te current
simulated congestion schema did not consider fairness for

expressway drivers. Expressway authorities can apply in-
centive strategies [54] to manage travel demand. Hence, this
approach can provide a novel perspective for expressway
management.
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