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Toll-gates are crucial points of management and key congestion bottleneck for the freeway. In order to avoid traffic deterioration
and alleviate traffic congestion in advance, it is necessary to predict and evaluate the congestion in toll-gates scattering in large-
scale region of freeway network. In this paper, traffic volume and operational delay time are selected from various traffic
indicators to evaluate congestion considering the particular characteristics of the traffic flow within the toll-gate area. The
congestion prediction method is designed including two modules: a deep learning (DL) prediction and a fuzzy evaluation. We
propose a modified deep learning method based on graph convolutional network (GCN) structure in the fusion of dilated
causal mechanism and optimize the method for spatial feature extraction by constructing a new adjacency matrix. This new Al
network could process spatiotemporal information of traffic volume and operational delay time, that extracted from large-
scaled toll-gates spontaneously, and predict key indicators in 15/30/60 min future time. The evaluation module is proposed
based on these predicted results. Then, fuzzy C-means algorithm (FCM) is further modified by determining coupling weight
for these two key indicators to detect congestion state. Original traffic data are obtained from the current 186 toll-gates served
on the freeway network in Shaanxi Province, China. Experimental tests are carried out based on historical data of four months
after preprogressing. The comparative tests show the proposed CPT-DF (congestion prediction on toll-gates using deep
learning and fuzzy evaluation) outperforms the current-used other models by 6-15%. The successful prediction could extend to
the real-time prediction and early warning of traffic congestion in the toll system to improve the intelligent level of traffic
emergency management and guidance on the key road of disasters to some extent.

1. Introduction

Freeway is the backbone of long-distance transport because
of its low disruption and excellent road conditions [1]. As
the demand for long-distance transport increases with
economic development, the number of freeway mileage in
China is growing exponentially, as shown in Figure 1(a).
At present, researchers have made a large quantity of work
on traffic state of urban road sections, but there are relatively
few studies on toll-gate of freeway [2]. Since the freeway is
closed management and toll-gates scattering in large-scale
region of freeway network, characteristics of the traffic flow

within the toll-gate area and other roads are different. There
are multiple steps such as deceleration, lane changing,
rendezvous, and toll payment when a vehicle enters the
toll-gate area [3]. The entire traffic efficiency is strongly
affected by passing time through the toll-gates. Thus, toll-
gates are crucial points of management and key congestion
bottleneck for the freeway network, especially in China. How-
ever, serious traffic congestion often occurs in the toll-gates
area. As shown in Figure 1(b), in the top 10 toll-gates ranked
by congestion in China, the vehicle speed may drop to
10km/h and the congestion index may even be up to 50-60.
It might additionally cause traffic accidents, energy
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FIGURE 1: (a) Mileage of freeways in China. (b) Top 10 toll-gates ranked by congestion index (11:10 April 9, 2022). (Data source from

reference: https://report.amap.com/congest.do#).

consumption, and environmental pollution in the areas of
these toll-gates [4]. In order to alleviate or avoid the occur-
rence of these problems, an increasing number of researchers
are working on two aspects: traffic prediction and congestion
evaluation of the toll-gates area, in which further studies on
quantitively predicted traffic indicators might be an alterna-
tive way to solve the problem to evaluate the congestion.
The success prediction and evaluation would provide the pos-
sibility for the advance management of the toll-gate and the
guidance of traffic routes. The traffic perception will be faster
and more accurate with the development and breakthrough of
artificial intelligence (AI) and deep learning (DL), providing
more effective intelligent technology for alleviating conges-
tion and traffic emergency management.

In terms of traffic prediction, the freeway network is a
topological structure with dynamic spatiotemporal fea-
tures, which is manifested by the periodicity of traffic flow
and the spatial correlation of toll-gates between upstream
and downstream. Initially, due to the limitation of intelli-
gent technology, most of the prediction work of traffic
congestion focused on the temporal dimension while
ignoring the information of the large-scale spatial dimen-
sion. In recent years, graph neural network (GNN) based
on deep learning was first proposed by Gori et al. [5]
and Scarcella et al. [6], which introduced graph structure
in the field of spatial correlation to skillfully simulate the
spatial correlation between objects. Hence, various algo-
rithms based on graph models have been widely used in
different fields, including social network, biomedicine,
and knowledge graph [7]. Similarly, the toll-gates and
ordinary road sections of the freeway network can be
mapped to the relationship between points and edges in
the graph structure. Recently, as a branch of GNN, Graph
Convolutional Networks (GCN) [8, 9] were introduced to
traffic work and efliciently implement congestion predic-
tion from a spatiotemporal perspective. However, there

are also unsatisfactory results in long-term prediction
work due to the defects of the model. For example, the
disappearance and explosion of gradients in Recurrent
Neural Networks (RNNs) lead to the loss of historical data
and cannot be processed in parallel on a large scale, result-
ing in slow computation. Therefore, a graph convolutional
network fusing the dilated causal mechanism was intro-
duced in this paper to compensate for this deficiency. In
addition, most existing graph-based methods usually only
build spatial features based on distances or correlations
between toll-gates [10-12]. But there will be two situations
as shown in Figure 2: (1) Nearby Euclidean distances
between gates, but little spatial correlation of traffic flows
(Region A: A, and A, are not directly relatable), (2) Long
Euclidean distances between gates, but strong spatial cor-
relation of traffic flows (Region B). This means that only
referring to a single factor cannot accurately grasp the
large-scale spatial features and even has a great interfer-
ence on the prediction accuracy. Based on this, a new spa-
tial adjacency matrix that combines the two features of
toll-gates including correlation and distance is proposed
in this paper, which can more accurately explain the spa-
tial characteristics of toll-gates in a large scale.

In terms of congestion evaluation, the work of conges-
tion evaluation of freeway toll-gates is to further analyze
and summarize the prediction results (single or multiple
traffic indicators). The content of this part includes the
selection of indicators and evaluation methods to measure
traffic congestion. Firstly, researchers mostly use traffic
indicators such as speed, traffic volume, occupancy, opera-
tional delay time, and queuing length as the detection cri-
teria for urban traffic congestion. The freeway is a closed
system consisting of “toll entrances-road sections-toll
exits”. Under normal circumstances, the vehicle will drive
at a high and uniform speed on ordinary road sections.
When reaching the toll-gate area, the vehicle speed will
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F1GURE 2: The special situation of toll-gate location and traffic flow distribution.

slow down to an extremely low state until the toll is com-
pleted and finally accelerate the process of driving away.
Therefore, the speed itself varies greatly in the toll-gate
area, so it is suitable as a congestion indicator in the ordi-
nary road section rather than in the toll-gate area. In addi-
tion, since there are often nondeployed detector sections
or detector damaged sections upstream and downstream
of the toll-gate, the queuing length and occupancy rate
cannot be completely and directly detected. In view of this,
the traffic volume based on toll-data is preferred in this
paper as one of the indicators to identify the congestion
state of freeway toll-gates. Besides, due to the difference
in the scale of toll-gates, the evaluation results of toll-
gate i and toll-gate j may be different under the same traf-
fic volume. Therefore, this paper selects operational delay
time as another indicator and designs a calculation
method based on toll-data. Secondly, there is no standard
congestion evaluation method because the Electronic Toll
Collection (ETC) channel has been added to the toll-
gates of China’s freeways in recent years, which is an
important renovation of the toll-gates [13]. References
include the “Highway Capacity Manual (HCM)” issued
by United States and the “Urban Road Traffic Operation
Evaluation Indicator System” issued by China, both of
which quantify the service level into n intervals according
to road characteristics. Therefore, the idea of clustering
and the currently more popular methods based on fuzzy
clustering are introduced in this paper to perform traffic
state classification well. Currently, there are some studies
in this area. A congestion evaluation model based on the
fuzzy C-means (FCM) algorithm was proposed [14]. This
method of unsupervised learning based on fuzzy clustering
to analyze hidden data patterns is helpful for the conges-
tion evaluation of toll-gates. However, the traditional
FCM algorithm does not consider the influence of each
traffic index on the clustering results, and the algorithm
is prone to fall into the local minimum. Based on these
problems, this paper refers to and improves the FCM
method, which combines the coupling weights of the two
traffic indicators to optimize the FCM algorithm and accu-
rately realize the congestion evaluation. The main contri-
butions can be summarized as follows.

(i) Based on toll-data, a new calculation method for
“traffic volume” and “operational delay time” is pro-

posed in this paper to complete the congestion pre-
diction and evaluation of toll-gates more accurately

(ii) A new Al network (CPT-DF) for congestion predic-
tion of freeway toll-gates using deep learning and
fuzzy evaluation is proposed. The GCN of the
prediction module is used to capture the spatial
information of the road network by weighting the
neighbourhood node features and embedding them
into the graph structure, and the improved dilated
causal mechanism preserves the nonlinear ability
of the model by adding residual connections and
gated linear units, so that temporal dimension
information can be better captured. The evaluation
module uses the improved FCM algorithm for accu-
rate interval classification of toll-gate traffic state

(iii) A new adjacency matrix that combines both the
correlation and distance features of toll-gates is
constructed in this paper, which can optimize the
existing methods to more accurately extract the
spatial features of large-scale toll-gates

(iv) This paper verifies the proposed CPT-DF model
based on toll data, and some toll-gates are selected
to complete the work of congestion prediction,
which could efficiently improve the intelligent level
of traffic emergency management and guidance on
the key road of disasters

2. Related Work

2.1. Prediction Algorithms. In recent years, with the increase
in the amount of data and the development of fusion tech-
nology, data-driven prediction algorithms represented by
statistical models, traditional machine learning and deep
learning models have become more and more popular in
various research fields. In the field of traffic prediction,
ARIMA model [15] and Kalman filter model [16] can rely
on statistical methods to simply model the relationship
between traffic parameters to predict road traffic state. How-
ever, such models are usually based on linear assumptions,
which cannot strongly explain the high-dimensional and
nonlinear of traffic data. Later, machine learning methods
such as Support Vector Regression (SVR) [17] proposed by
researchers can solve the nonlinear relationship in traffic



data well, so such methods are widely used in freeways and
urban roads. However, the changes in road environment
and traffic flow near toll-gates are more complicated than
the temporal characteristics of ordinary road sections, and
there are few studies on toll-gates at present. Wang et al.
[18] fuse vehicle detector data, long-range microwave sensor
data, and toll-data and employ Deep Belief Network (DBN)
to successfully predict small-scale ring roads at time inter-
vals of 30/60/120-minute traffic flow at the toll-gate. Shuai
et al. [19] adopted the modified Long Short-Term Memory
(LSTM) and predicted the traffic volume of the 51 screened
toll-gate. These deep learning-based methods are good at
capturing traffic trends in complex toll-gate environments
or exploring spatial connectivity between one or more road
segments in a single temporal dimension, but the spatial
characteristics between each toll-gate on a large scale are
not considered. Therefore, the researchers extracted the spa-
tial features of the road network by introducing the convolu-
tional neural network (CNN) [20] to convert the structure of
the traffic road network into a standard graph structure, but
CNN is not suitable for processing non-European data such
as toll-gates. Recently, GCNs have been widely used for
many graph-based tasks, and many studies have further
explored the use of GCNs to model the topology of road net-
works. The STGCN model [10] combines GCN and CNN
for the first time to model the traffic network and spatiotem-
poral sequence. This paper also refers to the fusion principle
of STGCN in the model construction part, but the model can
only use CNN to process the signal of each layer of the
network. Propagating to the upper layer, the processing of
samples is independent at each moment, so it cannot cope
with long-term prediction well; the DCRNN model [11]
models the spatial correlation as a diffusion process on a
directed graph to establish a traffic flow transformation
model, we propose to develop a diffuse convolutional recur-
rent neural network capable of capturing the spatial and
temporal dependencies between long-term sequences using
the seq2seq framework. This paper is inspired by DCRNN
in the construction of time series model. The ASTGCN
model [21] introduces an attention mechanism (GAT) in
GCN to effectively model temporal and spatial correlations.
However, this model cannot capture spatial and temporal
dependencies simultaneously and only considers low-order
neighbourhood relationships between nodes, ignoring the
correlations between different historical periods. The T-
GCN model [12] integrates GCN and GRU to capture traffic
spatiotemporal features, which can be well derived from
spatiotemporal features. These models can well capture the
information between adjacent nodes from the perspective
of spatial and temporal, so as to complete short-term traffic
prediction. However, these models have not been success-
fully applied in the traffic prediction work of the toll station,
so this paper proposes a new model and uses the toll-data to
carry out the application work of the actual scene.

2.2. Evaluation Algorithms. The methods of congestion
evaluation can be divided into traffic theory and data-
driven algorithms [22]. The former is based on physical
and mathematical theory to describe the characteristics of
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traffic behaviour, and then evaluate the traffic congestion,
but it is not suitable for scenarios with high complexity
and unknown degree, such as toll-gates. The latter is based
on neural networks and clustering algorithms to evaluate
traffic congestion [23]. Neural network-based methods need
to manually classify traffic states in advance, but it is difficult
to accurately classify states in unknown scenarios. In the
contrast, clustering methods are very suitable for special
scenarios of toll-gates without standard evaluation. The clus-
tering algorithm is the process of dividing a collection of
research objects into multiple classes consisting of similar
objects. Initially, the K-means clustering algorithm [24]
combined with three parameters of traffic volume, speed,
and occupancy was applied to achieve a simple state evalua-
tion. However, the algorithm cannot evaluate the critical
threshold of the sample. Later, considering that traffic state
is a fuzzy concept, the algorithm of fuzzy clustering is also
applied to traffic state evaluation. The FCM algorithm was
first proposed by Dunn [25], and later the improved
algorithm based on FCM has been widely used in the field
of traffic evaluation [26, 27].

3. Methodology
3.1. Problem Definition

3.1.1. Congestion Domain of Toll-Gates. To study the traffic
congestion of the toll-gates, this paper constructs a “toll-gate
congestion domain” according to the traffic characteristics of
the toll-gates, which includes the three areas (upstream
section, deceleration section, and toll section), as shown in
Figure 3. After the vehicle passes through the congestion
domain, it will quickly resume normal driving through the
acceleration section and the downstream section.

Upstream Section. A fixed distance section before the
vehicle enters the toll-gate. The first vehicle detector (VD)
in Figure 3(1) is installed upstream of the toll-gate in
upstream section, which is used to detect parameters such
as the speed of passing vehicles and the current time.

Deceleration Section. The vehicle starts to slow down and
enters the toll-gate and selects a different toll lane.

Toll Section. The toll lanes can be divided into Manual
Toll Collection (MTC) and Electronic Toll Collection
(ETC) based on the tolling method. The vehicle decelerates
through the railing locomotive detector (RLD) as shown in
Figure 3(2) and records the current time.

3.1.2. Calculation of Indicator. Firstly, the original data
collected in this paper will be counted every 5 minutes and
traffic volume can be counted directly (the details are pre-
sented in Section 4.1.1). Secondly, the operational delay time
on ordinary roads can be obtained according to “speed-
acceleration-distance”. But the limitation of this method will
bring a large error. According to the characteristics of toll-
gates, the operational delay time is calculated as

1 1 [&
D=2 (T"_E(Z TPk))’ o
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where D is the calculated average operational delay time per
five minutes. T is the passing time of the i-th vehicle passing
through the congestion domain. T,, Tp, and T, are the
upstream section and the deceleration section as shown in
Figure 3, respectively and the travel time of the toll road.
Ty is the travel time of the vehicle through the toll channel
K in the congestion domain. Q is the flow threshold when
the traffic state is unblocked. T;yp and T, ) are the times
detected by thei-th vehicle passing the upstream vehicle
detector and the railing locomotive detector, respectively.

3.1.3. Preparing for Input/Output. As shown in Table 1, two
sets of inputs/outputs are designed to perform both predic-
tion and evaluation. For the prediction module, the input
values are the two previously selected feature data (traffic
volume and operational delay time) and graph data. The
graph data represents the spatial relationship between each
toll-gate. The two traffic indicators represent the temporal
relationship between the historical traffic state and future
traffic state of toll-gate. The output values are just two traffic
indicators for future moments predicted by the model. For
the evaluation module, the input value is the output value
of the prediction module and the congestion threshold cor-
responding to each toll-gate, and the output value is the final
traffic state. This part mainly introduces the construction of
the spatiotemporal data input to the prediction module.

(1) A. Description of Feature Data. Traffic prediction is a
typical spatiotemporal prediction problem. Given the previ-
ous M observations of historical traffic feature, the data mea-
sured at the N toll-gates at time step H can be viewed as a
matrix of size M x N. Then, the predicted value of the flow
closest to the true value in the next H time steps is as

Ft+1’ ) FHH = argmaXIOgP(FHl’ "'Ft+H|Ft—M+1’ ) Ft)’

(4)

where F, € R" is a vector of observations for n toll-gates at
time step t, F, here also refers to the traffic volume and oper-
ational delay time.

(2) Construction of Graph Data. For unordered gate network
traffic data, the observations F, are not independent and can
be viewed as graph signals defined on an undirected graph
G as shown in Figure 4, the graph is expressed in terms of
G,=(F,,E, W). E is a set of edges representing the connec-
tions between gates, and W € R™"represents the adjacency
matrix of G,.

Each of the toll-gates can be regarded as a vertex in the
graph structure, and the road segments connecting the toll-
gates can be regarded as edges. In order to represent the
spatial relationship between each toll-gate (vertex), the
Euclidean Distance is usually chosen, but there will be the
defects shown in Figure 2 that were mentioned earlier.
Therefore, we introduce Distance Matrix (D-Matrix) and
Correlation Matrix (C-Matrix) to represent spatial features.

(i) D-Matrix is the Euclidean distance between each
gate, which can be calculated using the latitude and
longitude values of the gates by “Vincenty solutions
of geodesics on the ellipsoid” [28].

(ii) C-Matrix is judged based on whether the gates are
directly connected. As shown in Figure 5, P;and P,
are directly connected, but P, and P, are not directly
connected, so C, , =1, C, , =0.

Finally, a novel type of Distance and Correlation Matrix

(D&C-Matrix) is constructed to calculate the adjacency
matrix W;; as

exp | -

1, others

([Dy] GZ[Ciﬂ )’

) >¢i#7, (5)

where [D;] and [C;j] are D-Matrix and C-Matrix, respec-

tively, © is the Hadamard product, and D;; and C;; are the
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vehicles on the freeway cannot pass through). (b) The process of building an adjacency matrix.

distance and correlation between gates i and j. o?and ¢ is the
threshold of control matrix distribution and sparsity.

3.2. Overview. In this paper, we propose an Al network
(CPT-DF) of deep learning that integrates a fine-grained
congestion evaluation mechanism, as shown in Figure 6.
The CPT-DF network includes two modules: prediction
module and evaluation module. The prediction module
includes input/output layer 1 and spatiotemporal convolu-
tion layer, and the evaluation module includes input/out-
put layer 2 and congestion evaluation layer. The output
layer 1 and the input layer 2 are marked with green fonts,
just because of the transmission relationship in the calcu-
lation process.

First, the preliminary work completed the construction
of the congestion domain of the toll-gate, the selection of
indicators, and the data required by the input layer. Then,
the prediction module detects traffic indicators (traffic vol-
ume and operational delay time) for future periods based
on the spatiotemporal convolutional layers constructed by

GCN fused with dilated causal convolutions. Finally, the
evaluation module combines the prediction indicators with
the FCM clustering mechanism to realize the congestion
detection of the toll-gate in the future period.

3.3. Prediction Module

3.3.1. Spatial Feature Extraction. GCN is a basic operation
based on spectral decomposition method or spatial struc-
ture. The spectral decomposition-based method is to deal
with the spectral domain correlation representation of the
graph. In this paper, the spectral decomposition method is
introduced to extract node spatial features given node infor-
mation. As early as 2014, Bruna et al. [29] proposed Spectral
Network to define convolution operations in the Fourier
domain, which can be defined as the product of feature x
€ RN and a convolution kernel &, = diag (6) as

x* Gy = UZ,(A)U"x, (6)
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value of the prediction module is also one of the input values of the evaluation module.

where U is a matrix composed of the eigenvectors of the nor-
malized Laplacian matrix, and A is a diagonal matrix of traffic
indicators. However, this method of convolution, which com-
putes the Eigen decomposition of the Laplacian matrix of the
graph, leads to potentially intensive computations and results
in unsatisfactory locality of the convolution kernels.

In order to alleviate the problems of Spectral Network, in
2016, Michael et al. [30] proposed Cheb Nets K-jump
convolution to define convolution on the graph, thus elimi-
nating the time cost of calculating Laplacian matrix vectors.
On this basis, this paper sets K = 1 to alleviate the local over-
fitting problem. Therefore, the graph convolution can be
written as

X% Gy&= 0'x—0' (D’(“Z) WD’“/Z))X

(7)
- 6<In +D(12) WD‘“/Z))x,

where the adjustable parameter is 6 =0'=-0". D is the
degree matrix. The GCN model constructs filters in the Fou-
rier domain, constructs spatial features by stacking multiple
local Covn layers, and extracts the structural information of
the network in the form of convolutions. Therefore, a deeper
structure can be constructed to deeply recover spatial infor-

mation, which achieves a larger receptive field and reduces
the number of convolution kernels.

3.3.2. Temporal Feature Extraction. As a derivative of CNN,
Temporal Convolutional Networks (TCN) [31] is a network
framework that can accurately process sequences or data
containing time series. It aims to extract features across time
steps by directly exploiting the powerful properties of convo-
lutions and uses fully connected networks and dilated causal
convolution to achieve corresponding outputs for each
input, respectively, and ensure that no historical data is
missed. In this paper, an improved TCN network is designed
to extract temporal features by fusing dilation convolution,
GLU, and residual blocks. The specific improved TCN struc-
ture is shown in Figure 7.

(1) Dilated Causal Convolution. Dilated causal convolution
is used to solve the problem of the time dimension of big
data. Among them, the expansion coeflicient of the convolu-
tion kernel can be arbitrarily combined from the range of [1,
2, 4, 8, 16, 32]. Through comparative experiments, it is
found that the experimental results obtained by [1, 2, 4],
[1, 2, 4, 8, 16], and [8, 16, 32] are relatively stable. At the
same time, in order to maintain the temporal relationship
of historical information, the kernel is set to 2, and the
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Dilated Causal Convolutions.

expansion coefficient is used as the sliding jump value, and
the receptive field is set to2 x 2A(4 —1) = 16.

Formally, for the one-dimensional sequence input x € RY
and the kernel function ¢ € R, d is the expansion coefficient,
the flow data sequence input by time is {F,, F,, ---Fy}, and
the output result is denoted as {g,, g,, ---gy }» the mapping
relationship S between F and g can be expressed as:

9o 9v gy = S(Fo» Fy - Fy). (8)
The convolution operation S on the element F is

k-1

S(F)=(x* d9)(F)= Y $(i) - xp_a» ©)

i=0

where k represents the kernel size, F —d -i maps the upper
layer history information, and at the same time introduces
the residual block in the TCN.

(2) Gated Linear Units (GLU). After adding the residual mod-
ule, the TCN has 3 layers of dilated convolution, and the data
distribution is normalized by weights, and then the GLU is
used to replace the ReLU in the original structure to save the
nonlinearity of the remaining blocks, at the same time to
expand the volume every time add dropout after the product
to prevent overfitting. Furthermore, 1 * 1 Conv with a width
of K, is introduced to obtain the output Y of the time sequence
as the input of the next stage. At this time, the time convolu-
tion input of each node can be regarded as a sequence of
length M, and the number of channels is C;, so ¥ € RM*Ci,
The convolution kernel 7 € RX*¢>2% s used to map the
input Y to a single output element [P Q] € RIM-K+1)x2Co 1 4
1 Conv keeps the remaining input and output dimensions
the same, the convolution can be defined as:

T+ 7Y =Poo(Q) e RMK+1)xC, (10)

where P and Q are the input of the GLU gate, respec-
tively, and © represents the element-wise Hadamard
product. 0(Q) controls the dynamic change of the input P,
and the added nonlinear link ensures the stacked input of
the time layer, and the residual connection is realized in the
time layer of the stack. Using the same convolution kernel I
for each node y; € RM*Ci in the traffic graph, the time domain
convolution I' * Ty can be extended to the three-dimensional
variable y € RM*m<Ci,

(3) ST-Fusion Module. To fuse spatiotemporal features, a
spatiotemporal fusion module (ST-Fusion Module) inspired
by [32] is constructed in this paper. The modules can be
stacked or expanded depending on the size and complexity
of a particular case. As shown in Figure 8, each spatial con-
volutional layer bridges two temporal convolutional layers,
which can achieve fast transition of the states of the tempo-
ral and spatial layers. In addition, this design scales the chan-
nel C through the graph convolution layer, which also helps
the network to fully apply the bottleneck strategy and
achieve scale and feature compression.

The input and output of ST-Fusion Module are both 3D

tensors. For the input F' € RM*™C' of block I, the output
Fi+l ¢ IR(Mfz(Kt—l))anCI+1 is

F”lzl"ll*TReLU(Ql*g(FZO*TFl>), (11)

where I'), '} are the upper and lower kernels of the temporal
convolutional layer of the inclusion graph convolution. @' is
the spectral domain convolution kernel in graph convolu-
tion, and Re LU(-) represents the activation unit.
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After fusion of temporal convolution and spatial convo-
lution, apply linear transformation F = Zw + b on channel C
to obtain n nodes. The predicted value of traffic w € R is the
weight vector, b is the deviation, considering the conver-
gence speed, and using L2-loss to measure the model perfor-
mance, the flow loss function is expressed as

L5 Wo) = D [P (Veepten = Ve Wo) =i (12)
t

Since the deepening of the spatiotemporal block men-
tioned above will gradually slow down during the training
process, this paper introduces Batch Normalization (BN)
before the hidden layer activation function to fix the distri-
bution of the input and pull the distribution back to the nor-
mal distribution interval of [0, 1] to speed up convergence
speed, while making the optimization smoother. The specific
transformation is

k k
5€<k>=x()—E[x( ):I) (13)

Var [x<k)]

where x(¥) represents the output of the activation func-
tion of the hidden layer, E[-]represents the mean value, and
Varl|-Jrepresents the variance.

At the same time, two parameters y, 3 are added to
perform the inverse activation transformation.

6 = y0zH 1 g, (14)

3.4. Evaluation Module

3.4.1. Entropy Weight Method (EWM). The traditional FCM
algorithm does not consider the influence of traffic indica-
tors and individual samples on the clustering results. The
EWM uses the idea of entropy value to judge the discrete
degree of an indicator and determines the weight of each
indicator through the information entropy. In this paper,
the EWM is used to determine the weights of different indi-
cators, and the degree of influence of each sample on the
clustering results is defined by designing a sample weighting

method. First, calculate the proportion p;; and entropy value
E; of sample i under indicator j. The weight w of each traffic
indicator is further calculated as

!

X..
pij= nU T (15)
Zi:lxij
1 n
E.=— n(p.),i=1,2, -2, 1
j In (}’l);pll n (pzj) J z ( 6)
1-E;
W= o (17)
! ijll_Ej

The specific congestion evaluation process is shown in
Figure 9, and the improved FCM algorithm introduced in
this paper is an unsupervised fuzzy clustering method, which
is a data clustering method based on the optimization of the
objective function. The membership degree of the cluster
center is represented by a numerical value. Input the feature
prediction sample set X = {x,,x,,"--x,,} and the number of
traffic state categories, and then the calculation formulas of
the objective function of the improved FCM clustering
algorithm for traffic state classification are

im> (18)

J(X,U, V)= Z

m=

(uim)adg
i=1

I;

—

t;=exp <— > uim.d?r]n>’

=1

z
Z Wix; =V, |
i1

where U is the affiliation matrix of each sample belonging to
different traffic states. V is the matrix composed of all clus-
tering centres. n is the total number of samples. u;,, is the
affiliation degree of samples belonging to traffic state m. o
is the weighted index, indicating that the less fuzzy the algo-
rithm is, the more accurately the state is divided. ¢ is the

(19)

w
dim
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FIGURE 10: Data sources of freeway tolls and data processing of traffic indicators.

weight of sample i. dj, is the weighted Euclidean distance
between sample i and cluster center m.

4. Experiments

This section contains the experimental settings and experi-
mental results.

4.1. Experimental Settings

4.1.1. Study Site and Datasets. In this paper, 186 toll-gates on
freeways in Shaanxi Province, China are selected as the study
site. The locations of the toll-gates are shown in Figure 10(a),
showing a radial distribution. Based on the calculation in
Equation (5) of the D&C-Matrix, the spatial heat map rela-
tionship between the toll-gates obtained by further analysis
is shown in Figure 10(b).

In addition, this paper collects the original toll-data for 4
months (December 2018-March 2019) and selects some
fields as shown in Figure 10(c), including the toll-gate num-
ber, vehicle detector, time to VD and arrival to RLD, respec-
tively (VD and RLD are the positions of (1) and (2) in
Figure 3, respectively), travel time, and payment method
(choice of ETC and MTC channels). Then, this paper
converts the collected raw data into the traffic volume and
running delay time required by the experiment. The
collected traffic volume data are integrated at 5-minute
intervals as shown in Figure 10(d), and the operational delay
time is calculated according to Equations ((1)-(3)). Due to
equipment failure and other reasons, there will be data
missing in some periods as shown in Figure 10(e). Facing
the problem of missing temporal data, we analyze the
distribution characteristics of missing data and establish a
reasonable complementary rule framework to interpolate
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FIGURrE 11: Visualization of prediction performance (RMSE) of different models at different time steps.

temporal data. Finally, the data completion effect shown in
Figure 10(f) is achieved, and a relatively complete data set
is prepared for the experimental part.

4.1.2. Parameters Setting. This experiment uses the ADAM
optimizer for training, setting the learning rate every 5 epochs
to 0.7, the initial learning rate to 0.001, and the batch size to 50.
The channels of the spatiotemporal block are set to 32, 16, 32.
In addition, the experiment selected the following three
evaluation metrics as shown in Equations (20)-(22).

(i) Root Mean Squared Error (RMSE).

(i) Mean Absolute Error (MAE).

&
MAE = ;Z|xi—xi|, (21)

i=1

(iii) Mean Absolute Percentage Error (MAPE).

1 n
MAPE = — »'(|(x, - %)/x,]) * 100%, (22)
i

where x; is the true value, and %; is the predicted value.

4.2. Experimental Results. This part uses the feature matrix
and adjacency matrix datasets based on the Shaanxi Prov-
ince toll-data to demonstrate the long-term prediction
ability of the model proposed in this paper under large-
scale networks. The experimental results are discussed from
three aspects: prediction results, evaluation results, and
ablation experiments.

4.2.1. Prediction Results. From the overall comparison
results, as shown in Figure 11, all models based on temporal
and spatial features have better prediction performance than
models based on temporal features only. This also proves
that there is a strong spatial correlation between various toll
stations in the large-scale road network.

Table 2 lists the comparison results of the prediction per-
formance at 15/30/60 minutes of the seven models that only
consider the temporal feature. Here, MAE and RMSE have
the same units as the quantity being estimated. When the
predicted object is traffic, the unit is the number of vehi-
cles/n min; when the predicted object is delay time, the unit
is min. The error of the traditional method will be larger
because the temporal storage capacity of the linear model
is limited, the toll-gates of the freeway are more complex,
and nonlinear traffic flow characteristics than ordinary road
sections. Especially with historical average (HA) models,
relying only on the average makes it difficult to predict accu-
rate results. Compared with ARIMA and SVR models, it is
more suitable for short-term prediction work. When the
time step increases, the model will have difficulty converg-
ing. Deep learning methods (LSTM, SAE, GRU, and TCN)
are affected by data distribution and will produce larger
prediction errors for gates with large peak-to-valley fluctua-
tions. Especially, the TCN model also shows better perfor-
mance among the four methods. Because the causal
convolution in TCN is different from the traditional time
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TaBLE 2: Comparison of the performance of temporal prediction.

Task 15-min 30-min 60-min

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE
HA 9.32 17.85% 22.98 9.32 17.85% 22.98 9.32 17.85% 22.98
ARIMA 6.97 13.20% 16.29 7.44 14.09% 18.37 7.90 14.19% 18.89
SVR 6.11 12.91% 14.70 6.55 13.43% 17.21 7.21 13.83% 17.93
LSTM 5.65 12.02% 13.11 6.09 12.71% 15.92 6.95 13.01% 17.07
SAEs 5.23 11.69% 12.78 5.60 12.01% 14.91 6.26 12.61% 16.13
GRU 4.78 10.20% 11.30 5.22 10.92% 13.84 5.68 11.22% 14.72
TCN 4.57 9.21% 10.80 4.91 9.85% 12.18 5.17 10.15% 13.44

TaBLE 3: Comparison of the performance of spatiotemporal prediction.

Task 15-min 30-min 60-min

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE
STGCN 4.06 8.02% 9.31 4.35 9.12% 11.43 4.61 9.62% 12.29
DCRNN 3.79 7.79% 8.73 4.13 8.07% 10.75 4.39 8.37% 11.01
T-GCN 3.69 7.06% 8.21 3.81 7.83% 9.79 4.07 8.03% 10.68
CPT-DF 3.71 7.11% 8.26 3.78 7.44% 9.05 3.97 7.82% 10.02

Time (min) 161
116
81
59
T T
TCN-STGCN  STGCN DCRNN T-GCN

FIGURE 12: Comparison results of calculation time of different models.

series network, it has the characteristic of a one-way struc-
ture in which the value of the next moment only depends
on the value of the previous multistep. Furthermore, the
receptive field is enlarged by adding dilated convolutions
to capture longer dependencies. Therefore, considering the
long-term prediction performance, this paper selects and
improves the optimal dilated causal convolutional network.

Table 3 lists the comparison results of the prediction per-
formance at 15/30/60 minutes of the four models consider-
ing both spatial and temporal features. In graph-related
models (T-GCN, DCRNN, STGCN, and CPT-DF), the
information of node features and graph structure can be
learned end-to-end by GCNs. Furthermore, the topological
structure and spatial correlation features of the toll-gate are
well captured. The obtained time series with spatial charac-
teristics is further input into the unit model of the processing
temporal module, and the dynamic changes are obtained

through the information transfer between units to capture
the temporal characteristics. Finally, the characteristics of
regional gates will be better predicted. In contrast, in the
work on the time series of highly nonlinear and complex
toll-data, the capture ability and memory ability of CNN’s
temporal feature are slightly insufficient compared with
RNN and its variants (LSTM and GRU). Similarly, the spa-
tiotemporal prediction ability of the STGCN model based
on GCN and CNN is slightly insufficient compared with
the diffusion convolutional recurrent neural network
(DCRNN) based on RNN and the T-GCN model based on
GRU. In the short-term prediction (15-minute) work, the
T-GCN model adopts GCN to learn complex topology for
spatial correlation and GRU to learn dynamic changes of
traffic data for temporal correlation. GRU solves the gradient
disappearance and gradient explosion problems faced by
RNN when training a large amount of data and retains the
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trend of historical charging data, so it can better predict traf-
fic feature in the future in the short-term prediction work
combined with GCN. However, in the long-term prediction
(30-minute and 60-minute) work, different from the RNN
structure, the CPT-DF model proposed in this paper can
be massively parallelized due to the dilated causal convolu-
tion. The expansion coeflicient and the size of the filter
change the receptive field and can also avoid the problems
of gradient dispersion and gradient explosion in RNN.
Therefore, the CPT-DF model achieves the best results in
the long-term prediction work.

Furthermore, real-time traffic flow prediction is a basic
requirement of intelligent transportation systems and has
strict requirements on the total time cost of model training
and testing [33]. Therefore, in this paper, taking 1 hour as
the historical time window, the calculation time of the four
graph-based models is calculated as shown in Figure 12.
The comparison found that since the gated convolution in
STGCN is replaced by the improved dilated causal convolu-
tion, the training time of the CPT-DF model is greatly
reduced. DCRNN and T-GCN models take longer to train
than diffuse causal convolutions when using RNN and its
variants to capture time series. By comparing the STGCN
model before the improvement, the training time of the
improved CPT-DF model is reduced by 27.16%, which will
provide advantages for real-time traffic flow prediction.

4.2.2. Evaluation Results. This paper selects the 3-month
collection data of 30101 (toll-gate ID) as an example, and
calculates the delay time in the congestion area of the toll-
gate according to Equations (1), (2), and (3), and the traffic
volume is used as the input of the clustering algorithm.
According to the “Urban Road Traffic Operation Evaluation
Indicator System” issued by China, an evaluation index
called Road Traffic Performance Index (TPI) is proposed
as shown in Figure 13. Traffic congestion is divided into 5
grades in TPI [34]: unblocked (A), basically unblocked (B),
lightly congested (C), moderately congested (D), and
severely congested (E). Therefore, set the clustering traffic
state category C =5, the fuzzy factor o = 2, and the objective
function change value e=1le—5. In order to speed up the
training speed and optimize the clustering results to normal-
ize the data, the calculation time of the algorithm is about
25-30's. Figure 14 shows the visualization results of the tradi-
tional improved FCM algorithm on actual traffic data. From
left to right, it corresponds to five traffic states (A)-(E), and
according to the clustering results of the improved FCM
algorithm, two indicators under various traffic states are
given, the corresponding value range and cluster center.
Furthermore, this paper is verified based on the pro-
posed clustering method and the actual and predicted values
of working days (March 20, 2019) and holidays (March 24,
2019) are selected for comparison. As shown in Figure 15,
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FIGURE 16: (a) Model improvement before and after comparison. TCN*' represents the prediction model after removing the spatial module;
GCN*! represents the prediction model after replacing the temporal module. (b) Comparison of prediction accuracy under different matrices.

the clustering results of the improved FCM algorithm pro-
posed in this paper are basically in line with the actual traffic
conditions, and the CPT-DF algorithm proposed in this
paper can accurately predict future traffic congestion except
for special interference points.

4.2.3. Ablation Experiment. In order to further study the
optimization effect of different modules on the CPT-DF
model, under the same conditions, this paper cancels the
temporal module and the spatial module, respectively, to
complete the ablation experiment. In addition, this paper
also discusses the effect of three adjacency matrices on the
prediction performance.

Figure 16(a) shows the comparison of the prediction
performance of each module of the CPT-DF model. The

performance of the improved CPT-DF model is about 20%
higher than that of the TCN™' model that only considers
the temporal dimension. The performance of the GCN*'
model is reduced by about 12% after removing the TCN*!
model. The improved CPT-DF model has stronger spatio-
temporal prediction ability and higher traffic flow prediction
efficiency. Therefore, the experimental results show that
both the temporal module and the spatial module have great
effects on the model proposed in this paper.

Figure 16(b) shows the prediction results obtained by
using three different matrices (C-Matrix, D-Matrix, and
D&C-Matrix). It can be seen that the improved D&C-
Matrix has better prediction accuracy than C-Matrix and
D-Matrix. It is about 3%-4%, so it can be used as a better
construction method for spatial adjacency matrix.
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5. Conclusions and Discussion

Large-scale congestion occurs frequently at toll-gates on
freeways, especially during holidays or daily peak times. In
order to alleviate the congestion of the toll-gate and prevent
the occurrence of additional traffic accidents, environmental
pollution, etc., it is necessary to select the toll-gate as the
study site and effectively predict and evaluate the future
congestion based on historical traffic data. In this paper,
the topology of the freeway network is modelled as a graph
structure. Toll-gates and the ordinary road segments
between gates are regarded as vertices and edges in the
graph structure, and the traffic volume and operational
delay time are selected as feature matrices at the vertices.
Then, by analysing the compositional characteristics of
toll-gates and constructing a congestion domain, a new Al
network of toll-gate congestion based on GCN fusing
dilated causal mechanism in DL and FCM clustering inte-
grating coupling weight is proposed in this paper. Further,
4-month toll data of freeways in China’s Shaanxi Province
are collected to complete the experimental work.

In the experiment, congestion detection of toll-gate is
realized from two aspects: prediction and evaluation.

Analysing the prediction results: the performance of the
graph-based models is about 8%-35% better than other non-
graph models in the long-term prediction (60-min) work.
The reason is that the graph-based algorithm additionally
verifies the correlation between each toll-gate from the global
spatiotemporal dimension and quantifies it using the D&C-
Matrix. It provides the possibility for the advance manage-
ment and traffic guidance for toll-gates of large-scale freeways.

Analysing the evaluation results: the traffic state is rea-
sonably divided into five levels and the congestion of the
toll-gate is accurately evaluated using the fuzzy clustering
method. It provides a possibility to accurately release the
congestion information and avoid wrong alarm of the
toll-gates.

The successful prediction could extend to the real-time
prediction and early warning of traffic congestion in the toll
system to improve the intelligent level of traffic emergency
management and guidance on the key road of disasters.
On the one hand, when the management department of
the freeway receives the accurate traffic indicators of the
toll-gate in the future period, it is not only to grasp the
regional traffic evolution from global toll-gate but also to
adjust the service instructions from a single toll-gate. For
example, based on the predicted information, the manager
adjusts the optimal ratio of opening and closing for the toll
lanes of the freeway in advance to ensure the smooth flow
of vehicles. On the other hand, the optimal route and travel
time by the guidance is chosen by the driver based on the
accurate congestion state of the toll-gate predicted in
advance. For example, a driver will have »n routes that can
be selected from the origin A to the destination B, and then
based on the congestion evaluation and the calculation of the
travel time, multiple options (the least delay, the shortest
distance, or the least congestion, etc.) are provided for the
road user, which is especially effective in the emergency of
key road of disasters.

15

Furthermore, if real-time and multisource traffic data
based on toll-gates or other sensors are collected, the work
of traffic prediction and evaluation of multitime span of
day/month/year and multiscale (road network, local lanes,
vehicle, etc.) can be further analysed in a more fine-grained
manner using the AI graph network proposed in this paper.
Of course, each method will have some unexpected prob-
lems when it is applied in practice. For example, although
our proposed model can predict future traffic congestion in
spatiotemporal dimension, it cannot intuitively explain the
rules for the evolution of traffic flow outside the “congestion
domain” of toll-gates, including how congestion flow forms
and dissipates. Therefore, in the follow-up work, we will
combine the evolution rules of actual traffic flow to better
control the change of traffic to improve the intelligent level
of traffic emergency management.
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