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Many free-foating bicycle-sharing (FFBS) operators in cold region cities will put bicycles in warehouses and suspend services in
winter due to factors such as safety and maintenance costs, resulting in the corresponding travel demand no longer be met.
Considering the short-distance and green travel characteristics of FFBS, the fexible bus, as a sustainable demand-responsive
transit service, is a suitable alternative transportation mode. To operate such a fexible bus system, service area and operation time
planning is a key stage, however, the planning methods in relevant studies are not suitable for this research scenario. In view of the
above, this paper proposed a data-driven method to determine the service area and operation time of fexible buses based on FFBS
data. Firstly, an FFBS trip path reconstruction algorithm consists of fne-grained road network modelling and trajectory matching
is proposed. Ten, in the defned time slice, incorporating the idea of ride-sharing routes generation, according to the density-
based clustering principle and considering topology between trajectories, a path clustering algorithm PATHSCAN is developed to
generate the one-day path clusters. After that, a frequent pattern mining algorithm is applied to the multiday path clusters, and
frequent pattern results with spatio-temporal correlation will be merged into the fnal service area. Te generated planning results
will cover ride-matching trips and high-frequency riding paths. Detailed application analysis and verifcation are carried out by
using the real data from Tianjin, China.Trough the evaluation and verifcation under the relatively limited experimental data set,
the proposed data-drivenmethod shows ideal planning results. Flexible bus service can supplement the green short-distance travel
mode after the suspension of FFBS and can avoid FFBS travel demands switched to unsustainable transportation modes to a large
extent. Tis study will contribute to urban sustainable transportation development and improving greenness.

1. Introduction

In recent years, an active, low-emission, and sustainable
transportation mode, the free-foating bicycle-sharing
(FFBS) system, has sprung up all over the world. Based on
the background of sharing economy and the wide adoption
of smartphones, the FFBS system comes into fashion inmore
and more major cities in China [1]. Recently, the FFBS
system has been in operation in more than 300 cities in
China. However, the operations are greatly afected by
seasonal changes and weather conditions [2, 3]. In the winter
months, especially in cold regions with heavy snow, it can be
expected that bicycle-sharing trips will decrease and bicycle

idle time will increase [4]. In addition to the reduction of
revenue, bicycle-sharing operators will have to face even
higher depreciation costs for bicycle damage. Besides,
considering the safety factor of bicycle travel in winter, most
bicycle-sharing service providers take bicycles back to the
warehouse and do not provide operation services in winter
in many cold regions of northern China. Te suspension of
FFBS will lead to the lack of fexible and convenient travel
options for urban short-distance travel in winter.

Te traditional public transit with fxed routes and
schedules has low frequency and is less fexible; the traditional
public transit usually cannot cover the short-distance travel
undertaken by FFBS from the spatio-temporal dimension.
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Taxis or ride-hailing services do provide greater fexibility, but
the price is extremely high for most short-distance travelers.
Besides, taxis and ride-hailing services tend to aggravate urban
road trafc congestion and increase vehicle exhaust emissions,
which is not conducive to the sustainable development of the
transport industry. Last-mile demand-responsive trans-
portation system is the closest to FFBS in terms of target
demand, which is also the same as FFBS to solve the last-mile
travel. Te last-mile transportation system provides travelers
with travel services from the nearest metro station or bus stop
to a passenger’s home or other destination [5]. People who
travel between public transportation nodes and other desti-
nations are the main target population for the last-mile service.
Te elderly, the disabled, commuters, and other special groups
are the main service groups of the last-mile service [6]. Tere
are currently some last-mile transportation modes, such as
shuttle bus, community bus, and minibus. However, people
who use FFBS to travel are not limited to the above groups.
Tere is also a large demand for using FFBS for short-distance
commuting, shopping, and other special-purpose trips that are
unrelated to transit stations, but they are not within the scope of
the last-mile transportationmodesmentioned above.Te FFBS
trip duration distributions are much skewed towards shorter
trips and have diferent daily and hourly characteristics in the
distribution of use. Flexible bus is also one kind of demand-
responsive transit services, which has no fxed routes and
timetables, and its service mode can be consistent with the
short-distance and fexible trip characteristics. Terefore,
planning a fexible bus service according to the potential FFBS
demand is considered a suitable and sustainable alternative
after FFBS service is suspended in cold regions in winter.
Diferent from the current last-mile transportation modes,
service planning results of the fexible bus completely generated
and driven by the potential FFBS demands will cover more
general travel demand patterns, not limited to a specifc travel
demand pattern such as shuttle travel connecting public transit
stations.

Because of high fexibility and benign travel experience,
the fexible bus will play a principal role in advocating people
to travel green. Guiding public transit travel is a key step for
the transport industry to achieve carbon neutrality. In
China, public transport priority has become a well-known
national strategy. After the suspension of the bicycle-sharing
service in winter, many short-distance travels using FFBS
before may switch to some unsustainable transportation
modes, such as private cars, taxis, or ride-hailing services. In
addition, some long-distance trips completed by connecting
FFBS and public transit may also have to be switched to
unsustainable transportation modes. It is against the prin-
ciple of green and sustainable transportation development.
As a green transport mode, alternative fexible bus service
planning generated driven by potential FFBS demand can
avoid this problem to a large extent. Te reasonably planned
fexible bus service can fll the gap of green short-distance
travel services in cold regions in winter and contribute to
urban sustainable transportation development and im-
proving the greenness.

Previous research on demand-responsive transit system
focused on developing algorithms to optimize routes,

schedules, and feet assignment [7–9]. Yet, the current re-
search on how to determine the service area and operation
time of a fexible bus is insufcient, which is also the vitally
important section to determine whether the practical op-
eration can succeed. Most existing studies lacked consid-
eration of travel demand and are usually carried out from the
perspective of spatial only, resulting in many cities still
sufering from where to provide such fexible services in
practice. For fexible services, the temporal dimension is an
equally important perspective to the spatial dimension.

In view of the above, this paper aims to develop a data-
driven method to determine the service area and operation
time of fexible bus based on FFBS travel data. Moreover, the
fexible bus service is suggested to operate within the de-
termined service area to serve the travel demand after the
FFBS is suspended in winter. Compared with previous
studies on the fexible bus without considering the actual
service area or representing the service area as geometric
shapes, the service area determination in this paper will be
completely driven by potential demand, as well as fully
consider personal path selection preference and travel de-
mand aggregation degree. Te result will cover not only the
spatial dimension but also the temporal dimension. In detail,
the methodology consists of four stages: bicycle-sharing
travel path reconstruction, path clustering based on the
PATHSCAN algorithm, frequent pattern mining, and fnal
service area determination based on clusters merging. Te
frst stage refers to breaking the original road segments into
subroad segments with a uniform length according to the
travel characteristics of fexible bus service and then
matching the bicycle-sharing trajectories with the subseg-
ments. Te core stage is a spatio-temporal trajectory clus-
tering algorithm. Based on the network topology, the
algorithm can detect bicycle-sharing trips which can share a
common fexible bus service and generates service routes for
one-day based on the detected trips. Te frequent pattern
mining algorithm is then used to process the multiday path
clustering results. At last, frequent patterns with spatio-
temporal correlation will be further merged into the pro-
posed service area.

Te proposed methodology will be applied to a real-
world FFBS dataset, including 1,015,986 trips in a complete
week collected from the Tianjin FFBS system. Te planning
process of fexible bus will be shown and analyzed in detail.
In addition, three days’ FFBS data close to winter will be
further used to conduct a verifcation experiment, which can
verify the substitution efect of the generated spatio-tem-
poral service area for bicycle-sharing trips. Tis paper will
creatively introduce the idea of carpooling routes generation
into the bicycle-sharing trajectory clustering, and integrate
frequent pattern mining to fnd the ride-matching FFBS
trips and high-frequency riding paths, based on which the
generated spatio-temporal planning result of fexible bus
service can solve a large number of relatively clustered short-
distance travel demands after the suspension of bicycle-
sharing service in winter in cold regions. In addition, the
work of this paper is advantageous to advocate green travel
for the public and promote sustainable development of the
transportation industry.
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Te remainder of this paper is organized as follows.
Section 2 reviews the related research works. Section 3
presents the integrated spatio-temporal service determining
method composed of four stages. A case study using the
bicycle-sharing trajectory and order data of Tianjin is given
in Section 4, and a verifcation experiment is carried out to
verify the generated results. Section 5 concludes the paper
and discusses future research directions.

2. Literature Review

2.1. Service Area and Operation Time Planning of Demand-
Responsive Transit. It is vitally important to determine
operation time and service area when planning and de-
signing a demand-responsive transit service. However, most
studies on demand-responsive transit do not pay enough
attention to this stage but focus on optimizing routes
[10, 11], schedules [12, 13], etc., under the assumption of
ideal spatio-temporal demand distribution.

Te few existing studies involving the determination of
service area or operation time can be divided into two types.
One assumes the service area as a geometric shape, and the
other type usually generates a fexible transit service area
based on potential travel demand.

As many cities have a square or rectangular grid street
mode, the service area of demand-responsive transit is
usually modeled as a geometric shape, mainly the rectan-
gular [14, 15], and the travel requests are assumed to be
uniformly distributed in the spatio-temporal dimension
[16]. For example, Edward Kim et al. [14] modeled the
service area when studying the service area design and route
plan of a fexible bus feeder system connecting rail transit
lines. Subsequently, Kim and Roch [15] proposed a math-
ematical model for the joint optimization of the fexible bus
service area and headways, in which the service area does not
change due to diferent time periods. Nourbakhsh and
Ouyang [17] proposed the concept of “bus tube” to indicate
the predetermined area served by the fexible-route bus, and
the tube’s shape was rectangular.

Some data-driven studies obtain the potential travel
demand from personal mobility data frst, and then fexible
transit service area determined based on potential demands,
such as Pan et al. [18], took the fexible feeder transit system
serving irregular shapes and enclosed communities as the
research object and proposed a gravity-based method of
service area selection chain. Te area containing the pick-up
points is considered to be the service area of the fexible
feeder transit system. Shu et al. [19] identifed the potential
last-mile travel demand from the multisource transportation
data frst and then generated shuttle service including bus
stops and routing-scheduling solutions.

After reviewing these studies, it is found that there is a
lack of reasonable and efective methods to determine the
service area for a specifc scenario. Despite some studies
suggest that service area can be modeled as a geometric
shape because of the pattern of the network, the road
network layout of cities often has various patterns, and more
importantly, the service area determination lacks consid-
eration of travel demand. In addition, most research on

fexible transit is only carried out from the spatial dimension,
lack of consideration of the time dimension. Te previous
planning methods are not suitable for the application sce-
nario of this study. How to determine the service area and
operation time of fexible bus considering the potential travel
demand is the problem to be solved in this study.

2.2. Trajectory Clustering Studies Related to Transportation
Planning. Trajectory clustering is a process of classifying
highly similar trajectories into one cluster, which mainly has
two categories: trajectory clustering of moving objects in free
space and road network environment. Gafney and Smyth
[20] proposed a probabilistic regressionmodel to address the
problem of clustering trajectories, which is the frst trajec-
tory clustering algorithm designed for free space. However,
due to the large scale, time-aware, and lane change char-
acteristics of vehicles, clustering vehicle trajectory is still a
challenge. A great deal of trajectory clustering algorithms
has been put forward and applied in the feld of trans-
portation planning [21–23]. For example, Hong et al. [24]
proposed a TOPOSCAN trajectory clustering algorithm,
which can be used in directed networks. Firstly, each tra-
jectory was mapped to the corresponding path by map
matching. Ten, the path-segments were clustered together
considering the path-segment density. Afterward, Hong
et al. [25] proposed the shortest path distance measurement
approach considering time dimension, ST-TOPOSCAN,
which detected shared subpaths among trajectories based on
the topology of predefned road networks and clustered
them. Chen et al. [26] focused on the sensitive features of the
road network and proposed a trajectory clustering method,
TCRNC, which not only solved the problem of similarity
measurement among trajectories but also efectively com-
bined the local and global similarity features. Te research
results can be applied to many aspects of transportation,
such as urban road planning and public transport planning.

However, the transportation planning results obtained
by related trajectory clustering studies do not contain
complete trajectories, but only parts of one trajectory par-
ticipate in clustering, the generated planning result is a
combination of hot road segments, such as the ride-sharing
path recommendation results in Hong et al. [24]. Tus, the
existing clustering methods are not appropriate to apply in
this paper to determine the service area.

3. Methodology

In this section, the description of the research problem is
given frstly. Ten, the research framework of the proposed
method is introduced. Finally, the proposed method is
presented in detail.

3.1. ProblemDescription. People living in cold regions lack a
fexible and convenient way to travel after the suspension of
bicycle-sharing in winter. Whether considering the conve-
nience and economic benefts of travelers or the sustainable
development of the transport industry, the fexible bus is a
suitable substitute. Unlike the traditional transit system,
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where bus service routes, stops, and schedules are fxed,
fexible bus picks up and drops of passengers within pre-
determined scopes without fxed stops.

Tis paper aims to mine the potential travel demand for
fexible bus service from bicycle-sharing order and trajectory
data and generate service area and operation time planning
results driven by demand. Te generated service area can
vary with working days, weekends, and diferent periods of
time to cope with the travel characteristics of large
fuctuations.

3.2. Research Framework. Tis paper mainly uses the path
clustering and frequent pattern mining methods to fnd the
ride-matching FFBS trips and high-frequency riding paths,
to determine the substituted fexible bus service from the
spatial and temporal dimensions. Figure 1 shows the re-
search framework with four separate sections: data, method,
results, and verifcation. Te road network data and FFBS
data within the studied area are used as input data. After
preprocessing the input data, the spatio-temporal path
clustering is performed. Te path clustering algorithm
(PATHSCAN) is developed according to the density-based
clustering principle and considers topology between tra-
jectories and is actually a data-driven ride-matchingmethod,
similar to ride-sharing routes generation, which is used to
generate the one-day path clusters. Te frequent pattern
mining is then developed to process the multiday path
clustering results. At last, after merging the frequent pat-
terns, the fnal generated results reveal the service area and
operation time.

3.3. Bicycle-Sharing Travel Path Reconstruction. Before
clustering, it is necessary to reconstruct the travel path of
bicycle-sharing. Trough fne-grained road network mod-
elling and trajectory mapping, the trajectory vector is
transformed into the path.

3.3.1. Fine-Grained Road Network Modelling considering the
Topological Relationship

(1) Road Segment Division. A road network is represented by a
directed graph G � (V, E), where nodes V � n1, n2, . . . , nm}

indicate intersections, and edges E � (rid, ni, nj) | ni, nj ∈ V 

indicate road segments between two intersections in the road
network. It should be noted that one road segment from ni to
nj has a diferent identifer from its opposite road segment
from nj to ni. Te original road segments will be divided into
smaller units at the intersection frstly. Ten, to achieve
better results in the follow-up clustering, the road segments
are further evenly interrupted. Te interrupted segment is
called the subroad segment, which is denoted as
s � (sid, si, sj) ∈ E. It is assumed that the midpoint of the
subroad segment is the potential getting on and of point for
travelers. Obviously, if the divided subroad segment is too
long, the walking distance will be also long. Moreover, if the
subroad segment is too short, the fexible bus will start and
stop frequently. Terefore, this paper will comprehensively

consider the above factors to determine a reasonable length
interval for the subroad segment.

(2) Road Network Adjacency Relationship Construction. Te
adjacency relationship between subroad segments is de-
tected and recorded in a topology attribute table. Adjacency
relationship is embodied by incoming subroad segments and
outgoing subroad segments. If s � (sid, si, sj) ∈ E is the
object subroad segment, the incoming subroad segments are
sk � (sk

id, sk
i , sk

j | sk
j � si) ∈ E. In other words, the end node of

the incoming subroad segment is the start node of the object
subroad segment. On the contrary, the start node of the
outgoing subroad segment is the end node of the object
subroad segment. For instance, the road network shown in
Figure 2 includes 16 nodes and 11 directional road segments
denoted as diferent identifers. Te topology attribute table
expressed in Table 1 shows the subroad segment ID, road
segment ID, start and end nodes, and incoming and out-
going subroad segments.

3.3.2. Trajectory Mapping. Trajectory mapping is to map the
trajectory points to the corresponding road segments, so as
to reduce the positioning error caused by a variety of ex-
ternal factors. In the past decades, the algorithms of tra-
jectory mapping have been fully studied [27]. Trajectory
mapping comprises three steps: the choice of candidate
subroad segments for each trajectory point, the determi-
nation of matched subroad segments, and the checking of
the adjacency relationship.

(1)Te Candidate Road Segment Selection. Te trajectory data
used in this paper are a bicycle-sharing trajectory, which are a
series of GPS points sorted in time order. It is expressed as a
vector TR � routeCode, p1, p2, . . . , pn , where routeCode is
the trip identifer meaning which trip the trajectory pertains to.
pi represents the time and position information when pi is
recorded. In this step, we take the trajectory point as the center
of the circle and draw the circle with c as the radius. Te
subroad segments within the circle and intersecting with the
circle are regarded as the initial candidate subroad segments of
the trajectory point. As shown in Figure 3, in the set of initial
candidate subroad segments obtained in the frst step, there are
segments that do not meet the trajectory. Te above segments
are defned as redundant candidate subroad segments.

According to the adjacency relationship between sub-
road segments, when a candidate subroad segment is not the
segment of the original and destination position of a tra-
jectory, and only one endpoint has an adjacency relationship
with other candidate segments, it will be seen as redundant.
Deleting redundant candidate subroad segment is an iter-
ative process. We flter out the redundant candidate seg-
ments in all initial candidate segments and delete them.

As shown in Figure 4, p1 denotes a trajectory point. S1, S2,
and S3 denote the candidate subroad segments. Ten, we
determine the candidate points for the trajectory points.
Tere are two cases of candidate points: one is to make a
vertical line from the trajectory point to the candidate
subroad segment. If there is a projection point on the
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Figure 1: Te research framework of the methodology.
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Figure 2: Illustrative diagram of fne-grained road network modelling.
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candidate segment, the projection point is the candidate
point, as shown in C1

1 and C3
1 in Figure 4; in another case, if

there is no projection point on the candidate subroad
segment, the point closest to the trajectory point on the
candidate segment is taken as the candidate point, as shown
in C2

1 in Figure 4.

(2) Te Matched Subroad Segment Determination.
According to the hidden Markov model, the observation
probability of candidate points and the transition probability
between adjacent candidate segments are calculated. Te
hidden state sequence with the largest probability calculated
by the Viterbi algorithm is the matched subroad segment
sequence.

(3) Te Adjacency Relationship Checking. For each trajectory
point, it is necessary to judge whether there is an adjacency
relationship between the matched subroad segment and the
previous subroad segment. If not, suitable intermediate
subroad segments should be inserted between the previous
and current mapping segments. A path is a group of time-
ordered, connected subroad segments passed by a trip
routeCode, denoted as P � (routeCode,{ Si, Sj, . . . , Sm) | Si,

Sj, . . . , Sm ∈ E}. Matching will be completed between tra-
jectories and paths with a shared routeCode. Only one
consecutive subroad segment sequence is persisted to obtain
the fnal path P. Tus, the group of trajectories can be
regarded as the group of paths.

3.4. Path Clustering Based on PATHSCAN Algorithm. In
order to fnd riding trajectories with high similarity in
spatio-temporal dimension, this paper proposes a

PATHSCAN clustering algorithm. Te procedures of path
clustering are displayed in Figure 5.

After map matching procedures, bicycle-sharing GPS
trajectory data are transformed into one-dimensional path
data. In this section, the clustering objects are paths.Te core
neighborhood is the outgoing subroad segments connected
to the core subroad segment. Te proposed clustering al-
gorithm follows the density-based principle and, consider-
ing the topology, takes advantage of a path set, a network
topology attribute table, and a predetermined threshold
parameter to generate the path clusters. It includes fourmain
steps: initialization, core original subroad segment deter-
mination, path extraction, and path expansion.

(i) Initialization
(ii) Core original subroad segment determination: we

defne time slice and determine the core original
subroad segment scor. A core original sub road
segment is the segment with the largest number of
bicycle-sharing trip starting points during the time
slice

(iii) Path extraction: paths starting from the current core
original subroad segment and meeting the density
threshold will be extracted into path clusters

(iv) Path expansion: we search for the next consecutive
subroad segment (i.e., the outgoing subroad seg-
ments connected to the current core subroad seg-
ment). We repeat the path extraction step.

Firstly, an empty set for the path clusters and core
original subroad segment clusters are initialized, respec-
tively, and defne the iteration count.

Secondly, a time slice is predetermined and the
number of trip starting points contained by each subroad
segment with the time slice are counted. In the core
original subroad segment search step, for the ith iteration,
the ith cluster is initialized as an empty set. Te subroad
segment with the largest number of bicycle-sharing trip
starting points is selected as the core original subroad
segment. Te core original subroad segment is inserted in
the Si

cor. If there are paths starting from the core original
subroad segment with the number of trajectories con-
tained larger than the threshold α, continue to the next
step; or else, the iterations end, showing that no more
cluster could be detected given that threshold during the
time slice.

Tirdly, in the path extraction step, any path starting
from the current core original subroad segment with the
number of trajectories contained larger than the threshold is
inserted into the cluster set Ci. In addition, the subset of
paths that meet the above conditions is also inserted into Ci,
whether they meet the threshold condition or not. For

Table 1: Illustrative table of road network topology.

Subroad segment ID Road segment ID Start node End node Incoming subroad segment Outgoing subroad segment
s1r1 r1 n1 (s1) s2 s3r6 s2r1
s2r1 r1 s2 s3 s1r1 s3r1
s3r1 r1 s3 n2 (s4) s2r1 s1r2, s1r7

trajectory point
redundant candidate sub road segments
final candidate sub road segments

γ

Figure 3: Redundant candidate subroad segments.
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example, as illustrated in Figure 2 and Table 2, assuming s2r1
is the current core original subroad segment, P1, P2, P3, P4,
and P5 meet the threshold condition. Obviously, P2 is the
subset of P1. P4 and P5 are subsets of P3, P1, and P3 and their
subsets are all inserted into path clusters.

Finally, the outgoing subroad segment which con-
nected to the current core original subroad segment is
considered the next core original subroad segment. We
repeat the path expansion step. It should be noted that
the paths which have been inserted in Ci in the previous

p1

C1
1 C1

2

C1
3

S1

S2

S3
γ

Figure 4: Candidate subroad segments and candidate points of trajectory point.
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Figure 5: Flow chart of spatio-temporal path clustering.
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expansion will not participate in this expansion. Until no
outgoing subroad segment can be expanded downward,
the clustering in this direction ends.

Te above steps will be carried out repeatedly until no
paths starting from the core original subroad segment
with the number of trajectories contained higher than the
predetermined threshold value can be found.

3.5. Frequent Pattern Mining and Merging. Te Apriori
algorithm is used to obtain frequent patterns from
multiday path clusters. Frequent patterns refer to pat-
terns that frequently appear in data sets. In the scenario
of this paper, frequent pattern refers to the frequent
riding routes of travelers using shared bicycles for a
certain period, which constitutes the potential service
area of a fexible bus. However, some of the frequent
patterns overlap with each other in terms of route seg-
ments. Te overlapped frequent patterns with the same
temporal attribute will be merged into one pattern.
Flexible bus service is proposed to operate on these
merged path patterns.

As presented in Figure 6, after obtaining the path
clusters, the frequent pattern paths within a time slice can
be obtained using association rules. To fnd frequent paths
over the entire time period, a spatial-temporal association
rules mining algorithm (i.e., Apriori algorithm) is further
used by modelling each subroad segment as an item and
each path as a transaction. An association rule is a group
of items that often appear in transactions at the same time.
Te relationship between transaction data is usually ex-
plicit, while the spatial objects often have implicit rela-
tionships. Tus, to apply the Apriori algorithm for
detecting frequent pattern paths in road networks, the
concepts related to the association rule must be redefned.

3.5.1. Transaction. Each path detected from diferent time
slices is materialized as a transaction. Each transaction used
for the Apriori algorithm consists of a group of items
(connected subroad segments) in the database. Te trans-
action of a path P is defned as follows:

Transaction(p) � routeCode, p1, p2, . . . , pi( , (1)

where p1, p2, . . ., pi are a group of items corresponding to the
subroad segments in path P.

3.5.2. Support. Given the transaction database, the Apriori
algorithm generates frequent groups of items utilizing

support measure. A path is regarded as frequent if its
support is larger than the predetermined threshold. Given a
set of transactions MP� (P1, P2, . . ., Pm), the support of an
association rule Pj is defned as follows:

support Pj  �
Pj ∈MP∩Pj ⊂ Pi





|MP|
. (2)

Te transaction-based association rules mining algo-
rithm improved based on the basic algorithm [28] can be
easily applied to fnd the frequent pattern paths in various
time slices. Spatio-temporal correlation rules will be used as
the merging criteria of frequent patterns results.

4. Application Analysis and Verification

4.1. Data

4.1.1. Data Description. Te proposed method is applied to
the FFBS trip data of Tianjin, China. Tianjin is located on the
East Bank of the Eurasian continent at midlatitude, with cold
winter. Tianjin covers a total area of 1,996,6.45 square ki-
lometers, including 16 districts. 10 central urban districts are
selected as the research area in this study. Although the
number of FFBS trips decreased signifcantly in winter, the
FFBS operators in Tianjin do not suspend the bicycle-
sharing service. Tere is a lack of fexible and convenient
travel options for short-distance travel, except for FFBS in
winter. Te reason why this paper chooses Tianjin as a case
study city is to be able to use FFBS trip data in cold weather
to verify the planning results of fexible bus service.

Te experimental dataset includes two parts, the ap-
plication dataset for the data-driven planning algorithm and
the verifcation experimental dataset.Te application dataset
contains bicycle-sharing trajectory data and order data
collected from September 9 to September 15, 2019, involving
7,111,899 trip records, 5,321,603 on weekdays and 1,790,296
on weekends. Te average time span between two successive
locations in the trajectory dataset is about 3 seconds. Each
trajectory contains the bicycle code, the route code, position
type, latitude, longitude, position time, and update time.
Each order contains bicycle code, route code, latitude and
longitude of origin and destination, time of origin and
destination, and riding distance. Te verifcation experi-
mental dataset is introduced in detail in Section 4.3.

4.1.2. Data Preprocessing. Te road network data used in
this paper is downloaded on the OSM (Open Street Map)
platform. Te road segments that are not relevant to this
paper are frstly deleted, and then all the subroad segments
are divided into lengths between 80 meters and 160 meters
using ArcGIS Pro software. Next, a fne-grained road net-
work model is constructed considering the topological re-
lationships. Te road network of the 10 districts studied is
fnally interrupted into 1,066,63 subroad segments, with an
average length of 104.9 meters.

Te quality of FFBS trajectory data is relatively rough
due to the infuence of acquisition equipment failure, net-
work delay, and other factors. In order to improve data

Table 2: Example diagram of path vector.

Path vector Subroad segments Road segments
P1 s2r1, s3r1, s1r7, s2r7 r1, r7
P2 s2r1, s3r1, s1r7 r1, r7
P3 s2r1, s3r1, s1r2, s2r2, s1r3 r1, r2, r3
P4 s2r1, s3r1, s1r2, s2r2 r1, r2
P5 s2r1, s3r1, s1r2 r1, r2
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quality, this paper deals with data missing, data error, and
data duplication. By analyzing the trip duration time, riding
distance, and speed, errors and abnormal data are elimi-
nated. In addition, considering the relatively low probability
of passengers choosing a fexible bus for very short-distance
travel, this paper selects about three subroad segments, i.e.,
300 meters, as the screening threshold.

Ten, the order data and trajectory data are matched
according to their common feld, which can supplement
the missing information in some trajectory data. Te
trajectory data are mapped to the road network according
to the algorithm in Section 3. For the order data without
trajectory data, search the similar trips from matched
results, the trajectory with the smallest spatial distance
diference within the set threshold is selected as the
missing trajectory fll, and if there are no matching results,
the order data is deleted. Te fnal processing results are
shown in Table 3.

4.2.ResultAnalysis. In this study, the threshold α is set to 5,
and the time slice is set to 30 minutes according to the
postevaluation and the actual sensitivity analysis needs.
Te path clustering results of less than 30 trips in a single
path clusters are further fltered. Te path clustering re-
sults of four representative periods on September 9 are
shown in Table 4. After path clustering, 37 path clusters
are generated between 8:00 and 8:30 in the morning peak,
which contained 1,235 trips in total, with an average of
24.96 subroad segments involved per cluster. Moreover,
112 path clusters are found between 18:00 and 18:30 in the
evening peak, which contained 4,052 trips in total, with an
average of 29.54 subroad segments involved per cluster.
Compared with the results in the peak hours, the number
of clusters is lower during the of-peak hours.

Te path clustering results from 8:00 to 8:30 from
September 9 to 15, 2019 are shown in Table 5. Te
number of path clusters on weekdays from the 9th
(Monday) to the 13th (Friday) is much higher than that
on the weekends of the 14th (Saturday) and the 15th
(Sunday), and the number of trips involved in such path
clusters is in diferent orders of magnitude. Te result is
consistent with the reality, that is, the period from 8:00 to
8:30 is the travel peak hours on weekdays and the of-
peak period of travel on weekends. Te number of
subroad segments included in the path cluster refects the
length of the path cluster, and the results on weekdays are
also signifcantly higher than those on weekends. Af-
fected by weather, data quality, and other factors, the
path clustering results of the morning peak on the
weekdays still show great diferences. Te number of path
clusters on September 11 and 12 is relatively large, 233
and 232, respectively, while there are only 37 on Sep-
tember 9.

Te path clustering results from 18:00 to 18:30 on
September 9 to 15 are shown in Table 6. Te path clustering
results of weekdays and weekends also show signifcant
diferences. On weekdays, the generation results of path
clusters fromMonday toTursday are relatively stable, while
the number of clusters on Friday is signifcantly reduced,
which may be potentially related to the fact that many
commuters go home directly after work from Monday to
Tursday, and participate in some activities after work on
Friday. Te reduction of regular trips leads to a signifcant
reduction in the number of path clusters.

Figure 7 shows the path clustering results from 8:00 to 8:
30 on September 10 to 13, 2019. Diferent path clusters have
diferent colors. Te thickness of the subroad segment re-
fects the number of trips included in the paths starting from
this segment. Obviously, through the comparative analysis

Path clusters in the
sub-period |T, T+t|

Transaction database for the paths consisting of sub road segments in |T, T+nt|

Association rules (Apriori algorithm)

Frequent paths in |T, T+nt|

···

Input

Frequent pattern
paths mining

Merging criteria

Te service scopes
of fexible bus

Path clusters in the
sub-period |T, T+2t|

Path clusters in the
sub-period |T, T+nt|

Frequent pattern
paths merging

Figure 6: Process of frequent pattern paths mining and merging.
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of the path clusters visualization on diferent weekdays,
many path clusters have a strong spatial similarity.

Te frequent patterns mining results from 8:00 to 8:30 on
September 10 to 14 (weekdays) are shown in Figure 8.
Diferent colors represent diferent frequent patterns.
According to the visualization results, many frequent pat-
terns have a spatio-temporal correlation. For example,
frequent patterns 21 and 105 have overlaying relationship in
space.

After merging the frequent patterns with spatio-tem-
poral correlation, the fexible bus service area with clear
spatio-temporal information is shown in Figure 9.
Figure 9(a) shows the service area of 8:00 to 8:30 in the

morning peak of weekdays. Figure 9(b) shows the service
area of 18:00 to 18:30 in the evening peak of weekdays.
Diferent colors represent diferent service scopes of the
fexible bus. Tere are signifcant diferences in the service
areas in diferent periods on the same day, which is due to
the diferent characteristics of travel demand in diferent
periods.

4.3.Verifcation. A verifcation experiment is conducted and
presented in this section. Te FFBS trip data in cold weather
on October 21, 23, and 31, 2019 are selected as the exper-
imental verifcation data to verify the generated service area

Table 3: Data processing results.

Date Total number of orders Orders within the research area Te number of trajectories matched
2019.09.09 1,105,779 953,256 623,781
2019.09.10 1,146,270 991,183 686,963
2019.09.11 1,145,758 990,931 701,346
2019.09.12 1,195,881 996,871 675,557
2019.09.13 727,915 602,072 416,978
2019.09.14 906,672 747,850 526,331
2019.09.15 883,624 727,301 498,822

Table 4: Path clustering results of representative periods on September 9, 2019.

Time period Number of path clusters Number of contained trips Average number of subroad segments per path cluster
8:00–8:30 37 1,235 24.96
12:00–12:30 10 429 18.27
18:00–18:30 112 4,052 29.54
21:00–21:30 4 132 17.13

Table 5: Path clustering results from 8:00 to 8:30.

Date Number of path clusters Number of contained trips Average number of subroad segments per path cluster
2019.09.09 37 1,235 24.96
2019.09.10 171 5,330 27.84
2019.09.11 233 7,894 29.41
2019.09.12 232 7,274 28.11
2019.09.13 49 1,497 23.87
2019.09.14 6 192 17.72
2019.09.15 10 303 19.31

Table 6: Path clustering results from 18:00 to 18:30.

Date Number of path clusters Number of contained trips Average number of subroad segments per path cluster
2019.09.09 112 3,852 29.54
2019.09.10 115 4,189 32.37
2019.09.11 146 5,111 32.59
2019.09.12 118 3,915 28.02
2019.09.13 67 2,439 24.65
2019.09.14 13 483 27.95
2019.09.15 10 375 19.77
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(a) (b)

(c) (d)

Figure 7: Path clustering results from 8:00 to 8:30 on September 10 to 13. (a) September 10th, (b) September 11th, (c) September 12th, and
(d) September 13th.

Figure 8: Frequent patterns on September 10 to 14 (8:00 to 8:30).
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during the operation period from 8:00 to 8:30. If the origin
and destination locations of one FFBS trip are both within
the generated service scopes, it is considered that the trip can
be replaced by fexible bus service.

As shown in Table 7, during the operation period 8:00 to
8:30, more than 6800 trips per day on average can be covered
by the generated service area, accounting for about 10% of all
trips in this period. In the verifcation experiment, the bufer
radius of the generated service scopes is set to 40 meters. In
other words, the trip can be seen substituted if the fexible
bus can be reached within 40 meters. Te bufer radius set in
the experiment is small, which is maybe the reason why the
fexible bus service just covers about 10% of all bicycle trips.
Even if it only accounts for roughly 10% of the total, nearly
seven thousand travel demands can be covered by fexible
bus in half an hour period in one day is still considerable.
Besides, most of the covered trips are within the same service
scope. For example, on October 21, among the 7,032 trips
that can be replaced by the fexible bus service, 5,522 trips
can be serviced by only one service scope, accounting for
78.53%. In other words, at least 78.53% of the potential travel
demand will certainly be satisfed by the fexible bus service.
Tere are some trips that need to cross two diferent scopes,
which may involve interchanges during the actual fexible
bus operation.

Further, in order to verify the planning efect of the
fexible bus service area, the ratio of the road distance in-
volved in the service scopes to the daily road distance in-
volved in the FFBS trajectories is calculated respectively. Te

results on October 21, 23, and 31 are 2.26%, 2.29%, and
2.33%, respectively. As shown in Figure 10, although the
service area proposed in this paper accounts for a relatively
small road space, it can cover a relatively large proportion of
travel demand during the operational period. It is worth
noting that many bicycle-sharing trips are discrete and
random [29]. As an intensive service, the fexible bus cannot
respond to travel demands that are too discrete and occa-
sional. Serving centralized and frequent pattern travel de-
mands is more conducive to the practical application of
fexible buses.

Besides, as an alternative transportation mode after the
suspension of bicycle-sharing service in winter, fexible bus
service may overlap with a shuttle bus in terms of functions.
Te shuttle bus is an efcient solution for last-mile trans-
portation, mainly designed for the shuttle travel connecting
the metro stations. Terefore, a further verifcation exper-
iment is conducted to compare the diference in operation
objectives between the fexible bus service and the shuttle
bus service.

In the verifcation experiment, a bufer zone with a
radius of 100 meters for each entrance and exit of the metro
station is established, as shown in Figure 11. It is reasonable
to assume that if one of the origin or destination locations of
the bicycle-sharing trip is within the metro station bufer
zone, the trip can be substituted by a shuttle bus service. Te
total number of FFBS trips that can be covered by fexible
bus service during 8:00 to 8:30 in the three verifcation days
is 20,486. As shown in Figure 11 and Table 8, only 25.80% of

(a) (b)

Figure 9: Service scopes of the fexible bus (a) from 8:00 to 8:30 and (b) from 18:00 to 18:30.

Table 7: Verifcation result of FFBS trips covered by the generated service scopes.

Date Total number of FFBS trips during 8:00 to 8:30 Number of trips that can be covered Number of covered
trips in the same scope

2019.10.21 67,847 7,032 5,522
2019.10.23 70,221 6,840 5,451
2019.10.31 65,967 6,614 5,319

12 Journal of Advanced Transportation



0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

2.26%

10.36% 9.74% 10.03%

2.29% 2.31%

Day21 Day23 Day31

Te ratio of the road distance involved in the service area to
the road distance involved in the FFBS trajectories
Proportion of trips that can be fully covered by fexible bus
service area in total FFBS trips

Figure 10: Planning efect of fexible bus service during 8:00 to 8:30.

Origin location of flexible bus service covered trip
Destination location of flexible bus service covered trip
Buffer zone with a radius of 100 m at each entrance of metro station

Figure 11: Visualize how many trips covered by fexible bus can fall into the service scope of shuttle bus.

Table 8: Verifcation results of FFBS trips covered by fexible bus that can fall into the service scope of shuttle bus during 8:00 to 8:30 in three
verifcation days.

Trip origin located within the bufer zone of
metro station entrances

Trip destination located within the bufer zone
of metro station entrances

Number of trips involved in three
verifcation days 5,285 1,840

Proportion to the total number of fexible
bus service covered trips 25.80% 8.98%
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bicycle-sharing trips start in the metro station bufer zone,
and 8.98% of trips end in the bufer zone, which means that
there is a signifcant diference in target demand between the
two transportation modes. Te path clustering algorithm of
PATHSCAN developed in this paper is based on the density-
based clustering principle and considering topology between
trajectories, is actually a data-driven ride-matching method,
similar to carpooling routes generation, which fundamen-
tally determines the diference between fexible bus service
and shuttle bus service.

5. Conclusion and Future Work

Many FFBS operators in cold region cities suspend the
bicycle-sharing services in winter, which leads to many
inconveniences for people traveling short distances. Te
fexible bus is a suitable alternative transportationmode after
the suspension of FFBS considering the travel characteristics
of both short-distance and sustainable.

A data-driven method to determine the service area and
operation time of fexible bus based on FFBS trip data is
proposed. Diferent from previous studies, this paper con-
siders fexible bus service planning from both spatial and
temporal dimensions based on potential travel demand. Te
constructed data-driven planning method tracks personal
path selection preference and travel demand aggregation
degree. Te core of the method is a spatio-temporal path
clustering algorithm called PATHSCAN. In the defned time
slice, the subroad segment with the largest number of bi-
cycle-sharing trip starting points is selected as the core
original subroad segment, which is the initial clustering
center. Te riding paths that start from the current core
original subroad segment, and the number of trajectories
involved larger than the threshold, will be extracted into the
cluster. Moreover, then expand clusters from the next core
subroad segments in the current path cluster. After that, a
frequent pattern mining algorithm is applied to the multiday
path clusters, and frequent pattern results with spatio-
temporal correlation are merged into the fnal service area
composed of multiple service scopes.

Te data used for planning comes from the nonwinter
season, while the actual travel in winter may change. For this
reason, this study aims at mining only the high-frequency
riding paths to generate planning results. Te generated
spatio-temporal planning results aims at to solve a large
number of relatively clustered potential short-distance travel
demands after the suspension of the bicycle-sharing service.
Tese potential short-distance travel demands can be con-
sidered to have relatively high conversion probability. Al-
though it is difcult to determine the demand transfer rates,
compared with many other demand-responsive transit
services that lack a potential demand basis in planning, the
potential demands driven planning in this study can ensure
the success of the actual operation of fexible bus services to a
certain extent. Besides, similar to the actual planning and
operation of other transportation modes, the initial planned
operation area and time are not unchangeable, and can be
adjusted according to specifc actual demands and operation
conditions after being put into operation. Besides, the

generated service area will vary with working days, week-
ends, and diferent periods of time to cope with the travel
characteristics of large fuctuations.

Te application analysis based on the actual FFBS trip
data in Tianjin showed the detailed process of service
planning. A verifcation experiment was further conducted,
which proved that there are still a large number of trips
within the generated service area in cold weather. Besides,
although the generated service area accounts for a relatively
small road space, it can cover a relatively large proportion of
travel demand during the operational period. Another ex-
periment result verifed the signifcant diference between
fexible bus service and shuttle bus service in operation
objectives. However, the experimental data set used in this
study is relatively limited, if a longer time dimension data set
can be applied to the experiment, more convincing results
will be obtained.

Tis paper studies the frst stage of alternative fexible
bus planning after bicycle-sharing suspension in cold re-
gions in winter. Next, this study will continue to study how
to operate and dispatch such a customized bus within the
generated service area and operation time. How to serve the
travel demand that needs to cross two diferent fexible bus
service scopes will also be studied in the future. In addition,
the combination of fexible bus services and other public
transit modes in the city is also desirable to research.
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