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It is widely accepted that an unintended lateral attack is inevitable in the intelligent connected vehicle environment. Tis paper
explores the feasibility of a reinforcement learning method named PPO (Proximal Policy Optimization) to handle the unintended
lateral attack and keep the vehicle stay in the ego lane. Based on the China highway design guide, the discrete speed variants of
120 km/h, 100 km/h, and 80 km/h were selected, along with diferent curvatures ranging from 250m to 1200m in every 50m as
combinations of speed-curvature test. Te tests were implemented in the Open.ai CarRacing-v0 simulation environment with an
external racing wheel attached to simulate the unintended lateral attack. Te simulation results show that the PPO can handle the
unintended lateral attack on the standard-designed highway in China. Te results can be applied to the intelligent connected
vehicle to be mass-produced in the future.

1. Introduction

Intelligent connected vehicle is shaping the automotive
industry. It allows the vehicle to communicate with other
trafc participants. In a connected environment, the attack is
inevitable. It has many possible ways to handle the identifed
attack from a security perspective [1]. However, it has been
found to be only a few studies on the unintended attack from
a functional safety perspective.

Along with the rapid development of the intelligent
connected vehicle, safety is becoming an important issue to
consider. Automotive Functional Safety (ISO 26262, Road
vehicles-Functional safety [2]) has become the de facto
practice for intelligent connected vehicle to be produced in
the market. ISO 26262 generally gives a system credit for
a human driver ultimately being responsible for safety,
which consists of three evaluation factors: severity, the
probability of exposure, and controllability [3]. ISO 26262 is
explicitly targeted for automotive safety, providing a safety
lifecycle that includes development, production, operation,
service, and decommissioning. ISO 26262 defnes the ASIL
(Automotive Safety Integrity Level). ASIL is calculated from

severity, probability of exposure, and controllability. As of
today, there is no fully autonomous vehicle that end-users
can buy in the market, and one reason is that absolute safety
cannot be proved in a commonly accepted way.

Functional safety cares about the Electric/Electronic
malfunction behavior of the vehicle. Its practice has evolved
for many years and has already been applied in mass-
produced vehicles. SOTIF, which stands for Safety of the
Intended Functionality, is a logical supplement to the
established functional safety standard ISO 26262. SOTIF
deals with the functional limitation of the vehicle concerning
the absence of unreasonable risk due to hazards resulting
from functional insufciency of the intended functionality
together with the reasonably foreseeable misuse by persons
[4]. SOTIF is currently difcult to quantify. Take the example
of lines of source code. Air force F-22 has around 1.7 million
lines of source code, while Boeing 787 has 6.5 million lines
and air force F-36 has 24 million lines. Compared with these
examples, the luxury vehicle already mass-produced in the
market has 100 million lines [5]. Based on the experts’ as-
sumption, the lines of source code of autonomous vehicle
will increase exponentially considering the complexity of the
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functionality. With this tremendous amount of source code
increased, there is a higher risk of an autonomous vehicle to
be failed in some corner cases. In addition, with the in-
troduction of deep learning technology, it can be more
challenging to bring unknown compared to the traditional
Vee model development. To address this, Garćıa and
Fernández [6] introduced the Safe Reinforcement Learning,
which was defned as the process of learning policies that
maximize the expectation of the return in problems in which
it is crucial to ensure reasonable system performance and/or
respect safety constraints during the learning and/or de-
ployment processes.

Besides safety, security is also an essential factor to
consider in the intelligent connected vehicle since intelligent
connected vehicle connect with other vehicles, in-
frastructure, and the cloud. A vehicle is no longer an isolated
object in an intelligent connected vehicle environment.
Along with the enriched functionality enabled by connec-
tivity, the vehicle opens the attack interface for external
resources. Dibaei et al. [7] summarized common attack
methods in the intelligent connected vehicle environment,
mainly including DoS (Denial of Service), DDoS (Distrib-
uted Denial-of-service), black-hole attack, replay attack,
Sybil attack, impersonation attack, malware, falsifed in-
formation attack, and timing attack. Even with modern
encryption technology, security vulnerabilities can still be
found in the automotive industry. Chattopadhyay et al. [8]
found that the security-by-design principle for autonomous
vehicle is poorly understood and rarely practiced. Te in-
telligent connected vehicle is prone to attack, and un-
intended attack is inevitable. Te assumption was made in
this paper that attack exists and cannot be eliminated. In
addition, the feet-free longitudinal function has been widely
studied and released in the market for years like adaptive
cruise control, so the unintended lateral attack was focused
on in this paper.

Te unintended lateral attack is not only an automotive
issue, but it can also cause an environmental problem and
become a barrier to achieving low-carbon transportation [9].
Terefore, research on “how to handle the unintended lateral
attack” is a must to reach the future intelligent trans-
portation systems. One possible way to handle unintended
lateral attack is reinforcement learning. Reinforcement
learning is being used by an agent to learn behavior through
trial-and-error interactions with the environment [10]. A
standard reinforcement learning model is shown in Figure 1.

An agent is connected to the environment through
perception and action. At each step of the interaction, the
agent receives an input: i, with the indication of the current
state: s, selects an action: a, generates an output. Te action
changes the state of the environment, and the value of this
state transition is communicated to the agent via a scalar: r.
Te agent’s behavior B, is targeting to select actions that can
increase the long-run sum of rewards. Te agent can learn to
do this over time through trial-and-error interactions. In
recent years, reinforcement learning has been applied in the
game of Go [11], highly automated driving [12–14], trafc
signal control [15–17], and has proven its efectiveness.
Meanwhile, multi-agent reinforcement learning is becoming

a hot research area [18–20]. Whatever single-agent or
multiagent reinforcement learning, there are some basic and
commonly used reinforcement learning methods like DQN
(Deep Q Networks), PG (Policy Gradient), DDPG (Deep
Deterministic Policy Gradient), TD3 (Twin Delayed DDPG),
SAC (Soft Actor Critic), and A2C (Advantage Actor Critic).
In 2017, OpenAI published a novel objective function that
enables multiple epochs of minibatch updates named PPO
(Proximal Policy Optimization) [21], a family of policy
optimization methods, which achieved a favorable balance
between sample complexity, simplicity, and wall-time. Te
PPO algorithm is illustrated as follows:

for iteration� 1, 2, . . . , do
for actor� 1, 2, . . . , N do
Run policy πθold in environment for T timesteps
Compute advantage estimates A1, . . . , AT

end for
Optimize surrogate L wrt θ, with K epochs and

minibatch size M≤NT

θold←θ
end for

PPO uses two neural networks: the policy π(s) and the
value function V(s). Te policy π(s) maps an observation st

to an action at, while the value function V(s) maps an
observation st to a scalar value showing how advantageous it
is to be in that state.Te value network estimates the value of
each state by minimizing the error between the predicted
value and the actual value. Te policy network uses the
estimate of value function to select actions that lead to higher
rewards.

Resulting from these considerations, the remainder of
this paper is organized as follows. Section 2 introduces the
methods used in this study, including test scenario design,
simulation environment construction, training procedure,
and attack injection logic. Section 3 presents the positive
simulation results and illustrates the efectiveness of our
method. Section 4 concludes the fndings and identifes open
areas of research for future work.

2. Methods

Te test scenarios were defned based on the standard of the
highway in China. A modifed CarRacing-v0 simulation
environment was used to generate the test scenarios and
provide a secondary development interface for

T

as

I

R
r

B
i

Figure 1: Reinforcement learningmodel.Te vehicle interacts with
the environment via trial-and-error method.
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reinforcement learning implementation. Te PPO algo-
rithm was then applied to the selected scenarios for
training; afterwards, the trained models were used to infer
the rest of the test scenarios. Te unintended lateral attack
was simulated by attaching an external driving force
racing wheel.

2.1. Test Scenario Design. Te test scenario is the combi-
nations of speed and curvature on the highway. Based on the
“Technical Standard of Highway Engineering” [22] and
“Design Specifcation for Highway Alignment” [23], see
Table 1. Te most common speed limits on the highway in
China are 120 km/h on the standard-designed highway,
100 km/h on the class-1 highway, and 80 km/h on the class-2
highway. A design speed of less than 80 km/h is not
a standard highway in China.Terefore, the minimum speed
considered in this paper is 80 km/h. For curvature, four
specifc numbers were identifed as follows: 250m, 400m,
650m, and 1200m. Te reasons for selecting these numbers
are as follows:

(i) 250m: the minimum curvature on the standard
highway in China. Tis usually appears at on-ramp
and of-ramp

(ii) 400m: the minimum curvature of highway, which
has a speed limit of 100 km/h

(iii) 650m: the minimum curvature of highway, which
has a speed limit of 120 km/h

(iv) 1200m: the threshold of curvature, which can cover
95% of highway in the Yangtze River area in China

Te lane width was set to 3.75m in our test scenario
considering the speed variants were 120 km/h, 100 km/h,
and 80 km/h. Te test matrix was defned in Table 2.

Take the 100 km/h case for example, curvatures were
selected from the range [250, 1200] in every 50m, thus the
following list of curvature can be derived: (250, 300, 350, 400,
450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000,
1050, 1100, 1150, 1200).

2.2. Simulation Environment Construction. Simulation is
commonly used as an environmental tool to train re-
inforcement learning algorithms. Te results have the po-
tential to be transferred to solve real-world problems [24]. In
this paper, CarRacing-v0 was selected as the simulation
environment. CarRacing-v0 is a reinforcement learning
environment developed by OpenAI [25] to support con-
tinuous control. It provides a bird-view racing environment
that fts well for the future infrastructure-supported auto-
mated driving environment, which difers from the in-
vehicle sensing perspective. CarRacing-v0 provides a state,
which consists of 96 × 96 pixels.

Te CarRacing-v0 reward is −0.1 every frame and
+ 1000/N for every track tile visited, where N is the total
number of tiles in track. According to the example on the
ofcial website, if we have fnished in 732 frames, the reward
is 1000 − 0.1 × 732 � 926.8 points. Te episode fnishes
when all tiles are visited.

Due to the limitation of the reward calculation in
CarRacing-v0, the vehicle’s exact position and the distance
between the vehicle and the lane markers are unknown to us.
Terefore, in this paper, the following criteria were defned
to decide whether reinforcement learning can handle the
unintended attack or not.

(i) PASS: the vehicle can move back into the ego lane
after the unintended attack; 10 out of 10 succeed

(ii) FAIL: the vehicle cannot move back into the ego lane
and leaves the lane ultimately; >1 out of 10 failed

Te version of CarRacing-v0 is 0.18.3, which was re-
leased in May 2021. Te course shape, lane width, and
traveling speed were modifed accordingly to meet our test
requirements. Te course in original CarRacing-v0 was
randomly generated for reinforcement training and testing.
In this paper, the source code was modifed and recompiled
to generate the fxed shape of the course. Figure 2 shows the
randomly generated courses and Figure 3 shows the fxed
shape generation after code modifcation.

In addition to the course shape, the lane width was
changed to 3.75m according to the needs of our study, which
is shown in Figure 4.

CarRacing-v0 provides the observation and action
control interfaces in a Box manner. Box represents the
Cartesian product of n closed intervals, it is the specifc type
defned by OpenAI gym. Te reward range of CarRacing-v0
is (−inf, inf ). Te actions are in a discrete vector shown in
Table 3.

With the diferent combinations of the action elements,
the following action spaces can be derived in Table 4.

To simplify the action and avoid causing the vehicle to
drift, only the single action from each action space was
selected, marked in bold in Table 4.Tey are steer left: [−1, 0,
0], no action: [0, 0, 0], accelerate: [0, 0, 1], brake: [0, 0.5, 0],
and steer right: [1, 0, 0]. In addition, to better monitor the
parameters in real time, the label texts were added in the
following order, from left to right: reward, ABS sensor,
speed, wheel angle, and angular velocity, which is shown in
Figure 5.

2.3. Training Logic and Parameter Setting. Te combination
space of speed versus curvature is too large; thus, the fol-
lowing combinations were selected for initial training:

Table 1: Design of curvature and lane width in “Design Specif-
cation for Highway Alignment.”

Design speed
(km/h)

Limit curvature value
(m), with I� 8%,
where I donates

maximum superelevation
value

Lane width
(m)

120 650 3.75
100 400 3.75
80 250 3.75
60 125 3.5
40 60 3.5

Journal of Advanced Transportation 3



(120 km/h, 650m), (100 km/h, 400m), and (80 km/h, 250m).
Te training and inference logic is illustrated in Figure 6.

In the training session shown on the left-hand side in
Figure 6, the three separated models for (120 km/h, 650m),
(100 km/h, 400m), and (80 km/h, 250m) were trained as the
base. According to the defnition-of-done from the

CarRacing-v0 leaderboard, the “solving” is defned as getting
the average reward of 900+ over 100 consecutive episodes,
which indicates that the reinforcement learning based in-
lane driving has been achieved. After that, the training
session fnished. In the inference session, the trained model
from (120 km/h, 650m) was used to test the variant of

Table 2: Test matrix between speed and curvature.

Speed (km/h) Curvature (m)
120 Range [250, 1200] : 50, i.e., select curvature from 250m–1200m in every 50m
100 Range [250, 1200] : 50, i.e., select curvature from 250m–1200m in every 50m
80 Range [250, 1200] : 50, i.e., select curvature from 250m–1200m in every 50m

(a) (b)

Figure 2: Randomly generated courses in CarRacing-v0. (a) Random course generation example 1. (b) Random course generation
example 2.

(a) (b)

Figure 3: Generation of fxed shapes after code modifcation. (a) Fixed curvature of 500m. (b) Fixed curvature of 1700m.

(a) (b)

Figure 4: Lane width modifcation. (a) Original lane width. (b) Modifed lane width to 3.75m.

Table 3: Action element.

Action element Action type Data range Meaning of vector
1 Steering [−1, 0, 1] [Steer left, no action, steer right]
2 Braking [0, 0.5] [No action, brake]
3 Acceleration [0, 1] [No action, accelerate]
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(120 km/h, curvaturey), where curvaturey donates the
number in the curvature list [250, 1200] : 50. Te same logic
applies to the speed variants of 100 km/h and 80 km/h.

Te architecture of the convolutional neural network is
illustrated in Figure 7. Te architecture consists of 6 con-
volutional layers. From the left, the input of RGB image is of
96 × 96 pixels. Te grass in the picture was removed to re-
duce the complexity since the grass is not crucial in our case.
Te RGB image was converted to a single gray channel to
further reduce the input dimension from three to one.

Every four frames were used to generate actions.
Terefore, the input to the neural network was 96 × 96 × 4,
where 4 denotes the four continuous frames. Followed by the
convolutional layers of 47 × 47 × 8, 23 × 23 × 16,
11 × 11 × 32, 5 × 5 × 64, 3 × 3 × 128, and 1 × 1 × 256 [26],
ReLU was used as the activation function. Kingma and Ba
[27] was used as the optimizer. Mean squared error loss was
used to optimize the diference between the predicted value
and the actual value of each state. Te clipped loss function
was used to limit the probability change that may occur in
a single step.

Te parameters used in the training session:
gamma (discount factor)� 0.99
gae_lambda� 0.95
image stack� 4
max_grad_norm� 0.5
epoch� 10
batch_size� 128
learning rate� 1e− 3
value_coef� 0.5
entropy_coef� 0.01

Te training infrastructure was using AMD Ryzen R9-
4900HS, 16G DRAM, and Nvidia RTX 2060 Max-Q with
cudnn 10.2. PyTorch was used to generate the neural net-
work models.

2.4. Unintended Lateral Attack Injection. To better simulate
the unintended lateral attack, a Logitech G29 driving force
racing wheel was used as the attack input instead of using
pure software button simulation. G29 provides a 900-degree
steering angle, in a real-world scenario, especially in highly
automated driving, the steering torque or steering angle is
limited to a value due to functional safety requirements. Te
most signifcant steering value was implemented for un-
intended lateral attack, that is, −1.0 for the left and +1.0 for
the right. Te attack injection lasted for 100milliseconds.
Te short period implies a sudden action and indicates the
most-common calculation cycle from perception to vehicle
motion control.

Figure 8 shows the connection between the simulation
environment and the attack injection input. In Step 1, the
test vehicle was running in the CarRacing-v0 using the
trained model in Figure 6.Te vehicle can keep itself to drive
in the ego lane. In Step 2, a test driver triggered a sudden
steering force using the G29, the simulated unintended
lateral attack was passed to the vehicle via python SDK in the

Table 4: Action space.

Action space Action combination
1 [−1, 0, 0]
2 [–1, 0, 1]
3 [–1, 0.5, 0]
4 [–1, 0.5, 1]
5 [0, 0, 0]
6 [0, 0, 1]
7 [0, 0.5, 0]
8 [0, 0.5, 1]
 [1, 0, 0]
10 [1, 0, 1]
11 [1, 0.5, 0]
12 [1, 0.5, 1]

Inference for following
combinations

Trained model of
following combinations

(120 km/h, 650 m)

(100 km/h, 400 m)

(80 km/h, 250 m)

(120 km/h, 250 m)
(120 km/h, 300 m)
(120 km/h, ... m)

(120 km/h, 1,200 m)

(100 km/h, 250 m)
(100 km/h, 300 m)
(100 km/h, ... m)

(100 km/h, 1,200 m)

(80 km/h, 250 m)
(80 km/h, 300 m)
(80 km/h, ... m)

(80 km/h, 1,200 m)

Figure 6: Training and inference logic. Train the reference model
as a base and apply the reference model to diferent scenarios.

Reward ABS
sensor Speed Wheel

angle
Angular
velocity

0152 0079 2.574.20

Figure 5: Modifed display of parameters in real time. Showing
reward/ABS sensor/speed/wheel angle/angular velocity
information.
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CarRacing-v0 environment. In Step 3, the vehicle’s move-
ment was observed to check whether the PPO algorithm
could bring the vehicle back in the lane.

Te injection was unintended for the vehicle in the
CarRacing-v0 environment, whichmeans the vehicle did not
know when the injection would occur. Ten test drivers were
invited to trigger the unintended lateral attack injection
using G29, data and video were recorded for analysis.

3. Results and Discussion

As outlined in Figure 6, in-lane driving must frst be
achieved by training and models must be applied to handle
unintended lateral attack. Te training lasted for around
2 hours for each scenario: (120 km/h, 650m), (100 km/h,
400m), and (80 km/h, 250m). Te training episode versus
reward and the ftted curve using the logistic ftting method
are illustrated in Figure 9. After 200 training episodes, the
agent achieved a mean score of 900+ over the next 100
episodes in the three scenarios, reached the “solving” state
defned by the CarRacing-v0 leaderboard.

From Figure 9, three turning points were identifed from
the training results; they are (197, 901) in the curve of
(120 km/h, 650m), (159, 1000) in the curve of (100 km/h,

400m), and (148, 918) in the curve of (80 km/h, 250m). After
these turning points, the rewards can reach a relatively stable
number above 900 and achieve a mean value of 900+ over
the next 100 episodes. Te mean value of these 100 episodes
is calculated in Figure 10.

In the scenario of (120 km/h, 650m), the mean value
reaches 927.19. In the scenario of (100 km/h, 400m), the
mean value reaches 955.32, and in the scenario of (80 km/h,
250m), the mean value reaches 929.35. All mean values are
greater than 900.

Te “solving” state was achieved in only 200 training
episodes in this paper. Te typical number is compared to
reach the “solving” state from the CarRacing-v0 leaderboard:
5000, which has 25 times diference. It could be inferred that
randomly generated courses increased the complexity of the
training. To further explore the situation after 200 training
episodes, the result of the (100 km/h, 400m) scenario in
a consecutive 5000 training episodes was drawn in Figure 11.

Te curve was expected to become stable after 200
training episodes; however, the curve sharply dropped from
episode 340 and started rising again. Tis recovered training
ramp cost 1415 episodes, increased 7 times compared with
the frst ramp-up in Phase 1. When the reward reached 900+
again in Phase 2, the reward stayed high for around 1100

Remove green grass Covert to gray

96x96x4

47x47x8

23x23x16
11x11x32 5x5x64 3x3x128 1x1x256

Figure 7: Neural network architecture used in training from image color handling to neural network design.

Vehicle is running PPO
algorithm to keep the

vehicle in the lane

0131 0079

0079 2.574.200152

0.00 0.00

0174 0080 0.00 0.01

Vehicle encounters
unintended lateral

attack

Vehicle is moving back
in the lane

3

2

1

Simulated unintended
lateral attack

Sudden steering force

Figure 8: Simulated unintended lateral attack. Use external driving force to simulate the unintended lateral attack.
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episodes and started to drop again at episode 2931. In Phase
3, it cost 502 episodes to reach the “solving” state again at
episode 3433 and stayed high for the rest in a relatively stable
state. Tis curve indicates that the reward can still fuctuate
with time even when the “solving” state is reached.

Based on the logic described in Figure 6, the trained
models were applied to other scenarios for the unintended
lateral attack tests. Te test results are shown in Figure 12.

120 km/h case was shown at the upper part of Figure 12.
Te trained model of (120 km/h, 650m) was applied as
reference model in the curvature variants of 250, 300, 350,
400, 450, 500, 550, 600, 700, 750, 800, 850, 900, 950, 1000,
1050, 1100, 1150, and 1200 for unintended lateral attack
tests. All combinations passed the tests except (120 km/h,
450m), (120 km/h, 400m), (120 km/h, 350m), (120 km/h,

300m), and (120 km/h, 250m). Te same logic was applied
in scenarios of 100 km/h and 80 km/h. All combinations
passed the tests except (100 km/h, 300m) and (100 km/h,
250m). Te results show that our trained reference model
can cover 88% of the unintended lateral attacks listed in
this paper.

Taking into account the design standard in China listed
in 1, trained models are the worst cases of diferent speed
variants on the highway. If the model can handle the case of
(120 km/h, 650m), the model can also handle the cases of
(120 km/h, curvaturey) theoretically, where curvaturey is
larger than 650m. According to the design guide in China,
the combinations of failed cases (120 km/h, 450m), (120 km/
h, 400m), (120 km/h, 350m), (120 km/h, 300m), (120 km/h,
250m), (100 km/h, 300m), and (100 km/h, 250m) do not

Reward (80 km/h, 250 m)

Reward (100 km/h, 400 m)

Reward (120 km/h, 650 m)

(148, 918)

(159, 1000)

(197, 901)

0

200

400

600

800

1000

Re
w

ar
d

50 100 150 200 2500
Episode

(a)

Reward (80 km/h, 250 m)

Reward (100 km/h, 400 m)

Poly. (Reward (80 km/h, 250 m)) Reward (120 km/h, 650 m)

Poly. (Reward (100 km/h, 400 m))

Poly. (Reward (120 km/h, 650 m))

0

200

400

600

800

1000

Re
w

ar
d

50 100 150 200 2500
Episode

(b)

Figure 9: Training result: episode versus reward. (a) Episode versus reward with turning points. (b) Fitted episode versus reward.
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120 km/h, 650 m

100 km/h, 400 m

80 km/h, 250 m

955.32
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Figure 10: Reward statistics of 3 scenarios. Te mean value of the 100 episodes shown before the “solving” state.

Phase 1 Phase 2 Phase 3

(3433, 998)(2931, 1000)(1755, 1000)
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(148, 1000)
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Figure 11: Consecutive 5000 training episodes of the scenario (100 km/h, 400m). Te fuctuation curves are shown in 3 phases.
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Pass
Fail

Figure 12: Simulated unintended lateral attack in 3 scenarios: 120 km/h, 100 km/h, and 80 km/h.
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exist in the real world. It seems, therefore, that the results can
be applied to the standard-designed highways in China.

4. Conclusions

Tis paper proved the feasibility of PPO reinforcement
learning to keep the vehicle in lane driving on the standard-
designed highway in China. In addition, PPO can handle the
unintended lateral attack and bring the vehicle back in the
ego lane in the scenarios of (120 km/h, 500m to 1200m),
(100 km/h, 350m to 1200m), and (80 km/h, 250m to
1200m). Te results were achieved using the modifed
CarRacing-v0 simulation environment.

However, this paper trains diferent models in three
diferent scenarios. It is not the best practice in the real
world, which may bring an overftting problem. In the fu-
ture, the feasibility of using a single model to cover all
scenarios on the real-world highway will be studied.
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