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Driving style identifcation is of vital importance for intelligent driving system design and urban trafc management. Tis study
aims to identify and analyze driving styles using large-scale ride-hailing GPS data taking diferent time periods, trafc, and weather
conditions into account. Te large-scale GPS data are collected and preprocessed, and then, the k-means clustering is imple-
mented to acquire driving behavior. Te modifed latent Dirichlet allocation topic approach is applied to extract the driving states
as the latent variables behind driving behaviors and fnally recognize driving styles. Te results show that driving styles are
composed of fve driving states with diferent probability combinations. Diferent driving styles in diferent situations are further
analyzed and compared. When considering the impact of peak periods on the driving style, it indicates that styles tend to be
conservative in the morning peak, free and dispersed in the evening peak, and diverse in the of-peak hours. While comparing
styles regarding the infuence of workdays, drivers act more cautiously and conservatively on weekdays but freer on weekends
without the pressure of peak hours.Te weather factor is also explored and rainy days are verifed to be the resistance of driving so
that most drivers become cautious and conservative. Finally, two aberrant driving styles are discovered and countermeasures are
suggested to improve trafc safety.

1. Introduction

Intelligent driving systems are becoming increasingly
popular in our lives, and autonomous driving technologies
are being developed. However, the most challenging
problem is not only technology but also people’s acceptance
of autonomous vehicles (AVs) [1]. Personalization would be
an advisable measure to improve acceptance. One of the
personalization measures is to simulate human driving
behavior by switching to the appropriate driving style in
certain scenarios. In the mixed driving environment,

simulating human behavior for AVs can make driving be-
havior on the road more consistent, leading to safer driving
and fewer crashes [2].

Te driving style is a relatively stable state of individual
driving behaviors [3]. Recognizing the driving style can help
autonomous vehicles be more intelligent and user-friendly.
Te study of the driving style emerged in the 1990s. Existing
studies on driving styles use questionnaires, driving simu-
lators, and many other methods and the results have im-
portant implications for autonomous driving nowadays.
Tere are great discrepancies in driving styles among
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diferent drivers due to various factors, such as gender, age,
driving experience, psychological state, trafc situation, and
even weather [4]. By identifying and storing diferent driving
styles, an intelligent driving system can form a database of
diverse styles, from which passengers can choose their fa-
vorite ones. Tis measure can also improve people’s ac-
ceptance towards autonomous vehicles. In addition,
aberrant driving styles may yield negative infuence on road
trafc throughput and safety [5–7]. For example, French
et al. [8] found that dangerous driving styles are associated
with serious trafc crashes. Generally, aberrant driving style
recognition has several potential applications in practice as
follows: (1) helping trafc managers analyze driving be-
haviors and the contributing factors of road crashes and
identify driving risks in a timelymanner, (2) enabling AVs to
take timely measures to avoid conficts with aberrant-style
driving and potentially dangerous vehicles, and (3) assisting
trafc managers in taking preventive measures for certain
accidents in advance to improve trafc efciency and trafc
safety. Terefore, studies on recognizing driving styles and
extracting aberrant ones are of great importance.

Te primary objective of this study is to explore the
driving style of ride-hailing drivers based on a modifed LDA
method using large-scale GPS data. Te large-scale GPS ride-
hailing data are frstly collected and preprocessed.Ten, the k-
means clustering algorithm is employed for acquiring driving
behaviors. A modifed latent Dirichlet allocation (LDA) topic
approach is implemented to extract the driving states de-
termined by a bag of driving behavior and discover various
driving styles. Te diferences in driving styles are compared
under various conditions, including weekdays or not, peak
hours or not, and rainy or sunny day. Finally, two kinds of
aberrant driving styles are screened out and corresponding
countermeasures are suggested to improve trafc safety.

Te main contributions of this paper are listed in the
following: (1) applied the modifed LDA algorithm with
a new encoding method to extract driving behaviors from
large-scale trajectory data and build a driving style library
containing realistic driving styles for each driver in-
dividually; (2) revealed and compared the efects of diferent
external factors on driving styles, including working days,
peak hour congestions, and weather impact, and explored
how the composition of driving styles shifted in diferent
driving environments; and (3) identifed abnormal and
potentially dangerous driving within numerous styles in
various driving environments based on the composition of
each style from the driving style library.

Te rest of the paper is organized as follows. Section 2
reviews previous studies related to this research. Section 3
describes the collection and preprocessing of large-scale
ride-hailing GPS data. Section 4 introduces the clustering
algorithm and LDA model, and the results are discussed in
Section 5. Finally, the conclusions are drawn in Section 6.

2. Literature Review

Previous studies mainly collected data for studying the
driving style and behavior by questionnaires. Te driver
behavior questionnaire (DBQ) was frst proposed by Reason

et al. [9], which classifes driving behaviors by features such
as dangerous errors. It is still prevalent and its modifed
version has been implemented in a wide range of studies. For
example, Dotse and Rowe [10] creatively applied the
Manchester Driver Behavior Questionnaire in Ghana with
28 items to characterize aberrant driving behavior. To dis-
cover factors infuencing driving methods, Deng et al. [11]
also designed a 28-scale driver behavior questionnaire and
improved vehicle lateral instability. Another novel research
is to modify the driver behavior questionnaire with factors
related to new issues such as texting, social media use, and
the consumption of drug and alcohol [12]. Te validation
efectiveness of these questionnaires was also tested. For
instance, Useche et al. [13] adopted an abbreviated version of
a 9-item driver behavior questionnaire on freight drivers and
tested its validation.Tey found that it can be well applied to
obtain access to trafc violations and errors among this
specifc group of drivers.

In recent years, using the dynamic characteristics of
vehicles to study driving styles has attracted researchers’
attention and data collected from driving simulators have
become prevalent [14]. Driving simulators can simulate
abundant driving scenarios and record dynamic data col-
lected while driving [15, 16]. Wang et al. [17] allowed the
participants to drive vehicles in the simulator and collected
these dynamic data. Ten, the results were compared with
previously collected and determined driving patterns by
questionnaires to verify the efectiveness of their approach.
To reduce the workload of labeling training data, Wang et al.
[18] proposed a semisupervised method to classify drivers
into aggressive and normal styles using simulation data. Te
environment in the driving simulator was set in advance by
researchers. Te simulator-based studies usually lead to two
drawbacks. One is the lack of diversity and authenticity of
the driving environment, and the other is that artifcial
settings will bring a certain degree of subjectivity. Besides,
experiments carried out by driving simulators are usually
costly and time consuming [19]. Terefore, GPS data col-
lected from the real-world driving environment are being
prevalent.

Te amount of data collected from GPS devices is huge
and covers a large area and thus quickly gained popularity
among researchers. Compared to questionnaires and driving
simulators, data collected from GPS devices are able to
acquire a large number of real data, which could be
employed for driving style analysis in a large scale. Studies
using GPS data have been carried out by many researchers.
For example, Aljaafreh et al. [20] classifed driving styles into
below normal, normal, aggressive, and very aggressive with
data from GPS tracker devices. Ma et al. [21] identifed three
kinds of driving styles (aggressive, normal, and cautious)
based on ride-hailing GPS data. GPS data integrated with
data collected from monitoring cameras were applied by Qi
et al. [22] to categorize driving styles into aggressive, cau-
tious, and moderate types. Another analysis of driving styles
was also implemented by Qi et al. [23] using GPS data and
interactive data from the Chinese driving behavior database.
Tey recognized diverse driving styles by topic models and
verifed the efectiveness of their method.
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According to the aforementioned literature review, the
advancement of data collection techniques makes it possible
and promising to investigate driving styles on a larger scale and
obtain more samples. Te impact of the driving style on trafc
safety is still a notable issue for researchers. Previous studies
mainly focus on how to acquire driving styles, paying little
attention to the diference under diferent driving situations.
Comprehensive factors should be further considered, including
the day of the week (weekday/weekend), time of the day (peak
hour/of-peak hour), and weather conditions (rainy/sunny). In
addition, aberrant and individual driving styles have not been
fully explored in previous studies. Hence, this study intends to
identify the driving style under diverse driving situations and
explore and analyze the aberrant driving style using the large-
scale GPS data.

3. Data Preprocessing

Data used in this research are Chengdu ride-hailing GPS data
[24–27], which contain orders and vehicle trajectories for the
entire month of November 2016. As shown Table 1, the GPS
data include drivers’ identity, orders’ identity, time, and the
vehicle location, with a sampling interval from two to four
seconds. Te whole dataset covers a part of the area in
Chengdu, China. Its boundaries for a given longitude and
latitude are as follows: (30.727818, 104.043333), (30.726490,
104.129076), (30.655191, 104.129591), and (30.652828,

104.042102). Note that the identity of drivers and their orders
are anonymized and the coordinates are in the GCJ-02 co-
ordinate system.

Te data preprocessing procedures are shown in Fig-
ure 1, which include fve major steps.

(1) Data selection. We select ride-hailing GPS data on
the 6th, 7th, and 14th of November 2016, forming
dataset 1, dataset 2, and dataset 3, respectively. Te
reason for selecting these three days is to cover both
weekdays and weekends as well as sunny days and
rainy days. Furthermore, we divide each dataset into
three subdatasets by diferent time periods as follows:
morning peak (7:00–10:00), evening peak (17:00–20:
00), and of-peak (6:00–7:00, 10:00–17:00 and 20:
00–22:00) [28]. Diferent time periods could mani-
fest impacts of trafc congestion conditions on
driving styles.

(2) Feature extraction. Since the raw data only contain
the drivers’ information about timestamp and lo-
cation, which are not enough to analyze the driving
style and behavior, it is necessary to extract more
features to characterize movements of vehicles.
Terefore, the distance, velocity, acceleration, and
jerk are further calculated. Specifcally, the formula
of distance is given as follows [29]:
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where latij and lng
i
j denote the latitude and longitude

of point j of driver i, respectively; di
j represents the

distance of driver i moving from point j − 1 to point
j; and R represents the radius of the Earth and R �

6, 371 km here.Te velocity and acceleration at point
j can be further calculated as follows:
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where vij and aij denote the velocity and acceleration of
driver i at point j, respectively; and tj represents the
timestamp at point j. Te jerk, also known as variable

acceleration, is the change rate of acceleration over time
[30]. When the vehicle accelerates or push brakes
suddenly, drivers in the vehicle will have a strong sense
of discomfort due to the large jerk and the degree to
which diferent drivers can withstand is diferent.
Terefore, to fully describe the driving behavior of
drivers, jerk is also considered one of the key char-
acteristics [31].
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(3) Outlier elimination. Due to the quality of positioning
devices and potential errors of data acquisition,
transmission, and storage processes, GPS data in-
evitably have outliers that will negatively afect the
analysis results. Terefore, it is imperative to identify
and eliminate abnormal data. Te steps for outlier
detection and elimination are as follows: (i) flter out
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repeatedly sampled data and keep only one valid
point; (ii) remove data not within the sampling
frequency; (iii) the outliers that are beyond the
reasonable intervals are eliminated. Te reasonable
intervals of velocity, acceleration, and jerk are (0,
33.33m/s), (−8m/s2, 4m/s2), and (−11m/s3, 11m/
s3), respectively [32, 33]; and (iv) remove the data
where the running distance is zero.

(4) Data normalization. It aims to standardize data to
form dimensionless data and speed up the initiali-
zation as well as iteration of the data analysis al-
gorithm. Te commonly used Z score normalization
is applied in this study as follows:

x
′

�
x − μ
σ

, (4)

where x′ denotes the normalized data and μ and σ
represent the mean and standard deviation of the
original data, respectively.

(5) Driver selection. Drivers with the number of GPS
points from 500 to 1000 are selected since the sample
size of most drivers is among this range. Ultimately,
389,971 sample data were adopted for further analysis.

4. Methodology

Tis study aims to analyze the driving style through driving
behavior. Previous studies obtained the driving style mainly by
clustering trajectory data directly [21, 34–37]. However, in this
study, it is considered that each GPS data point, containing the
information of speed, acceleration, and jerk, only refects the
driver’s action and some actions with similar values can be
regarded as one type of behavior [23]. Tis means that driving
action is the basic unit of driving behavior. Terefore, the
actions should be aggregated to represent driving behaviors
before driving behavior is used to recognize driving styles.

Terefore, concepts of driving action, driving behavior,
driving state, and the driving style are defned as follows: (1)
driving action: each GPS data point, the basic unit of driving
behavior; (2) driving behavior: an aggregated form of driving
action; (3) driving state: an intermediate variable between
driving behavior and style; and (4) driving style: a manner of
driving.

Figure 2 displays the framework for recognizing driving
styles using large-scale ride-hailing GPS data. First, GPS data
are processed by extracting features, eliminating outliers and
normalizing. Second, the driving behavior is obtained by the
k-means clustering algorithm.Ten, the modifed LDA topic
model is implemented to recognize the driving style. Te

recognition results of diferent datasets, including at peak
hours or of-peak hours, on weekdays or weekends, and on
a sunny day or a rainy day, are further compared. Finally,
corresponding countermeasures are discussed to reduce
aberrant driving styles based on modeling results.

4.1. K-Means Clustering Algorithm. Clustering is a data
analysis method that classifes a given sample into a specifc
category according to the similarity or distance among
features [38]. Te principle of classifcation is to divide data
into a set of groups by minimizing within-group distances
and maximizing between-group distances. K-means clus-
tering is one of the most widely used clustering methods
[39]. It divides the sample dataset into k subsets denoting k
categories and then assigns samples into these categories,
making each sample have the smallest distance to the cat-
egory center to which it belongs [38].

Given a sample dataset D � x1, x2, x3, . . . , xm􏼈 􏼉, as-
suming that the set of divided k categories is
C � C1, C2, C3, . . . , Ck􏼈 􏼉, the goal of k-means clustering is to
minimize the square error. Te objective function of k-
means clustering can be written as follows [40]:
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where μi is the mean vector of the class Ci. Equation (5) depicts
the tightness of intracluster sample data, in which a smaller E

represents a higher similarity and a smaller distance.
To minimize equation (5), k-means clustering uses an

iterative algorithm. A parameter k denoting the number of
clusters or categories should be given in advance. Tere are
many methods to determine the parameter k, for example,
using metrics such as the silhouette coefcient index [41]
and the Davies–Bouldin index [42] or through experiments
[23]. At the beginning of the iterative algorithm, k class
centers are randomly selected, followed by calculating the
distance between sample points and each cluster center.
Sample points are then assigned to the nearest cluster. For
the current classifcation, a mean vector μi of cluster Ci,
indicating the location of the current cluster center after the
frst classifcation, is recalculated. Afterwards, we replace the
previous cluster center with the new one. Iteration is con-
tinued until the maximum number of iterations or the
minimum adjustable amplitude threshold is reached. Fi-
nally, each sample point obtains a category label [43].

Table 1: GPS data description.

Features Types Samples
Driver ID String glox.jrrlltBMvCh8nxqktdr2dtopmlH
Order ID String jkkt8kxniovIFuns9qrrlvst@iqnpkwz
Timestamp String 1501584540
Longitude Float 104.04392
Latitude Float 30.727818
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4.2. Latent Dirichlet Allocation. Te LDA topic model is
a generative probability model based on Bayesian learning
[44]. Diferent from previous topic analysis models such as
probabilistic latent semantic analysis, the LDA is

characterized by using the Dirichlet distribution as the prior
distribution of the multinomial distribution, which prevents
the overftting problem that often occurs in machine
learning. It has been widely applied by researchers, especially
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Figure 1: Te fowchart of data preprocessing procedures.
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in the scopes of image classifcation, search engine opti-
mization, capturing hot topics, visual scene classifcation,
and so forth [45–50].

Te LDA defnes document collection as
w � w1, · · · , wm, · · · , wM􏼈 􏼉, where wm denotes a document in
position m and the total number of documents is M. Tey
consist of the word sequence wm � (ωm1, · · · ,ωmn), in which
ωmn denotes the word in the position n in wm. In addition,
topic vectors are defned as z � z1, · · · , zt, · · · , zT􏼈 􏼉, where zt

represents the topic in position t and the total number is T

[44]. Each document wm is decided by a conditional
probability distribution p(z | wm) of topics. Te distribution
p(z | wm) follows a multinomial distribution with the pa-
rameter θm, which is generated by the Dirichlet distribution
as a prior distribution with the hyperparameter α. Teir
relationship can be written as zt ∼ Mult(θm) and
θm ∼ Dir(α). Likewise, for topic-word distribution p(ω | zt),
there are also relationships as follows: ωmn ∼ Mult(φt) and
φt ∼ Dir(β) [51]. Among these notations, only ωmn is the
observed variable and θm, φt, and zt are all hidden variables,
while α and β are both hyperparameters.

Applying LDA for topic analysis estimates the posterior
probability distribution through a given document collec-
tion, thereby learning the topic distribution p(z | wm) of
each text and the word distribution p(ω | zt) of each
topic [52]. According to Figure 3, in this research, we modify
the LDA approach for driving style analysis and assume that
the driving style collection is w � w1, · · · , wm, · · · , wM􏼈 􏼉,
where M is the number of styles as well as drivers. Te GPS
data points are clustered and form a collection

C � c1, c2, c3, . . . , ck􏼈 􏼉, where k indicates the number of
clusters. Te driving behavior sequence of each driver wm �

(cm1, · · · , cmn) is the observed variable sequence, elements of
which are from the set C according to the real driving
situation. In addition, latent topics z are recognized as
driving states of drivers.Terefore, by computing the driving
state distribution of each style p(z | wm) and the driving
behavior distribution of each state p(c | zt), the driving styles
can be analyzed.

Te primary diference between the modifed LDA
model (Figure 4) and the original LDA model (Figure 5) is
the introduction of driving behavior categories obtained
from k-means clustering. Te word for the original LDA is
ωmn, while in the modifed LDA proposed in this study, x

denotes each sample of the original data which is a vector
about the speed, acceleration, and jerk. Te driving behavior
category ck is the counterpart of ωmn. A mapping from raw
data x to the category of driving behavior ck is added to our
method. Terefore, the original time-series data x is
transformed into the driving behavior group sequence
C � c1, c2, c3, . . . , ck􏼈 􏼉, and thus, it forms the corpus of each
driver.

Te variational inference expectation-maximum (EM)
algorithm is employed in this study to solve the LDA model.
Tis algorithm defnes the variational distribution
q(φ, z, θ | c, α, β) to approximate the posterior probability
distribution p(θ, φ, z | λ,ϕ, c), in which λ, ϕ, and c are the
variational parameters. Te goal of solving this problem is to
maximize the objective function as follows [53]:

L(λ,ϕ, c; α, β) � Eq[logp(θ, φ, z, c | α, β)] − Eq[log q(φ, z, θ | λ,ϕ, c)], (7)

where the mathematical expectation is the defnition of
distribution q(φ, z, θ | c, α, β), written as Eq[∙] for conve-
nience; L(λ,ϕ, c; α, β) presents the maximum likelihood
function; λ, ϕ, and c are the variational parameters; and
α and β are the parameters of the LDA model.

After inputting driving behavior sequences of all drivers
w � w1, · · · , wm, · · · , wM􏼈 􏼉 into the LDA model, the fol-
lowing E-step and M-step are iterated alternately until the
model converges [54]:

E-step: use the current estimated model parameters α
and β to estimate the variational parameters λ, ϕ, and c by
maximizing equation (7).

M-step: use the current variational parameters λ, ϕ, and
c to estimate model parameters α and β by maximizing
objective equation (7).

After completing the iteration of the E-step and M-step,
the optimal parameters α and β could be obtained as well as
the driving state-behavior distribution p(c | zt) and driving
style-state distribution p(z | wm).

5. Results and Discussion

5.1. Results of k-Means Clustering. Considering that the role
of k-means clustering is to transform the inputs of LDA into
categorical variables [55], the parameter k should be taken as
large as possible within a reasonable range to avoid ho-
mogenization of driving styles. Besides, in previous studies
of topic models, it is acceptable if k is taken between 120 and
136 [22, 23, 55]. After multiple trials, it was found that k �

120 contributes to stability and interpretability of model
results, as well as transforming the original redundant
vectors into understandable driving behaviors. Terefore,
the parameter k of k-means clustering is taken as 120 in
this study.

Te result of clustering driving action in order to acquire
driving behavior is shown in Figure 6. It shows that actions
are composed of velocity, acceleration, and jerk and that
driving behavior is represented by 120 groups in diferent
colors.
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5.2. Results of Driving State Recognition. Ten, the recog-
nition of the driving style is carried out. Before imple-
menting the LDA model, the hyperparameters α and β and
the number of topics T should be specifed. α controls the
sparsity of topics in the document. A low α value means that
the document only covers a small number of topics, so α is
usually set to a small fraction (1/T) of the number of topics.
Likewise, β plays a role in the sparsity of words in the topic.
Te smaller it is, the more uneven the word probability
distribution is, meaning that each topic will be more specifc.
Terefore, in this study, α is taken as the default 1/T and
β� 0.01 based on preliminary tests [55]. Te semantic

coherence score is an indicator which is commonly used to
evaluate the topic coherence. Te calculation of this index is
shown in the following equation [56–58]:

CUMass �
2

N(N − 1)
􏽘

N

i�2
􏽐
i−1

j�1
log

D wi, wj􏼐 􏼑 + ε

D wj􏼐 􏼑
, (8)

where D(wj) denotes the document frequency of word wj,
D(wi, wj) represents the frequency of word wi, and wj is the
co-occurring in the same document. N denotes the number
of the most probable words in topic t, and N � 20 here [59].
ε is a constant to ensure the logarithm is not zero and ε � 1 in
this study [56]. Tis indicator is always negative where the
higher represents the higher quality of the topic [58, 60]. As
is shown in Figure 7, the coherence of each topic is calculated
and reaches the highest when T � 5.

In addition, the perplexity score is also utilized to fgure
out the optimal number of topics. A smaller perplexity
indicates a better performance, which can be calculated as
follows [49]:

perplexity(D) � exp −
􏽐

M
d�1logp wd( 􏼁

􏽐
M
d�1Nd

􏼨 􏼩, (9)

where Nd represents the number of words in document wd

in position d and p(wd) denotes the probability of wd. As
shown in Figure 8, the perplexity of each topic is calculated,
where the number of topics ranging from one to ffty. Te
result shows that when T � 5, the perplexity reaches the
minimal value. Both the results of coherence and the per-
plexity index suggest that the most appropriate number of
topic is fve. Terefore, T � 5 is selected, which means the
number of potential driving states is fve.
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Te results of implementing the LDA model is shown in
Table 2 after determining the parameters α, β, and T. Five
driving states are obtained. Each driving state is composed of
diferent proportions of 120 driving behavior (DB) groups.
Table 2 shows each driving state’s top 10 driving behavior groups
with the largest proportions. For example, the driving behavior
group that occursmost frequently in the driving state #1 is group
3, and its probability is 0.0237. Te second most frequent one is
group 108, and its probability is 0.0210. Comparing the per-
centages of these driving behaviors in each state, we can see that
the probabilities of the components difer signifcantly in driving
state #2, #3, or #5, respectively, whichmeans that they each have
an explicit topic. However, the probabilities of each component
are relatively similar in state #1 or #4.

To understand the meaning of these driving states more
intuitively, the relationship between the driving states and
the main driving behaviors is shown in Figure 9. Driving
states #1–#5 are denoted by the colors blue, orange, green,
gray, and purple. A larger point in this graph represents
a larger probability for a driving behavior to occur in
a certain driving state. From Figure 9, it can be distinguished
easily that most driving behavior groups in the driving state
#3 (green) are in the high-speed and low-stability areas. Also,
the most frequent driving behaviors in the driving state #2
(orange) are concentrating on medium-speed and medium-
stability areas. It is found that it is complex to distinguish
driving states #1, #4, and #5. Terefore, we enlarged the red-
boxed area of Figure 9(c) and plotted it in Figure 10(a). And,
the driving behaviors of each driving state, excluding states
#2 and #3, are shown in Figures 10(b)–10(d).

In Figure 10, we can compare the behaviors in the
driving states #1 (blue), #4 (gray), and #5 (purple). In
comparison, #5 is more concentrated on low to medium
speeds, with most of the acceleration and jerk being rela-
tively low, and can be considered to be in a very stable state.
Te blue and gray dots are more concentrated in the low-
speed area, where the blue dots have mostly larger accel-
eration and jerk than the gray ones, implying more in-
stability. Terefore, it can be assumed that the blue state
represents a low-speed and low-stability state, while the gray
one is a low-speed and medium-stability state.

Te meanings of each driving state are summarized in
Figure 11, and cells in the table containing a color indicate
that the state contains this meaning. Driving state #1 rep-
resents a low-speed and low-stability state. Driving state #2
denotes a medium-speed and medium-stability state and
state #3 denotes a high-speed and low-stability one. In
addition, driving state #4 is a low-speed and medium-
stability state while driving state #5 is a low-to-medium
speed and high stability one.

5.3. Results of Driving Style Recognition. Figures 12–15 show
the composition of each driver’s style. Each bar in the fgure
represents a driver’s style, one of which is made up of fve
diferent colored driving states. Te meaning of each color
corresponding to a driving state has been discussed above
and is shown in summary in Figure 11.Te horizontal axis is
the drivers’ identifcation.

Te frst ten drivers in Figure 12(a) are the same ones as
the frst ten drivers in Figure 12(c), respectively. Tis also
occurs in Figures 13–15, implying that these drivers passed
through the sampling sites in both the morning peak and the
of-peak period. For example, no. 301 in Figure 12(a) is the
same person as no. 401 in Figure 12(c) and no. 455 in
Figure 13(a) and no. 555 in Figure 13(c) are the same driver.
Apart from these, all other drivers are distinct from each
other. After data analysis, it is found that drivers in the
evening peak generally do not drive through the same lo-
cations in the morning peak and of-peak hours, so drivers
the in evening peak period are unique.

Comparing the three subplots in Figure 12 reveals how
whether or not it is peak hour has an efect on drivers’
driving style on a sunny Monday. First, Figure 12(a) shows
the driving style of drivers in themorning peak.Temajority
of their style composition is the driving state # 4 (gray) and
state #5 (purple), and there is also a more driving state #2
(orange) than in the of-peak period (Figure 12(c)), repre-
senting the fact that driving styles of the morning peak is
mostly low speed.Te high stability of purple indicates lower
acceleration and jerk, probably due to the fact that the
morning peak hours are usually congested. Tese data were
collected in one of the most congested areas of Chengdu
during the morning peak, so it can be inferred that the low
acceleration and jerk of drivers during the morning peak is
due to trafc jam without much room for movement. While
during the evening peak hours (Figure 12(b)), there is
a larger composition of driving state #3(green) and lesser
state #2 than in the morning peak but still more in state
#1(blue) than in state #5(purple) if compared to the fat peak.
Tis means that the driving styles at the evening peak is
similar to the morning peak but with slightly higher speed,
acceleration, and deceleration.

Tere is a higher probability of driving states #1 and #3
and lower probability of states #4 and #5 in the of-peak
period (Figure 12(c)) compared to the morning peak and
evening peak hours. Tis indicates generally higher speeds
and less stability. Tis is perhaps due to the fact that during
the fat-peak period, the roads are less congested, giving
drivers more freedom to drive, resulting in a diversity of
driving operations. Te trend of individual driving styles is
the same as overall. Tere is a fewer proportion of gray,
purple, and orange driving states and larger proportion of
blue and green states during of-peak period, indicating
generally less stable. Tere are likely more drivers changing
lanes freely, accelerating and decelerating sharply. During
this period, drivers could display a various range of driving
styles and being less infuenced by the trafc fow.

In addition, we found that the drivers would keep
a consistent style at diferent times of the day. For example,
driver 305 in Figure 12(a) and driver 405 in Figure 12(c),
technically the same person; his of-peak style (id� 405) is
mostly composed of blue and green driving state, indicating
no matter how fast he drives, he would often accelerate and
decelerate aggressively and result in a high jerk. When it
comes to themorning peak hour style (id� 305), although he
performs low speed with low acceleration and jerk, some of
the high-speed instability is still retained.
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However, there are also some drivers who display dif-
ferent driving styles at diferent times of the day, such as 455
in Figure 13(a) and 555 in Figure 13(c). Tis driver’s style on

a sunny Sunday during the fat peak (id� 555) consists al-
most exclusively of driving states #4 and #5, implying
a relatively conservative, low to medium speed, and stable

Table 2: Results of the LDA model and latent driving states (DB: driving behavior group).

Driving state #1 Driving state #2 Driving state #3 Driving state #4 Driving state #5
DB p(ω|zk) DB p(ω|zk) DB p(ω|zk) DB p(ω|zk) DB p(ω|zk)

3 0.0237 5 0.0974 33 0.0590 16 0.0483 62 0.0624
108 0.0210 90 0.0590 49 0.0511 62 0.0374 16 0.0554
90 0.0210 3 0.0378 5 0.0293 117 0.0339 3 0.0512
62 0.0188 29 0.0354 98 0.0255 65 0.0292 108 0.0499
115 0.0166 47 0.0335 90 0.0221 54 0.0282 54 0.0433
72 0.0162 42 0.0309 42 0.0213 53 0.0277 90 0.0404
56 0.0152 68 0.0270 29 0.0201 6 0.0261 72 0.0383
89 0.0151 23 0.0257 3 0.0182 26 0.0238 115 0.0353
54 0.0149 115 0.0242 105 0.0163 72 0.0225 65 0.0328
53 0.0148 119 0.0191 110 0.0153 10 0.0220 117 0.0315
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Figure 9: Scatter plot of driving states.
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driving style. However, he was in a medium-high and un-
stable state for half of the time during the morning peak
(id� 455). Tis fnding is similar to the conclusions of other

researches [23, 61], which have found that there would be
changes in individual driving styles sometimes and that are
largely due to the driving environment.
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Figure 10: More details about the driving-state scatter plots.
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Figure 13 shows the driving styles of drivers on a sunny
Sunday. Comparing Figures 12 and 13, it is possible to
explore the efect of being on a weekday on the driving style.
First, we make comparisons between Figures 12(a) and
13(a), which is the comparison between the morning peak
on a weekday and a weekend. It can be seen that there is
a signifcantly larger proportion of orange driving states on
Sunday mornings than on Monday morning peaks, where
the average proportion of the former is 0.285 compared to
0.2014 for the latter. Also, there are fewer purple driving
states on weekend morning than on Monday, where the
average proportion is 0.2698 on Monday and only 0.1766 on
Sunday.Terefore, it can be concluded that the driving styles
of drivers on weekend morning are at a more similar and
focused speed with higher stability, implying a status with
more freedom.

Te diference between the evening peak onMonday and
Sunday can be studied when comparing Figures 12(b) with
13(b). Te average proportion of the driving state #5 in

Figure 12(b) is 0.3838, while that of the driving state #4 in
Figure 13(b) is 0.3658, and these two driving states dominate
the driving style at that time of day, respectively. As the gray
is low speed and medium stability, and the purple is low-to-
medium speed and high stability, it can be assumed that
drivers travelling in the weekend-evening peak tend to be
more aggressive in acceleration and deceleration, although
driving at low speed, compared to Monday evening.

In addition, we compare the Monday of-peak hours in
Figure 12(c) and Sunday of-peak hours in Figure 13(c).Tey
are both dominated by the driving state #1. However, the
driving state #3 has a very diferent probability. It only
accounts for 0.1942 on Monday but goes up to 0.2780 on
Sunday, indicating that the driving style during the Sunday
fat-peak hours is at higher speed and lower stability than
that of Monday. Tis result makes sense because weekend
travel destinations are more varied and the trafc is rarely
congested. Te driving styles performed would be similar to
the one under the free-fow trafc condition.
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Figure 12: Driving style on sunny Monday. (a) Subdataset 3–1 (morning). (b) Subdataset 3-2 (evening). (c) Subdataset 3-3 (of-peak).
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Furthermore, the infuence of rainy weather on driving
styles is also explored in this study by comparing Figures 13 and
14. First, it is shown in Figures 13(a) and 14(a) that the
probability of driving states #3(green) and #5(purple) is greater
on rainy Sunday than on sunny day. Under rainy weather,
some drivers showmore high-speed unstable driving and some
show low-to-medium speed and stable driving.

In terms of Figures 13(b) and 14(b), the driving state
#1(blue) is 0.1588 on sunny Sunday and 0.1856 on rainy
Sunday, while the average proportion of driving state
#4(gray) is 0.3658 on a sunny day and 0.3282 on a rainy day,
meaning that the driving style on rainy nights is still
dominated by low-speed driving but with increasing
instability.

Comparing Figures 13(c) with 14(c), the proportion of
the driving state #3 decreases from 0.278 in sunny days to
0.2266 in rainy days.Te proportion of the driving state #4 is
0.1366 when sunny but increases to 0.2056 under rainy
condition, meaning that some drivers modifed their driving

style from high speed to low-speed behavior when it rains at
night but with a slight increase in stability.

Similarly, comparing Figures 12 and 15 can also draw the
conclusion of the diference in the driving style between
rainy and sunny days. First, we compare Figures 12(a) with
15(a).Te rainyMondaymorning peak is clearly muchmore
in the driving state #2 and less in the driving state #5,
showing that the overall speed increases but reduces the
stability. In terms of individuals, for example, comparing
drivers 151 and 301, the driving style in rainy conditions
(151) consist of more of driving state #1, which means lower
speed and less stability. It is in line with the overall driving
style as well as the common sense.

By comparing Figures 12(b) and 15(b), it can be seen that
the driving style under rainy situation has an increasing
percentage of driving states #2 and #4, with the former
increasing from 0.1074 to 0.2290 and the latter from 0.1872
to 0.3107. In contrast, the probability of the driving state #5
decreases when it rains, from 0.3838 to 0.1788, meaning
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Figure 13: Driving style on sunny Sunday. (a) Subdataset 4–1 (morning). (b) Subdataset 4–2 (evening). (c) Subdataset 4-3 (of-peak).
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most drivers’ driving stability was reduced on rainy
Monday night.

Last but not least, we can see from Figures 12(c) and
15(c) that the average percentages of driving states #1 and #5
decreased signifcantly on rainy Monday while states #2 and
#3 increased. It can be deduced that most drivers have higher
speed but slightly less stability under rainy situation.
Terefore, rainy weather would cause drivers to drive more
unstably. Tis conclusion is similar to the one by comparing
Figures 13 and 14.

In summary, it is concluded that peak hours have an
efect on driving styles, making drivers to lower the speed
and drive cautiously with smaller acceleration and jerk. It is
indicated that there would be calmer and less aggressive
driving styles when driving at high trafc volumes [62]. At
weekends, there are multiple styles in one time slot, probably
because there is not as much concentrated commuting as on
weekdays. Both morning and evening peak hours have
a large number of high-speed and high-stability or low-

stability driving styles. Te rainy weather, on the other hand,
mainly afects driving stability. Comprehensively, the peak
period has the most obvious and greatest infuence on
driving styles, which means that the driving styles diference
between during peak and of-peak hours is the most
signifcant.

5.4. Results of the Abnormal Driving Style. It is apparent that
not all driving styles have the same composition of driving
states even under the same conditions of days, periods, and
weather. Terefore, the diferent combinations of these fve
driving states form the unique driving style of each driver. It
is worth noting that there are two aberrant types of driving
styles that should be given more attention among all these
styles.Te frst type is bold and aggressive during rush hours.
For example, driving style 188 in Figure 15(a), mainly with
50% driving state #3 (green, high speed, and unstable) and
37% driving state #5 (purple, low-medium speed, and
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Figure 14: Driving style on rainy Sunday. (a) Subdataset 1-1 (morning). (b) Subdataset 1-2 (evening). (c) Subdataset 1–3 (of-peak).
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stable), is greatly diferent from other styles during this rainy
morning on Monday. After comparing this type with the
overall driving styles in the morning peak, it can be indicated
that drivers with this type of driving style tend to drive faster
and more aggressively, which increases trafc instability and
risk since most drivers drive cautiously because of the trafc
congestion in the morning peak. For this type of driver, they
should frst pay more attention to the road situations in
everyday driving. Second, it would be better to slow down
driving speed and avoid rapid acceleration in peak hours to
improve trafc safety.

Another aberrant type of driving style is conservative
and cautious during the of-peak period, such as driving style
555 in Figure 13(c), where driving states #5 (purple, low-to-
medium speed, and unstable) takes up to 81% of the driving
style composition and state #4 (gray, low speed, andmedium
stable) accounts for the rest of the proportion. After com-
paring this type with driving style 553 in the same time slot,
it is apparent that its speed decreases signifcantly. Although

this type of driver behaves more steadily than other drivers,
it would reduce trafc efciency to a certain extend.
Terefore, for the second abnormal type of driver, it would
be wise to practice driving more and improving profciency
and carefulness.

By recognizing aberrant driving styles, trafc managers
can reeducate these drivers with high-risky driving styles. In
addition, these drivers should be given more attention in
daily management. Individualized trafc proactive man-
agement measures, such as warnings, can be activated to
inform drivers once they are identifed to have risky driving
styles during their trip.

Diferent from other studies that obtained driving styles
by directly clustering driving behavior data [17, 19, 63, 64],
the proposed method in this study shows that each driver’s
style is made up of multiple driving states. Human driving
styles are not always the same and can probably change due
to the driving environment [23, 61]. However, the approach
used in our study can refect the style of each driver

1.0

0.8

0.6

0.4

0.2

0.0
160 170 180

Driver id
190 200

Pe
rc

en
ta

ge
 o

f e
ac

h 
dr

iv
in

g 
sta

te

Driving State #1
Driving State #2
Driving State #3

Driving State #4
Driving State #5

(a)

Driver id

1.0

0.8

0.6

0.4

0.2

0.0
210 220 230 240 250

Pe
rc

en
ta

ge
 o

f e
ac

h 
dr

iv
in

g 
sta

te

Driving State #1
Driving State #2
Driving State #3

Driving State #4
Driving State #5

(b)

1.0

0.8

0.6

0.4

0.2

0.0
260 270 280

Driver id
290 300

Pe
rc

en
ta

ge
 o

f e
ac

h 
dr

iv
in

g 
sta

te

Driving State #1
Driving State #2
Driving State #3

Driving State #4
Driving State #5

(c)

Figure 15: Driving style on rainy Monday. (a) Subdataset 2-1 (morning). (b) Subdataset 2-2 (evening). (c) Subdataset 2-3 (of-peak).
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throughout the driving process. Besides, this method can
extract the abnormal driving styles which are diferent from
the overall styles.

Furthermore, according to the existing literature, some
researchers have also used LDA models to study driving
behavior [23, 55, 65]. However, unlike these research studies,
our study explores driving behavior and styles under dif-
ferent trafc conditions, while they basically only conducted
the experiments during sunny daytime. Besides, more ex-
plicit meanings of driving styles are explored in our study
than previous studies. Te driving style is a person’s habitual
behavior in a given situation [8, 11, 20, 37]. Terefore,
exploring driving styles in diferent trafc conditions helps
to understand the infuence of external factors such as trafc
conditions, weather, and rush hour on driving styles. In
addition, data used in this study have the advantage of wide
coverage and scope, refecting a large amount of diverse
driving styles, making our results more universal.

6. Conclusion

Tis study identifed and classifed driving styles by
extracting latent driving states using the LDA topic model.
Te k-means clustering algorithm was employed to acquire
driving behavior. Ten, the driving states were extracted and
the driving styles of general situations and individuals under
diferent conditions were compared.Temain contributions
of this research are summarized as follows:

(1) Apply the modifed LDA to recognize driving styles.
Te LDA was employed to recognize driving styles
by extracting latent driving states hidden in the
large-scale GPS data. Tis unsupervised algorithm is
an efective tool for recognizing driving styles, and
fve driving states were identifed as well as diverse
types of driving styles in this study.

(2) Compare the driving styles under diferent condi-
tions. Diferences between driving styles in diferent
situations were analyzed. We frst analyzed the
diference occurring in the morning peak, evening
peak, and of-peak hours, fnding that styles are
mostly conservative and cautious in the morning,
free and discrete in the evening, and diverse in the
of-peak hours. Ten, the diference between week-
days and weekend was compared.Te results showed
that the driving styles tend to be more cautious and
conservative on weekdays but freer on weekends.
Weather factors were also examined and the results
indicated that rainy days would increase the re-
sistance of driving so that most drivers become
cautious and conservative.

(3) Screen out the aberrant individual driving styles.
Among all the driving styles, two aberrant styles that
are negative for trafc efciency and safety were
screened out. Te characteristic of the frst aberrant
style is its aggressiveness and instability in peak
hours, which would easily lead to crashes and afect
trafc safety. Another aberrant style is driving ex-
ceedingly conservatively in the of-peak period,

which would have a negative impact on trafc
efciency.

Tere are also some limitations of this research. First, in
this study, only four kinetic features were given based on
previous studies. If more kinds of features, such as time
series, can be taken into account and features are selected
automatically by using a specifc algorithm, the solving
process would be more efective [66]. Besides, there could be
more data with more drivers included in the analysis so that
the results also make sense in more general situations. Te
authors recommend these two issues as follow-up research
directions.
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