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Queue length is one of the important indexes to evaluate the operation efciency of signalized intersection and also the key
parameter of intersection signal control optimization. Traditional queue length estimation models are mostly based on fxed
detection equipment, and the models assumptions are too harsh; there are certain limitations. Based on the probe vehicle data, this
paper establishes a model of queue length estimation for signalized intersection based on shockwave theory. First, based on the
speed and location data of the probe vehicle, the vehicle density is calculated to estimate the intersection stop line. A real-time
calculation method of vehicle arrival rate is proposed to improve the applicability of the model. Ten, based on the shockwave
theory, the meeting time of the queue forming wave and the queue discharging wave are calculated after the green light is on.
Finally, the queue length is summed in sections, including the distance between the last queued probe vehicle and the stop line
during the red light period, the length of the subsequent vehicles arriving during the residual red light time, and the newly
increased queue length within the queue discharging time.Tis paper uses the VISSIM software to simulate the actual intersection.
Te simulation results show that when the penetration of probe vehicle is 50%, 25%, and 10%, their corresponding mean absolute
relative error are 11.27%, 27.77%, and 39.12%, respectively. It can be seen that with the increase of penetration, the error gradually
decreases.Te average absolute relative error is within the acceptable range. After analyzing the existing similar methods, although
the accuracy of the method proposed in this paper does not reach the highest level, it has the advantages of simple operation, less
computation, and good real-time computation. Relevant research results can provide support for trafc control at signalized
intersections.

1. Introduction

With the total quantity of urban vehicles increasing rapidly,
the urban trafc system is facing congestion caused by
vehicle queues at signalized intersections. How to improve
the efciency of signalized intersections becomes the key to
solve trafc congestion. Queue length is an important index
to evaluate the operational efciency of signalized in-
tersections [1]. Timely and accurate acquisition of queue
length can provide efective data basis for the management
and optimization of signal timing at intersections [2], with
the queue length minimization as the optimization objective,
the phase and timing of the signal can be optimized ac-
cordingly [3], and signal optimization based on queue length

can solve the problem of queue overfow caused by the
failure of traditional signal control strategies in dealing with
oversaturation at intersections. Terefore, it is particularly
important to estimate the queue length of signalized in-
tersection accurately in real time.

For a long time, a large number of scholars have studied
queue length estimation at signalized intersections. Te
existing queue length estimation methods can be mainly
divided into two broad categories: input-output models and
shockwave models. Te frst method estimates the queue
length by analyzing the cumulative trafc arrivals and de-
partures curve. Lee et al. [4] applied the Kalman flter to
predict the downstream arrival and estimated the lane queue
length in real time based on the discriminant model. Vigos
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et al. [5] employed a Kalman flter to estimate the number of
cars contained in a signalized link based on real-time
measurements of fow and occupancy provided by at least
three loop detectors.Te secondmethod estimates the queue
length by reconstructing the queue forming and discharging
process. Wang et al. [6] established the queue length esti-
mation model by applying the shockwave theory based on
the probe vehicle and loop detector data. Horvath and
Tettamanti [7] proposed a method based on shockwave
theory to estimate the queue length of urban signal road
network in real time by using the Kalman flter. Li et al. [8]
established a queue length prediction model for multilane
signalized intersections, which combined with shockwave
theory and the platoon dispersion model to predict the
queue length of each lane in real time. However, most of
these models are based on ideal conditions and there are
some limitations in practical application. In addition, data
collection in the earlier studies mainly relied on fxed de-
tectors such as loop or video detection devices, and the
accuracy of the collected data depended on the stability of
data acquisition devices, which increased the difculty of
queue length estimation. Te laying position of the loop will
afect the reliability data acquisition, and it is easily damaged
and has high maintenance costs. Te loop’s detection ac-
curacy will be also signifcantly reduced in trafc jams.
When the video detection is blocked by external objects, the
detection accuracy will be greatly reduced, and the video
detection is limited by the visual range [9]. Note that fxed
position sensors can only monitor trafc at specifc loca-
tions. To be able to collect data in large-scale networks,
sensors need to cover a wide range of necessary locations
that are costly to install, maintain, and operate. If some of
these sensors break down, the error in obtaining queue
information will be high. Terefore, a low cost and relatively
reliable method needs to be designed to achieve this.
Compared with the traditional data acquisition technology,
probe vehicle technology is becoming a research hotspot at
home and abroad for its advantages such as low cost, wide
coverage, real-time trafc data acquisition, and high accu-
racy. A probe vehicle is a motor vehicle equipped with GPS
data acquisition equipment and wireless communication
devices to realize real-time transmission of vehicle time and
location information. Probe vehicle data refer to ID number,
longitude and latitude, speed, and other data obtained by
GPS transceiver installed on taxis or buses, which are widely
used to evaluate the trafc operational condition at sig-
nalized intersections [10]. Please also note that the existing
probe vehicle system mainly selects taxis, whose daily
driving distance is much longer than that of ordinary private
cars; so, there are no privacy concerns [11]. However, the
probe vehicle technology cannot obtain all the information
of the vehicle, only some of the collected data can be ob-
tained, and the prediction accuracy cannot be guaranteed in
the low penetration rate environment. In addition, the probe
vehicle data distribution is uneven and there are errors due
to the network delay caused by the probe vehicle being
blocked by urban tall buildings or vegetation. Tese un-
certainties are a challenge in estimating queue length using
the probe vehicle data.

At present, many studies have been conducted at home
and abroad to estimate the queue length of signalized in-
tersections based on probe vehicle data. Liu et al. [12]
comprehensively considered the statistical average trafc
fow, the queue length time series of historical cycles, and the
stopping status of real-time connected vehicle (CV) arrival
features in the current cycle and then proposed a method for
estimating real-time queue length based on the Markov
model. Zhao et al. [13] proposed a method based on the
hidden Markov model to estimate the queue length using
a queue correlation of probe vehicles at diferent trafc signal
cycles. Tan et al. [14] deduced the queue length with
maximum probability of undersaturated and oversaturated
conditions at signalized intersections based on the Bayesian
theory. Mei et al. [15] proposed a new Bayesian method to
estimate the maximum queue length of vehicles at signalized
intersections by using the high-frequency trajectory data
from probe vehicles. It can also have considerable accuracy
under conditions of low penetration of probe vehicle. Tan
et al. [16] estimated the queue length at the intersection with
known signal cycles based on fusing real-time and historical
probe vehicle trajectory data by a statistical parameter es-
timation method (i.e., maximum likelihood estimation
(MLE)). Zhao et al. [17] proposed a maximum likelihood
estimation method to estimate the penetration rate of probe
vehicle and the queue length distribution of the studied
intersection using the historical probe vehicle data, so that
the existing queue length estimation methods can estimate
the queue length cycle-by-cycle. Comert [18] systematically
derived a series of estimators for the permeability and arrival
rate of the probe vehicle under the Poisson arrival hypothesis
and then developed a model for estimating the queue length
from cycle-to-cycle in real time by inputting some basic
information provided by the probe vehicle (such as location,
time, and count). Zhao et al. [19, 20] estimated the pene-
tration rate of probe vehicles based on the distribution of
stopping positions of probe vehicles at intersections and
used the estimated penetration rate to proportionally in-
crease the number of probe vehicles in the queues and in the
trafc, thereby giving an estimate of the total queue length.
Rostami Shahrbabaki et al. [21] used a data fusion method to
estimate the queue length and vehicle accumulation in links
in real time by combining the location and speed data of the
probe vehicle with the input fow collected by the fxed loop
upstream of the road. Li et al. [22] proposed a data fusion
method combining probe vehicle data with loop detector
data, using the Kalman flters to estimate the queue length on
a period-by-period basis.

In the abovementioned methods of estimating vehicle
queue length using probe vehicle, most of them use the
Markov model, hidden Markov model, Bayesian probability
model, statistical parameter estimation, etc. Tese analysis
and calculation methods and models belong to the branch of
probability distribution model, but the probability distri-
bution model is computationally complex and need to es-
timate the queue length based on a large number of historical
statistical data and distribution parameters, and the esti-
mation of parameters and conditional probability values are
difcult, which limit the practicability of these methods. At
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the same time, most of the existing research studies are based
on the known information of vehicle arrival mode, such as
assuming that the vehicle arrival mode is Poisson distri-
bution or uniform distribution. However, due to the random
dynamic changes of vehicle arrival rate, this method of
limiting vehicle arrival mode will reduce the efectiveness of
the corresponding queue length estimation model, which is
prone to errors in practical application. In addition, the
previous studies did not fully consider the newly increased
queue length during the meeting time of the queue forming
wave and the queue discharging wave after the green light
was on, which eventually led to the deviation between the
estimated queue length and the actual value.

In response to the limitations of the existing methods for
estimating queue length, this paper establishes a queue
length estimation model of signalized intersection based on
shockwave theory by using probe vehicle data. Diferent
from previous studies, this model does not assume the ar-
rival distribution of vehicles, and a real-time calculation
method of vehicle arrival rate is proposed by combining the
vehicle running law. In addition, considering the real
queueing situation of the actual road, this model uses the
shockwave theory to calculate the newly increased queue
length within the queue discharging time, which improves
the practicability and accuracy of the estimation result of the
queue length. Te process of establishing the queue length
estimation model in this paper is as follows: frst, the data
returned by the probe vehicle are used to estimate the
position of the intersection stop line and the last queued
probe vehicle during the red light period. On that basis, the
average arrival rate of the newly arrival vehicles after the last
queued probe vehicle is calculated based on the positional
relationship between the last queued probe vehicle, down-
stream queued probe vehicle, and the stop line. Ten, the
meeting time of the queue-forming wave and the queue-
discharging wave is calculated according to shockwave
theory, and the meeting time is same as the queue dis-
charging time. Finally, the periodic queue length is obtained
by the sum of the distance between the last queued probe
vehicle and the stop line during the red light period, the
length of subsequent vehicles arriving during the residual
red light time, and the newly increased queue length within
the queue discharging time. Tis paper validated the ef-
fectiveness of the queue length estimation model through an
actual intersection example, analyzed its practicality, and
compared its accuracy under diferent probe vehicle
penetration rates.

2. Assumptions

Zhao et al. [23] built a two-dimensional vehicle motion
model based on optimal control to microsimulate the
driving behavior of vehicles at intersections, which can
handle the interaction with the road. Zhao et al. [24]
proposed a comprehensive microscopic trafc fow model
to describe the maneuvering behavior of human driving
vehicles under interaction and verifed that the model
could accurately describe the maneuvering behavior, path,
and speed passing sequence of vehicles under interaction

combined with empirical data. However, the data source
of this paper is GPS positioning information, which has
errors and is difcult to describe the vehicle’s motion state
in detail at the microlevel. Te model can only be built
based on the statistical means, so certain assumptions
need to be made. To simplify the discussion, the following
assumptions are made to formulate the queue estimation
problem:

(1) Intersection and signal timing information is known
beforehand

(2) Te driving trajectories of the queuing vehicle in the
intersection are uniform speed-uniform deceleration-
stopping-uniform acceleration-uniform speed

(3) Tere is at least one probe car in the queue during the
red light period in each cycle

Assumption (1) states that the information of in-
tersections is known, and we will not derive incorrect in-
tersection information (signal timing, etc.), resulting in
incorrect model establishment. Assumption (2) states that
the driving status of the vehicle so that we can deduce the
time of the probe vehicle just started queuing. Because the
driver is rational, the vehicle always runs at a reasonable
speed in the trafc fow on the urban road, and the accel-
eration and deceleration fuctuation of the vehicle is small,
which can be approximated to conform to the motion law of
the assumption. Assumption (3) indicates that a certain
penetration rate of probe vehicle is necessary to efectively
estimate the queue length. Te infuence of the penetration
rate on the estimation accuracy of queue length is also
studied.

3. Methodology

3.1. Stop Line Position Estimation. Te stop line position
estimation is a very sensitive process for the later queue
length calculation, as faulty stop line position will lead to
erroneous queue length directly. Axer et al. [25] have already
tested the inference of the stop line position from aerial
images. Nevertheless, it is possible to infer the location of
stop line by matching the trajectory of vehicles with map
location information, as an alternative method. Trajectories’
data points with slow instantaneous speed lower than 5 km/h
should reach the highest density in the near of the stop line.
Ten, the position of the highest density is the stop line.

Te steps are as follows:

(1) First, the probe vehicle data with a speed less than
5 km/h are fltered out, and the approximate position
range of the intersection where the stop line is lo-
cated is determined as (D1, D2)

(2) Ten, the range is counted at intervals of δ meters,
and the number of probe vehicles at each interval is
calculated as fk (k � 1, 2, 3, . . ., D2 − D1/δ), where k
is the number of intervals

(3) Calculate the vehicle density ρk (ρk � fk/δT) of each
interval, where T represents the acquisition time of
the probe vehicle data
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(4) Filter out the maximum vehicle density position kmax
and get the position of the intersection stop line as
D1 + δkmax

3.2.Te Distance between the Probe Vehicle and the Stop Line
Position Estimation. When the instantaneous speed of
a vehicle is lower than 5 km/h, we defne the vehicle is
queuing. As we assume that the signal timing is known
ahead, so we can flter out the probe vehicle with a speed less
than 5 km/h from the red light starts to the green light starts
in every cycle and then calculate the distance between the
probe vehicle and the stop line. Te distance is sorted out
and the position of probe vehicle at the end of the queue
during the red light time is obtained in each cycle.

Te data from probe vehicle are P (t, ID, x, y, s), where P
denotes the points returned from the probe vehicle. t, ID, x,
y, s denote the time, ID number, longitude, latitude, and
speed of the probe vehicle, respectively. After estimating the
stop line position (X, Y), then the distance L between the
probe vehicle and the stop line can be calculated as follows:

L �

����������������

(x − X)
2

+(y − Y)
2



. (1)

3.3. Queue Length Estimation

3.3.1. Defnition of Queue Length at Intersections. Tere are
currently two main forms of defning the queue length at
intersections. Te frst form assumes that the departure rate
of vehicles during the green light period is greater than the
arrival rate of vehicles; so, the number of vehicles queuing at
the beginning of the green light period is the highest, which
corresponds to the queue length at that time [26]. Te
second form believes that the departure rate of vehicles
during the green light period is smaller than the arrival rate
of vehicles, so the queue length will continue to increase for
a period of time after the green light starts, until the queue
discharging wave catches up with the queue forming wave;
therefore, the queue length is defned as the length corre-
sponding to a certainmoment after the green light starts.Te
second form of queue length can more accurately refect the
actual queuing situation of vehicles on the road, so we defne
the queue length as the second form in this paper.

Based on the abovegiven defnition of the queue length at
intersections, we summarize the estimation of the queue
length as follows: the distance between the last queued probe
vehicle and the stop line during the red light period, plus the
length of subsequent vehicles arriving during the residual
red light time (the time from the moment the last queued
probe vehicle just started queuing to the red light time ends),
and fnally, plus the newly increased queue length within the
queue discharging time (the time it takes for the queue
discharging wave catches up with the queue forming wave).

Figure 1 shows the queue length in a cycle. Ltrue denotes
the true queue length of the intersection. Lpvd denotes the
distance between the last queued probe vehicle and the stop
line. Lred denotes the queue length at the end of the red light.
Ltrue equals to Lpvd plus the length of subsequent vehicles

arriving during the residual red light time, plus the newly
increased queue length within the queue discharging time.
Meanwhile, Ltrue can also be represented as Lred plus the
newly increased queue length within the queue
discharging time.

Generally, the time sent back by the probe vehicle in
a fxed time interval is not the moment when the vehicle just
started queuing but the moment when it is already in the
queue. Te same queued probe vehicle sent back data, re-
spectively, when it is about to queue and when it is queuing.
Te data collected from the probe vehicle are as follows: the
data that the vehicle is about to queue are P1(t1, ID, x1,

y1, s1), and the data which the vehicle is queuing are
P2(t2, ID, x2, y2, s2). In Figure 2, the blue vehicle represents
the last queued probe vehicle, while the red vehicle repre-
sents the probe vehicle that has already been queued.Te last
queued probe vehicle is taken as the research target. When
t � t1, the blue vehicle is moving to approach the in-
tersection, and there are following vehicles behind the blue
vehicle. When t � t′, the blue vehicle just started queuing,
and the following vehicles are still moving. When t � t2, the
blue vehicle has stopped for a while, and several vehicles
might stop behind the blue vehicle.

We defne the “residual red light time” as the time from
the moment the last queued probe vehicle just started
queuing to the red light time ends. t2 cannot be the moment
to calculate the residual red light time, or there will occur an
error in estimating the queue length. Ten, the moment
when the last queued probe vehicle just started queuing is
required. We defne the “entry time” as the moment when
the last queued probe vehicle just started queuing.

We assume that the driving trajectory of the queued
probe vehicle is divided into the following parts: (1) the
vehicle moves at a uniform speed after entering the road
section. (2) When the vehicle is near the stop line or there is
a vehicle in front of which is decelerating in line, the vehicle
is uniformly decelerating. (3) Te vehicle is queuing. (4)
When the vehicle ends the queue, it will accelerate uni-
formly. (5) After reaching a certain speed, the vehicle will
drive uniformly and leave the intersection.

After calculating the distance between the probe vehicle
and the stop line, we set the uniform speed as s. Te data
which the vehicle is about to queue are P1(t1, ID, x1, y1, s1);
if s1 < s, the vehicle is uniformly decelerating. If s1 ≥ s, the
vehicle is still driving at a uniform speed for a while, then
start to uniformly decelerate. We assume that the signal
timing is known ahead. t′ is the moment when the vehicle
just stared queuing, that is, the “entry time.” Figure 3 shows
the distance between the vehicle and the stop line position
over time in two diferent situations. Ten, t′ can be cal-
culated as follows:

t′ �

t1 +
2 × L1 − L2( 

s1
, s1 < s,

t1 +
s1

a
+

L1 − L2 − s
2
1/2a

s1
, s1 ≥ s,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2)
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where a is the drag acceleration. In this paper, the value of
a is obtained by the simulation data.

Based on the abovegiven summary of the estimated
queue length at intersections, we need to know the distance
between the last-queued probe vehicle and the stop line
during the red light period, the newly increased queue length
during the residual red light time, and the newly increased
queue length within the queue discharging time. According
to the estimation of the distance between the probe vehicle
and the stop line in the chapter “3.2,” the distance between
the last-queued probe vehicle and the stop line can be
calculated from the longitude and latitude data returned by
the last-queued probe vehicle and the longitude and latitude
data of the stop line. Besides that, the newly increased queue
length during the residual red light time equals to the

product of the vehicle arrival rate and the residual red light
time. Te newly increased queue length within the queue
discharging time equals to the product of the vehicle arrival
rate and the queue discharging time. So, the arrival rate of
the newly arrival vehicles after the last-queued probe vehicle,
the residual red light time, and the queue discharging time
are required.

3.3.2. Calculation of the Arrival Rate of the Newly Arrival
Vehicles. Before calculating the average vehicle arrival rate,
we defne hs as the standard space headway when vehicles
queuing, usually taken as 7meters, and t′ is defned as the
last queued probe vehicle just started queuing during the red
light period.

Probe Vehicle

Probe Vehicle

Probe Vehicle

Ltrue

Lred

Lpvd

Figure 1: Schematic diagram of queuing scene.

Probe vehicle in parking

Last probe vehicle in Queue

Regular vehicle

t = t2

t = t'

t = t1

Figure 2:Te intersection queue state when the last queued probe vehicle is moving (t � t1), just started queuing (t � t′) and has stopped for
a while (t � t2) (the blue vehicle represents the last queued probe vehicle, the red vehicle represents the probe vehicle has already been
queued, and the white vehicle represents the regular vehicle).
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(1) Only One Probe Vehicle. When there is only one probe
vehicle in the queue during the red light period, the only one
probe vehicle is regarded as the last queued probe vehicle,
and we defne the average vehicle arrival rate as qone, and its
calculation formula is as follows:

qone �
Lone

hs t′ − T1( 
, (3)

where Lone is the distance between the only one probe vehicle
and the stop line. T1 is the moment when the red light of the
cycle starts.

(2) At Least Two Probe Vehicles. When there are at least
two probe vehicles in the queue during the red light
period, the arrival rate between the last queued probe
vehicle and each of the queued probe vehicle downstream
can be calculated, as is shown in Figure 4. Normally, the
closer the downstream queued probe vehicle is to the last-
queued probe vehicle, the closer the arrival rate calculated
is to the arrival rate during the residual red light time and
the queue discharging time. Ten, the arrival rate will
obtain greater weight. Te weighted mean of every cal-
culated arrival rate approximately equals to the arrival
rate during the residual red light time and the queue
discharging time.

We assume that the ID number of the queued probe
vehicle downstream is i, and the ID number of the last
queued probe vehicle is N; qi denotes the arrival rate cal-
culated by the last-queued probe vehicle and the queued
probe vehicle downstream. Ten, qi can be calculated as
follows:

qi �
LN − Li

hs t′ − ti
′( 

, (4)

where LN is the distance between the last queued probe
vehicle and the stop line position. Li is the distance between
the queued probe vehicle downstream and the stop line
position. ti

′ is the moment when the queued probe vehicle
downstream just started queuing.

In addition, we defne ui as the reciprocal of the distance
between the last queued probe vehicle and each of the
queued probe vehicle downstream. So, wi denotes the
weighting coefcient, and the sum total of the weighting
coefcient is 1.

ui �
1

LN − Li

,

wi �
ui


N−1
i�1 ui

,



N−1

i�1
wi � 1.

(5)

To sum up, when there are at least two probe vehicles in
the queue during the red light period, we defne the average
vehicle arrival rate as qmul, and its calculation formula is as
follows:

qmul � 
N−1

i�1
wiqi. (6)

3.3.3. Calculation of the Residual Red Light Time. We defne
the “residual red light time” (trsd) as the time from the
moment the last-queued probe vehicle just started queuing
to the red light time ends. Terefore, the formula for cal-
culating the residual red light time is as follows:

trsd � T2 − t′, (7)

where T2 is the moment when the red light ends.

3.3.4. Calculation of the Queue Discharging Time.
Shockwave theory applies the basic theory of fuid me-
chanics, simulates the continuity equation of fuid, estab-
lishes the continuity equation of trafc fow, compares the
change of trafc fow density to the fuctuation of water
wave, and abstracts it as trafc wave [27]. In the entrance of
the signalized intersection, the change of the vehicle running
state will produce multiple trafc waves, which interact with
each other and form the forming and discharging of the
intersection queue. Among them, when the intersection red
light is on, the vehicles in front of the stop line will brake and
stop successively. Tis queuing process can be seen as the
forming wave emitted by the phase of the red light is on, and
its wave speed is recorded as Vform. When the phase changes
from red to green, the vehicles in front of the stop line will
start one after another, and this process of queuing and

t1 t2t'

L2

L1

(a)

t1 t2t'

L2

L1

(b)

Figure 3: Te distance over time. (a) s1 < s; (b) s1 ≥ s.
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discharging can be seen as the discharging wave emitted by
the green light phase, whose wave speed is recorded as Vdis.

Considering that the queue length will increase after the
green light is on, that is, the queue length will increase after the
green light is on until the discharging wave catches up with the
forming wave. Based on the shockwave theory, the queue
forming (forming wave) and discharging (discharging wave)
processes of the queue are reconstructed, and the time con-
sumed from the green light is on until the discharging wave
catches upwith the formingwave is calculated, that is, the queue
discharging time, denoted as tdis. In this way, the new queue
length is prepared for the calculation after the green light is on.

Te calculation functions of the forming wave velocity
Vform, discharging wave velocity Vdis, and queue discharging
time tdis are described as follows.

(1) Calculation of the Vform. We defne the blocking density as
Kj and the density of the arriving vehicle asKa.Kj refers to the
trafc volume is zero. Kj can be obtained based on actual
surveys. If there is no survey data, it can be calculated according
to the following formula, and according to the shockwave
theory, the calculation formula for Vform is as follows:

Vform �
Q

Ka − Kj

,

Q � q × 3600,

Ka �
Q

v
,

Kj �
1000

hs

,

(8)

where q takes qone or qmul, v is the space mean speed of the
probe vehicles entering the intersection entrance approach
corresponding to the same cycle and phase, and Q is the
number of vehicles arriving in the same intersection fow
direction within one hour, i.e., trafc volume.

(2) Calculation of the Vdis. We defne the saturation fow
rate at each intersection fow direction inlet is Qsfr, which can
be determined through simulation experiments or based on the
actual situation of the intersection, and the critical density is
Km, at which point the corresponding trafc volume is
maximum.When the density exceeds this value, the trafc fow
no longer increases but decreases. According to the shockwave
theory, the calculation formula for Vdis is as follows:

Vdis �
Qsfr

Km − Kj

,

Km �
Qsfr

vm

,

vm �
1
2
vf,

(9)

where Kj is consistent with the aforementioned, vm is the
critical speed, and vf is the free fow speed, which can be
taken as the design speed of the intersection.

(3) Calculation of the Queue Discharging Time. Based on our
defnition of the queue length at intersections, in reality,
when the queue forming wave and the queue discharging
wave meet, the corresponding queue length at this moment
is the actual queue length. According to the total queue
length equal to the total discharging length, we defne the
queue discharging time is tdis, and then we can obtain the
following formula:

tred + tdis(  Vform


 � tdis Vdis


,

tdis �
Vform


tred

Vdis


 − Vform



,

(10)

where tred is the red light time.

Probe VehicleProbe VehicleProbe Vehicle

q2

q1

Figure 4: Schematic diagram for calculating the arrival rate of the residual red light time and the queue discharging time.
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3.3.5. Estimation of the Queue Length. We divide the esti-
mation of queue length into two situations: one is that only
one probe vehicle data in the queue can be obtained during
the red light period in a cycle, and the other is that at least
two probe vehicle data in the queue can be obtained during
the red light period can be obtained during a cycle. Also, we
defne the estimation of the queue length as follows: the
distance between the last-queued probe vehicle and the stop
line during the red light period, the length of subsequent
vehicles arriving during the residual red light time, and the
newly increased queue length within the queue discharging
time. Ltrue denotes the true queue length of the intersection,
which is equal to maximum queue length. Based on the
abovegiven data processing work, the calculation formula
for Ltrue can be summarized as follows:

(1) Only one probe vehicle data.

Ltrue � Lone + qone × trsd × hs + qone × tdis × hs,

Ltrue � Lone + trsd + tdis(  × qone × hs .
(11)

(2) At least two probe vehicle data.

Ltrue � LN + qmul × trsd × hs + qmul × tdis × hs,

Ltrue � LN + trsd + tdis(  × qmul × hs .
(12)

4. Case Study

After introducing the methods of queue length estimation,
this section describes the verifcation process of the real
world intersection (Taoyuan street/Taohua road) in Nan-
chang, China. Figure 5 shows the processing steps of queue
length estimation, and we will verify the methods by
the steps.

At present, due to the lack of data accessibility, the probe
vehicle data at the studied intersection cannot be obtained.
Terefore, the probe vehicle data verifed by this example
comes from the simulation environment.

Investigate the intersection (Taoyuan street/Taohua
road) of Nanchang city in Jiangxi province to get the trafc
data in peak hours (7:30–9:30). Te Taoyuan street and
Taohua road are arterial roads and the intersection plan is
shown in Figure 6(a). We choose the western entrance of the
intersection as the research object and estimate the queue
length of the entrance straight line. Because of a lack of probe
vehicle data, the geometry and control scheme of the in-
tersection are investigated and then the VISSIM simulation
software is used to simulate the intersection. Te simulation
diagram of the intersection is shown in Figure 6(b). Te
entrance road has fve lanes: one right turn lane, two straight
lanes, and two left turn lanes. Also, the basic saturation fow
rates of the straight lane, the left-turn lane, and the right turn
lane at the signalized intersection are 1650 pcu/h, 1550 pcu/
h, and 1450 pcu/h, respectively. In order to obtain more
accurate simulation data, the trafc fow per fve minutes is
input for simulation. Te trafc fow per fve minutes of the
entrance is shown in Table 1, and the signal phase scheme of
the intersection during peak period is shown in Figure 7.Te

steering ratio is set according to the penetration of each fow
direction at the intersection. 50% of the vehicles are taken as
probe vehicles, and the data of probe vehicles are collected
every 15 s. Partial data of probe vehicles are shown in Table 2.

Since the focus of this paper is on estimating queue
length, data fltering and map matching will no longer be
explained in detail. Due to the probe vehicle data coming
from a simulated environment, there was no data loss.

According to the processing steps for queue length es-
timation in Figure 5, after data map matching, the stop line
position at the intersection is estimated.

4.1. Stop Line Position Estimation. According to the
abovegiven steps of calculating the stop line position, the
probe vehicle data with a speed less than 5 km/h are screened
out, and the approximate position of the stop line at the
intersection is determined to be (3330, 3400). Te driving
speed of each position is obtained by processing the probe
vehicle data, as shown in Figure 8(a). Te selected probe
vehicle data are counted at intervals of 2meters.Te number
of probe vehicles is calculated at each interval, the vehicle
density is calculated at each interval, and the density over
position is obtained, as shown in Figure 8(b). Finally, the
stop line position is calculated to be 3398meters. It should be
mentioned that the stop line position estimation has not
been the main objective in this paper, as it could be also
estimated by an aerial image. Despite such good estimation
results, further eforts are needed to validate this method.

4.2. Queue Length Estimation. Te simulation duration is
7200 s, the simulation phase starts from the north-south
straight line, the phase red light starts at the west entrance
straight line is 89 s, the red light time is 109 s, and the queue
length of 48 cycles is calculated in total.Te calculated queue
lengths are compared with the queue lengths output by
simulation, as shown in Figure 9.Te estimated queue length
is agreement to the simulated queue length.

Te abovegiven estimated results were calculated under
the condition of 50% probe vehicle penetration. In order to
verify the accuracy of the method, data of diferent probe
vehicle penetrations were used for estimation and com-
parative analysis. In general, the larger the penetration of
probe vehicle is, the more data will be obtained. Te more
parking data can be obtained at the red light time of the same
cycle. Te closer the probe vehicle at the end of the queue
approaches the actual queue, the more accurate the calcu-
lation results will be. Due to the high penetration rate of the
probe vehicle of 50%, but the estimation results are close to
the simulated queue length, so probe vehicle with pene-
tration rates of 25% and 10% were selected for comparative
analysis.

4.3. Estimation Error Analysis. Mean absolute error EMAE,
mean absolute relative error EMARE, and root mean squared
error RRMSE were used to evaluate the estimation accuracy of
queue length under diferent penetrations of probe vehicle.
Te calculation formulas of each error index are as follows:
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Figure 5: Processing steps for queue length estimation.
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Figure 6: (a) Plan of Taoyuan street/Taohua road intersection and (b) simulation diagram of the intersection.

Table 1: Peak hours trafc volume (pcu).

Direction North East South West
Time Left Straight Right Left Straight Right Left Straight Right Left Straight Right
07:30–07:35 6 26 13 19 76 29 6 23 12 5 50 11
07:35–07:40 11 26 12 24 82 33 11 24 14 9 47 9
07:40–07:45 11 29 11 27 68 23 2 25 11 6 55 15
07:45–07:50 11 32 13 21 94 36 5 40 20 14 57 11
07:50–07:55 10 27 11 27 78 29 2 24 11 10 58 15
07:55–08:00 8 35 15 40 86 33 10 32 18 14 46 18
08:00–08:05 15 31 17 31 77 29 6 29 14 18 47 19
08:05–08:10 13 32 17 36 86 37 9 32 17 14 44 18
08:10–08:15 14 33 11 36 73 31 9 25 12 13 40 26
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(13)–(15). Te calculation results are shown in Table 3. Also,
the comparison of mean absolute relative error under dif-
ferent probe vehicle penetrations is shown in Figure 10.

EMAE �
1
n



n

j�1
Ls − Le


, (13)

EMARE �
1
n



n

j�1

Ls − Le




Ls

× 100%, (14)

RRMSE �

�������������


n
j�1 Ls − Le( 

2

n



, (15)

where Ls and Le are the simulated value and estimated value
of queue length, respectively, and ‘n’ represents the number
of cycles.

As can be seen from the error index in Table 3 and
Figure 10, the larger the penetration of probe vehicle is, the
more probe vehicle data are obtained, and the closer the
estimated queue length is to the actual queue length. When
the penetration of probe vehicles is 50%, the mean absolute
relative error of the estimated results is only 11.27%, which is
relatively accurate.

In order to verify the validity of the model, the queue
length estimation method based on data fusion proposed by
Li et al. [22] was selected for comparison in this study, and
the test environment was the same as the case mentioned
above. Table 4 and Figure 11 both show the comparison
results of the queue length estimates by the two methods and
calculate the mean absolute relative error of the twomethods
when the penetration of probe vehicle is 10%, 25%, and 50%.
Signifcantly, the proposed method in this paper shows
higher estimation accuracy at all penetration rates. However,

Table 1: Continued.

Direction North East South West
Time Left Straight Right Left Straight Right Left Straight Right Left Straight Right
08:15–08:20 7 39 16 30 74 29 9 27 13 18 41 16
08:20–08:25 5 19 8 34 80 30 13 25 13 16 44 16
08:25–08:30 12 33 16 32 84 32 6 33 14 9 45 20
08:30–08:35 8 28 11 33 101 31 5 28 13 10 40 7
08:35–08:40 6 27 12 32 104 40 8 25 14 14 38 13
08:40–08:45 6 34 16 27 93 32 7 21 6 10 45 12
08:45–08:50 13 34 12 25 88 30 4 26 15 11 27 11
08:50–08:55 8 26 12 27 64 28 5 26 12 13 39 15
08:55–09:00 9 27 12 29 73 28 5 28 12 9 34 11
09:00–09:05 3 26 11 13 73 22 6 26 10 9 34 21
09:05–09:10 11 30 12 23 73 29 7 26 12 5 35 10
09:10–09:15 8 32 14 13 57 23 4 28 12 4 29 13
09:15–09:20 12 34 13 14 58 16 5 25 12 7 25 15
09:20–09:25 9 26 11 20 86 25 8 27 12 4 35 14
09:25–09:30 11 40 16 9 52 21 2 23 10 7 23 11

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

26 s 3 s

24 s 3 s

30 s 3 s

27 s 3 s

20 s 3 s

142 s

Figure 7: Signal phase scheme.
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Table 2: Part of probe vehicle data from simulation environment.

t x y ID s t x y ID s
15 3105.953 721.0338 5 57.85 60 3330.728 696.0665 29 37.67
15 3419.282 890.2507 7 53.32 60 3418.837 727.8462 27 0
15 3630.993 709.7021 1 46.55 60 3500.951 706.6817 25 37.49
15 3424.936 663.3612 3 24.69 60 3427.654 692.0638 21 0
30 3341.171 701.4261 5 56.95 60 3238.039 707.8425 35 49.81
30 3214.133 710.5837 11 54.48 60 3103.432 721.3628 45 50.31
30 3805.026 705.3441 19 52.77 60 3186.458 710.5383 41 56.07
30 3735.195 709.338 15 48.12 60 3178.339 708.0659 39 46.23
30 3716.595 709.403 13 48.58 60 3067.049 740.0481 7 49.66
30 3625.363 709.7217 9 52.62 60 3428.083 875.4785 9 57.72
30 3555.562 699.074 3 57.8 60 3721.15 707.0617 43 54.27
30 3405.207 515.4935 21 49.07 60 3665.217 705.8325 37 58.32
30 3415.091 575.6755 17 55.93 60 3820.726 709.0392 47 55.84
30 3420.034 741.6836 7 19.48 60 3661.765 698.5514 17 55.1
30 3469.401 710.6321 1 20.82 60 3399.967 701.2668 5 0
45 3548.156 709.9923 15 38.65 60 3401.282 708.1369 11 0
45 3526.583 710.1927 13 38.39 60 3385.507 694.3132 23 19.99
45 3458.068 710.6714 9 22.73 60 3423.279 743.6247 31 19.1
45 3138.321 713.2791 29 51.13 60 3421.195 762.4493 33 22.51
45 3228.113 701.9357 23 51.3 60 3469.235 710.6326 19 9.26
45 3275.169 716.3737 7 50.74 60 3443.581 710.7218 13 0
45 3422.765 893.8466 31 53.88 60 3444.094 714.4282 15 1.71
45 3422.71 811.8325 27 47.3 75 3422.581 733.6297 31 0
45 3434.493 795.8841 1 47.77 75 3418.837 727.8462 27 0
45 3670.9 705.8126 25 42.58 75 3517.332 706.5346 43 39.75
45 3601.326 709.8057 19 33.16 75 3515.42 710.2941 37 20.57
45 3443.994 699.8501 17 26.86 75 3438.913 706.7292 25 0
45 3787.808 697.9312 3 54.18 75 3426.677 714.5803 19 23.19
45 3399.967 701.2668 5 0 75 3420.865 627.3393 55 38.24
45 3400.904 708.143 11 2.92 75 3427.654 692.0638 21 0
45 3425.633 672.1227 21 19.68 75 3110.722 723.9411 59 56.65
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Figure 8: (a) Driving speed of each position and (b) histogram of slow driving speed data points with speed ≤5 km/h, sample size� 2407.
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Table 3: Error indexes under diferent probe vehicle penetration.

Error indexes
Probe vehicle penetration

50 (%) 25 (%) 10 (%)
EMAE 5.56 13.32 18.97
EMARE (%) 11.27 27.77 39.12
RRMSE 6.94 15.94 22.53
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Figure 10: Comparison of mean absolute relative error under diferent probe vehicle penetrations.
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it is undeniable that when the penetration of the method
proposed in this paper is 50%, the mean absolute relative
error is controlled within 15%, indicating that the method
proposed in this paper has relatively high requirements on
the penetration of probe vehicle.

5. Conclusions

Tis paper uses probe vehicle data to establish a queue length
estimation model for signalized intersections based on
shockwave theory, alleviating the severe dependence of

Table 4: Comparison of simulation results.

Parameters
Probe vehicle penetration

50 (%) 25 (%) 10 (%)
MAE (s/vehicle)
Method proposed in this study 5.56 13.32 18.97
Method of literature [22] 7.23 17.79 24.36

MARE (%)
Method proposed in this study 11.27 27.77 39.12
Method of literature [22] 16.53 35.81 58.73

RMSE (s/vehicle)
Method proposed in this study 6.94 15.94 22.53
Method of literature [22] 9.65 19.96 28.36
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Figure 11: Comparison of diferent error indexes between the proposed method and method of literature [22] under diferent penetration
rates: (a) MAE (s/vehicle), (b) MARE (%), and (c) RMSE (s/vehicle).
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traditional estimationmodels on fxed detectors. At the same
time, a real-time calculation method is proposed for mea-
suring arrival rate, efectively solving the limitations of
queue estimation errors caused by previous research as-
suming vehicle arrival modes. Tis paper frst calculates the
position of the stop line, and then based on the data of probe
vehicle in the queue during the red light period, the average
vehicle arrival rate is calculated. Also, the shockwave theory
is used to calculate the speed of the queue forming wave and
the queue discharging wave, as well as the queue dissipation
time. Finally, the queue length is divided into three parts for
calculation, including the distance between the last queued
probe vehicle and the stop line during the red light period,
the length of the subsequent vehicles arriving during the
residual red light time, and the newly increased queue length
within the queue discharging time. Tese three parts are
added together is the estimated length of the intersection
queue. Te method ensures the applicability and accuracy of
the queue length estimation model. Tis paper also uses the
VISSIM software to verify the accuracy of the queue length
estimation model. Te results show that when the pene-
tration of probe vehicle is 50%, 25%, and 10%, and their
corresponding mean absolute relative error are 11.27%,
27.77%, and 39.12%, respectively. From the error indicators,
it can be seen that the accuracy of this estimation model can
achieve ideal result when the penetration of probe vehicle is
high. Te queue length estimation model established in this
paper can provide an efective theoretical basis for esti-
mating the queue length of signalized intersections and
optimizing subsequent signal control methods in the future.

Tere are still some limitations to the current work that
will need to be addressed in the future. First, the penetration
of probe vehicle is deduced by the parking position of the
probe vehicle. Terefore, it cannot handle unsignalized
intersections or right turn movements. In engineering
practice, the penetration rate of adjacent intersection probe
vehicles can be used instead of its calculation. Second, the
method requires signal timing information as input. Al-
though some existingmethods can achieve timing parameter
estimation under high penetration, the estimation of signal
timing parameters under low penetration environment is
still a research difculty. In the future, in order to eliminate
this limitation and expand the applicability of the proposed
method in this paper, it will be studied under the condition
that the timing information is unknown and the penetration
of probe vehicle is low. Tird, this method does not re-
produce some random characteristics of trafc fow and does
not consider the applicability of this method at diferent
types of intersections. Future studies will simulate these
efects.
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