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Tis paper presents a data-driven approach to estimate incident-induced delays (IIDs) using probe vehicle data while accounting
for missing data. Te proposed approach is applied to evaluate the efectiveness of a safety service patrol (SSP) program. Existing
data-drivenmethods for IID estimation usually rely on complete data sets.Te proposed approach employs a random forest-based
classifcation model and an interpolation method to estimate IIDs when real-time data are completely or partially missing during
the incident-impacted time period. It also identifes reference profles from the closest spatial-temporal road segments to improve
data availability. Te case study shows that the SSP program in the Quad Cities area of Iowa reduces IIDs associated with various
incidents by 15%–91%. Tis data-driven evaluation framework can be applied to other trafc incident management programs,
allowing more accurate and objective evaluations of their efectiveness.

1. Introduction

Incidents, such as collisions and stalled vehicles, can sig-
nifcantly afect the trafc fow, causing signifcant travel
delays, especially during peak hours and in urban areas with
high trafc volumes. Tese disruptions are stochastic in
nature as they occur infrequently and are not part of the
expected trafc fow patterns. Te delays caused by incidents
can lead to secondary crashes, additional fuel consumption,
and increased air pollution. Terefore, rapid incident de-
tection, response, and cleanup are crucial to mitigate the
negative impact of incidents. Consequently, transportation
agencies have implemented various trafc incident man-
agement programs to better manage road incidents [1, 2].

One of the key performance measures to evaluate the
efectiveness of trafc incident management programs is the
reduction in incident-induced delay (IID). IID is the ad-
ditional travel time caused by incidents and is a means of
quantifying the impact of incidents on the trafc fow.
Terefore, accurately quantifying IIDs is critical to

evaluating trafc incident management programs. Various
methods have been proposed to estimate IID in the litera-
ture, including the deterministic queueing theory [3–6],
simulation [7, 8], and statistical analysis [1, 9–14]. Te
method of the deterministic queueing theory estimates the
IID by assuming constant trafc demand and reduced ca-
pacity caused by the incident. Tis method is widely used in
the literature because of its simplicity and minimal data
requirements. However, the deterministic queueing model
does not account for trafc dynamics [3–6]. Simulation-
based methods include macroscopic simulation [7] and
microscopic simulation runs [8] with and without incident
to estimate IID. Developing and calibrating simulation
models are usually costly and time consuming [9]. To ad-
dress the shortcomings of the methods mentioned above,
data-driven approaches have been proposed using travel-
time data [1, 9–14]. Data-driven IID calculation methods use
trafc data from various sources to estimate the impact of
incidents on the trafc fow. For example, Habtemichael
et al. calculated the IID based on travel time diferences
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between an incident profle and a reference profle repre-
senting the normal trafc condition [1]. Te core of this
method is to identify the reference profles for each incident.
When feld data are available and accurate, this method
provides reliable IID estimates. Furthermore, Park et al.
quantifed the impact of nonrecurring congestion using
probe vehicle data. Teir approach captures the dynamics of
trafc evolution and can detect the incident-impacted area
accurately using real-time speed data collected from probe
vehicles [14]. Tese data-driven approaches provide a more
accurate and objective assessment of IID, which can help
transportation agencies better understand the impact of
incidents and make informed decisions to minimize delays.
In addition, the IID calculation can also be used to assess the
performance of trafc incident management systems and
identify areas for improvement. However, existing data-
driven approaches rely on real-time trafc data, which
can be partially or entirely missing at the time of an incident,
making the data-driven approach impossible to determine
the IID.

Consequently, this paper proposed a data-driven ap-
proach to estimate incident-induced delays using in-
complete data from the probe vehicle. Te proposed method
avoids the following weaknesses identifed in the literature.
First, the typical IID calculation is based on a reference
profle from the same location on a diferent day, which
requires continuous feld data collection during the incident
duration and the reference period. However, due to the
frequent missing data, an accurate IID calculation is
problematic for some incidents. Terefore, this study pro-
posed a methodology to fnd a reference profle of the road
segments that are the most proximate in terms of spatial-
temporal range to the incident but not afected by the in-
cident. Te method can mitigate the impact of missing data
by fnding a reference profle of road segments with similar
trafc patterns. Second, this study accounts for short and
long periods of missing data. In particular, simple in-
terpolation is used to fll in missing data for a short period.
For incidents with a long period of missing data, the IID
occurrence classifcation model is developed using incident
information and applied to incidents without real-time
speed data. Te proposed data-driven IID estimation
method is applied to evaluate the benefts of implementing
a safety service patrol (SSP) program in the Quad Cities area
of Iowa. Te new evaluation framework addresses the de-
fciencies in existing evaluation methods and provides
a reliable IID estimation. Existing studies focused on fnding
the reference profle and calculating IIDs but usually ignored
missing data issues. Terefore, this study proposes an in-
tegrated IID estimation procedure that accounts for missing
data obtained from probe vehicles. Te data-driven IID

savings estimation approach is applicable to evaluating other
incident management programs, such as removal laws and
dispatch collection.

2. Data Description

In this study, three types of data are used for the calculation,
estimation, and evaluation of the IID of the SSP program,
namely, speed data from probe vehicles, estimated trafc
volume from annual average daily trafc (AADT), and in-
cident data from advanced trafc management system
(ATMS) event logs. It is possible to use other data sources for
analysis as long as speed (or travel time), volume, and in-
cident information are collected.

2.1. Speed Data. Te speed data used in this study were
collected by INRIX, a real-time trafc information platform
that provides trafc speed and travel time data. INRIX is
a crowd-sourced trafc data set that uses connected vehicles
and smartphones to collect real-time trafc data. In addition,
INRIX provides historical speed data derived from multiple
sources, including GPS probes and physical sensors. Te
GPS probe vehicles include trucks, taxis, buses, and pas-
senger cars equipped with onboard GPS devices and
transmitting capability. Te data set includes travel time and
average speed in each segment of the road with a data
collection frequency of one minute, as well as the following
confdence score: 10 (historical), 20 (combination of real and
historical), and 30 (real). In this study, only real-time speed
data (i.e., data with a confdence score of 30) are used to
calculate IID because when an incident occurred, the trafc
condition is likely diferent from the normal condition
represented in the historical data. However, there were cases
where real-time speed data were missing due to commu-
nication failures or the probe vehicle was not traveling
through the incident location at that time [15].

2.2. Trafc Volume. Trafc volume is needed to estimate the
number of vehicles impacted by the incident. To provide an
accurate IID calculation, volume data collected on impacted
roadway segments during the incident are preferred.
However, due to the limited coverage of roadway sensors
and the random occurrence of incidents in the road network,
continuous trafc counts were not available in many in-
cident locations.Terefore, in this study, the adjusted hourly
trafc volume based on AADT is used. AADT is collected
from the Iowa DOT roadway asset management system
(RAMS). Te adjusted trafc volume applies the hourly
factors based on the month, day of week, and time of day, as
shown in the following equation [16]:

modified traff ic f low (vph) � AADT × monthly factor × hourly factor. (1)
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2.3. Incident Data. Te incident data are collected from the
Iowa DOT ATMS, which records detailed information of
various types of trafc events. For each event, ATMS
recorded information including received time, cleared time,
location, lane blockage, event type, severity (injuries, fa-
talities, etc.), and types of vehicle involved. In this study, the
following types of events are considered as nonrecurrent
incidents: crashes (involving one, two, three, or more ve-
hicles), debris, earlier crashes, emergency vehicles, slow
trafc (i.e., slow-moving vehicles on the road), stalled ve-
hicle, towing operation, and vehicle fre. Te analysis period
is from 2019 to 2021. During the analysis period, a total of
5,217 incidents were recorded, with stalled vehicles, crashes,
and debris being the most frequent type of incident.

3. Methodology

As illustrated in Figure 1, the IID estimation framework
consists of four modules, namely, data preprocessing, in-
cident classifcation, IID calculation, and IID estimation.Te
data preprocessing module includes data cleaning and
spatial and temporal alignment of speed, trafc volume, and
incident data. Te incident classifcation module classifes
incidents based on the availability of real-time speed data.
Te IID calculation module computes incident-induced
delays based on the travel time diference under normal
trafc conditions and under incident conditions, provided
that real-time speed data are available or can be interpolated.
Lastly, the IID occurrence classifcation model uses the
random forest method to estimate the occurrence of IID in
the cases where real-time speed data are missing.

3.1. Spatial andTemporal Alignments. Te INRIX speed data
and the RAMS trafc volume data use diferent segmenta-
tion systems. INRIX utilizes the extreme defnition (XD)
segmentation system, which includes functional road class
(FRC) 1 (i.e., highways and major intersections)–3 (i.e.,
major road), and usually breaks at intersections and in-
terchanges [17]. Te RAMS segmentation system comprises
FRCS 1–4 (i.e., neighborhood streets) and has diferent
breakpoints from the XD segments. RAMS collects trafc,
roadway geometrics, pavement condition, and business data
associated with public roads in the state [18]. In addition,
incident locations are recorded by coordinates, road name,
and direction. Terefore, to calculate the IID, incident in-
formation, speed, and trafc volume data were linked using
the geographic information system (GIS). In addition, since
the trafc impact of an incident could propagate upstream
and downstream of the incident location, speed data from
fve upstream segments, one downstream segment, and the
incident segment were included in the analysis. Te spatial
range was determined based on the most severe incident
within the scope of this study. Te upstream roadway
segments within 3 miles (4.8 km) and the downstream
segments within 1 mile (1.6 km) of the incident segment
were determined as the maximum range afected by an
incident. Furthermore, to account for the latency in the

reported incident time and to monitor trafc conditions
before and after an incident, the data collection period starts
30minutes before the reported time and ends 30minutes
after the incident cleared time. In other words, the temporal
range was set based on incident reported time and cleared
time by adding 30minutes before and 30minutes after in-
cident clearance.

In addition, some data cleaning eforts were conducted
to prepare the data set for subsequent analysis. For example,
cases in which the incident clearance time exceeds one day
(i.e., 24 hours) were excluded from the analysis. Tese in-
cidents are mainly stalled vehicles left at the roadside for
a long period of time, which usually have minimal impact on
delay. Speeds based on historical data or partial real-time
data are excluded, as real-time speed data can refect the
impact of an incident on trafc conditions. As a result,
a combined data set is created that includes speed, volume,
and incident information for analysis. Te spatial-temporal
aligned data set provides a basis for quantifying incident-
induced delay. Figure 2 shows the trafc impact of an in-
cident in the time-space diagram. Te spatial unit is one
roadway segment. Te temporal unit is one minute (i.e., the
INRIX data collection frequency). Te incident was a two-
vehicle crash that occurred near Exit 4 on I-280 (MM 10) in
Quad Cities around 8:40 am on December 11, 2019. Te
incident was cleared at 12:40 pm. Terefore, the incident
clearance time was 240minutes, including a two-lane
blockage for about 2minutes. Te incident impacted fve
roadway segments upstream (approximately 3 miles). It took
255minutes for the trafc to recover. Tis example also
shows that some real-time speed data are missing.

3.2. Incident Classifcation Based on the Availability of Real-
TimeData. Based on the availability of real-time speed data,
incidents are classifed into three categories: (1) speed data
are available throughout the period and on all highway
segments, (2) speed data are missing for a short period, and
(3) speed data are missing completely or for a long period. In
this study, about 63% of the incidents have real-time speed
data available for the entire duration. Short period speed
data missing is defned as a case where real-time speed data
are missing in one or more segments for less than
15minutes. For a short period of missing data, the speeds
were flled using a moving average interpolation method.
Te interpolation method calculates the average speed be-
tween the previous two time intervals and the next two
available time intervals on the same roadway segment. Te
15-minute threshold was determined on the basis of the
accuracy of the speed estimation. When the missing data are
less than 15minutes, the mean absolute percentage error
(MAPE) of the interpolation method is within 10%, as
shown in Figure 3. For cases with long periods of missing
data (i.e., exceeding 15minutes), the average IID calculated
from a similar case is used. In the incident data set, 15.5% of
the cases have missing speed data for a short period and
21.5% of the data set has missing speed data for a long
period.
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3.3. Calculation of Incident-Induced Delay. Te IID calcu-
lation module determines the delay caused by an incident
based on real-time or partially interpolated speed data. Te
delay determination threshold was set at 80% of the normal
speed, which is defned as the 85 percentile speeds. In ad-
dition, the procedure for determining the threshold was
derived from the Federal Highway Association (FHWA)
method of calculating congested hours [19].

If a delay has occurred due to an incident, the IID of the
incident is calculated using equation (2). Te travel time of
one cell is calculated based on the length of the road segment
and the speed. Te average speed under normal trafc

conditions is then used to determine the normal travel time
for each segment and the time interval. Te normal trafc
condition is found from the road segments that are the most
proximate in terms of spatial-temporal ranges to the in-
cident but outside the incident-impacted range. Te pro-
posed IID calculation process accounts for nonrecurrent
delays, as it can detect segments with slower travel speeds
compared to the normal speed of road segments with re-
curring delays during peak hours. Te diference between
the travel time afected by the incident and the average travel
time under normal trafc conditions is considered the IID
per vehicle. Finally, the delay in the vehicle by diferent
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Figure 1: Incident-induced delay estimation framework.
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classes of vehicles is calculated by applying the trafc volume
based on AADT.

An example of determining whether IID occurs within
an incident impact range is shown in Figure 4. Figure 4(a)
shows the speed profle around the location and time of the
accident. In this case, the accident afected one segment
downstream and up to fve segments upstream. Figure 4(b)
shows the occurrence of delays on the speed profle by
applying the proposed IID determination method. Based on
the normal-condition speed threshold, each cell is classifed
as normal or delay occurrence. Te normal speed profle in
the analysis area is calculated using the speeds in the cells of

normal condition at each time interval. Figure 4(c) shows
both the normal speed profle and the incident-impacted
speed profle. Te results confrmed that the proposed
method can distinguish the spatiotemporal range of delays
caused by the accident. Te average travel time calculated in
the surrounding area, defned as normal conditions, can
efectively refect the trafc characteristics of the corre-
sponding time of day. During peak hours, this approach can
calculate the additional delay caused by incidents by com-
paring it with the normal travel time observed during peak
hours.

IIDPCandTruck � 
LSN

i�1


LMi

j�1
CTTij − NTTij   × Nij−PC andTruck

⎛⎝ ⎞⎠, (2)

where i is the segment number (LSN: last delayed segment
number). j is the time (LM: last delayed minute). CTT is the
cell travel time. NTT is the average travel time in normal
trafc condition. N is the number of vehicles in one cell

3.4. IID Occurrence Classifcation Model. To deal with cases
where real-time speed data are missing entirely or for a long
period of time, an IID occurrence classifcation model is

developed. Te IID occurrence classifcation model uses the
characteristics of incidents to predict whether an additional
delay is caused by an incident or not. Various classifcation
methods were tested, including artifcial neural networks
(ANNs), support vector classifer (SVC), Näıve Bayes (NB),
K-nearest neighbors (KNNs), and random forest (RF). Te
RF method was selected because it provides the highest
classifcation accuracy.

Speed Data Missing 

Time

Direction

Speed (MPH)

Min Max

Accident
Location

IN
RI

X
Se

gm
en

ts

Figure 2: Spatial-temporal speed profle of an example incident (I-280 MM 10).

0
10
20
30
40
50
60
70
80
90

100

5 10 15 20 25 30 35 40 45 50 55 60

M
A

PE
 (%

)

Missing data length (min)

Figure 3: Accuracy of the interpolation method with varying lengths of missing data.

Journal of Advanced Transportation 5



ANN is a machine learning algorithm inspired by the
structure and function of the human brain. ANNmodels are
made up of layers of interconnected nodes that perform

mathematical operations on input data to generate output
predictions. ANNs have been widely used in various felds,
including anomaly detection [20], incident detection [21],

Time08:30 am 10:30 am 12:30 pm

0 mi

10.7 mi
Direction

Downstream

Upstream

Accident
Location

Distance(a) 

(b) 

Time08:30 am 10:30 am 12:30 pm

0 mi

10.7 mi
Direction

Downstream

Upstream

Distance

Normal
Delay

Speed (MPH)

8 78 

Crash Duration
(240 min)

08:40 am 12:40 am

Analysis Area
(±30 min)

Analysis Area
(±30 min)

0

10

20

30

40

50

60

70

80

08:30 am 10:30 am 12:30 pm

1

(c)

Normal Condition Speed Threshold
= The 85-percentile speed × 0.8

Normal Speed =
Average speed of normal segments

in the analysis area at each timeframe

Sp
ee

d 
(m

ph
)

IN
RI

X
Se

gm
en

ts
IN

RI
X

Se
gm

en
ts

Difference of Speed

CTT1, 100 =
Segment1 length

Speed1, 100

NTT1, 100 =
Segment1 length

Normal Speed1, 100

Normal Speed
Crash Segment (1)

Figure 4: Calculation of IID for an example incident (I-280 MM 10). (a) Segment speed time-space diagram. (b) Delay occurrence
determination diagram. (c) Speed profle comparison.

6 Journal of Advanced Transportation



and incident duration prediction [22]. Te advantages of
ANNs include their ability to handle nonlinear relationships
in data, their fexibility in modeling complex systems, and
their ability to learn from large data sets. However, ANNs
can be computationally expensive and require a large
amount of data to train [20–22].

SVC is a supervised learning algorithm that is commonly
used in classifcation tasks. SVC fnds a hyperplane that
optimally separates the diferent classes of data points in
a high-dimensional space. SVC has been used in applications
such as classifcation of crash severity [23, 24] and detection
of transport modes [25]. Te strengths of SVC include its
ability to handle high-dimensional data, its efectiveness in
dealing with nonlinearly separable data, and its relatively low
computational cost. However, SVC can be sensitive to the
choice of kernel function and hyperparameters [26].

NB is a probabilistic classifer based on the Bayes the-
orem. By assuming conditional independence among dif-
ferent features, the NB calculates the probability of
belonging to each class, given the input features. NB has
been used in applications such as text categorization [27],
trafc risk management [28], and incident detection [29].
Te advantages of NB include simplicity, the ability to
handle high-dimensional data, and the fast computational
time for training and prediction. However, NB can be
sensitive to the assumption of independence among features,
which may not hold in some data sets [20, 28].

KNN is an instance-based learning algorithm commonly
used for classifcation and regression. KNN fnds the k-
nearest neighbors of a new data point in a feature space and
then assigns the data point to the class that is the most
common among its k-nearest neighbors. KNN has been used
in applications such as vehicle classifcation [30], incident
classifcation [31], and anomaly detection [32]. Te ad-
vantages of KNN include simplicity, ability to handle
nonlinear relationships in data, and dealing with noisy data.
However, KNN can be sensitive to the choice of distance
metric and the number of classes [32].

Lastly, RF is a model generated by gathering many
decision trees and is a technique for separating data based on
specifc features. Using the principle of majority rule, the
most frequent value among the prediction values made by
several decision trees is the fnal prediction value, called the
ensemble. Te advantages of RF are threefold: frst, the RF
consists of multiple decision trees, which can inherently
manage missing values without requiring extensive pre-
processing. Second, each decision tree in the forest is trained
independently on a random subset of data. Tis paralleli-
zation leads to a reduced training time, especially when
dealing with large data sets. Tird, RF can reduce the risk of
overftting by averaging the output of multiple decision trees
[33, 34].

Four metrics, namely, precision, recall, F1 score, and
accuracy, were compared across the classifcation models
mentioned above. Te precision metric is the proportion of
what the classifcation model classifes as true to actually be
true. Recall is the proportion of what the model predicts as
true out of what is actually true. Precision and recall are
complementary to each other. Higher values of both metrics

indicate a better model. Te F1 score is the harmonic mean
of precision and recall [35]. In addition, the false alarm rate
(FAR), the detection rate (DR), and the overall accuracy of
the model (classifcation rate, CR) are used to obtain the
performance of the model. FAR is the ratio of false negative
cases among the number of cases without delays. DR is the
accuracy to detect IID occurrences between IID cases, which
is the same as the recall of with delay occurrence cases.
Lastly, CR describes the proportion of correctly classifed
cases out of the total number of cases evaluated using the
established classifcation for IID occurrences and is also used
for model selection [36].

For incidents with adequate real-time speed data, the IID
calculation method is applied, as discussed in Section 3.3.
Each incident is classifed as a “delay” or a “no delay.” A total
of 5,217 incidents are included in the data set, of which 2,025
(38.8%) incidents cause additional delay and 3,192 (61.2%)
incidents cause no delay.Te data set is divided into training
and testing sets, with 3,901 (75%) and 1,316 (25%) incidents
in each subset with an equal proportion of cases in which
delay occurred and cases in which it did not, respectively.
Te training and testing sets have an equal proportion of
cases in which a delay occurred and cases in which it did not.
Te training set is used to train each classifcation model
using supervised learning, with the aim of maximizing the
accuracy of each model by comparing various classifcation
factors. Te number of hidden layers and the learning rate
are adjusted with a maximum of 1,000 iterations to fnd the
optimized ANN model. For the selection of the SVC model,
four kernels (linear, polynomial, sigmoid, and radial basis
function) are considered as the changeable factors.Te KNN
model selection process is conducted to fnd the optimal
number of neighbors, and the number of estimators for RF
to achieve the best performance is determined through
iterations.

Table 1 compares the performance metrics of diferent
classifcation models, and Figure 5 shows the classifcation
performance of each model. Based on the data set provided,
the RF classifer had the highest CR of 0.758, indicating
a relatively high proportion of instances that were correctly
classifed. Furthermore, RF had a relatively low FAR of 0.165
and a moderate DR of 0.640, indicating that it was able to
minimize the number of false positive predictions while
maintaining a reasonable proportion of true positive pre-
dictions. However, the ANN and NB classifers showed high
DRs of 0.706 and 0.640, respectively, and also high FARs of
0.338 and 0.426, indicating that they may have been too
sensitive to positive instances and produced too many false
positive predictions. Te SVM and KNN classifers showed
the opposite trend, with low FARs but also low DRs.

Two key elements of a random forest classifcationmodel
are the selection of the classifcation features and the number
of estimators. First, the importance based on the impurity of
each feature among the explanatory variables of the incident
data sets was calculated and applied to the classifcation
model when the importance was 0.01 or greater. Tis
method, called Gini importance, prioritizes features that
afect the ability of a classifer. Te method of calculating
importance is described by Menze et al. [34]. Ten
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characteristics were selected and presented in Table 2. Te
importance of trafc volume and incident clearance hour
was found to be greater than other features. Second, setting
an appropriate number of estimators helps increase the
accuracy of the RF classifcation model. Terefore,

a sensitivity analysis was performed with respect to the
number of estimators.

Finally, the IID occurrence classifcation model is ap-
plied to incidents without real-time speed data to determine
whether a delay occurred or not. If a delay occurs, the

False Alarm Rate Detection Rate Classification Rate
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Figure 5: Comparison of the performance of classifcation models.

Table 2: Te selected random forest features.

Numbers Feature variables Types Descriptions Importance
1 Trafc volume by passenger cars Numeric Number of vehicles 0.30
2 Incident clearance hour Numeric Hours 0.28
3 Truck trafc volume Numeric Number of vehicles 0.27
4 Lane blockage hour Numeric Hours 0.03
5 Te number of incidents that involved vehicles Numeric Number of vehicles 0.03
6 Event type (stalled vehicle) Factor 1: yes, 0: no 0.02
7 Safety service patrol application indicator Factor 1: yes, 0: no 0.01
8 Event type (1 vehicle crash) Factor 1: yes, 0: no 0.01
9 Event type (2 vehicles crash) Factor 1: yes, 0: no 0.01
10 Event type (debris) Factor 1: yes, 0: no 0.01

I-80

I-280

US 61

I-74

N

SSP Routes

Figure 6: Routes of the safety service patrol program in the Quad Cities area of Iowa.
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average IID associated with the same type of incident is
utilized.

4. Case Study: Evaluation of the Safety Service
Patrol Program

Te proposed IID estimation approach is applied to assess
the benefts of deploying a safety service patrol program in
the Quad Cities area, Iowa. SSP programs have been
implemented in many states to reduce incident clearance
times and mitigate the impact of incidents on highways
[37, 38]. Tis area is classifed as municipal interstates in
Iowa, so expansion factors and the hourly distribution of
daily trafc for municipal interstates were used to calculate
the adjusted AADT in each segment [16].

4.1. Safety Service Patrol Program. In Iowa, the Iowa De-
partment of Transportation operates a safety service patrol
program, called Highway Helper, in several metropolitan
areas. Trough the program, Highway Helper trucks patrol
roads, assist vehicles in accidents or inoperable conditions,
and remove debris [39]. Te SSP program was introduced to
the Quad Cities area in September 2019. Te roads covered
by the program include I-74, I-80, I-280, and US 61 (see
Figure 6), with patrol services provided from 5 am to 9 pm
on weekdays. To assess the benefts of the program, the data
set is divided into two subsets, i.e., before and after the SSP is
in operation to determine the delay savings. Te period
before the SSP program is from 01/01/2019 to 09/08/2019.
Since the operation of the SSP program was impacted by
COVID-19 fromMarch 16, 2020, the after period is set from
09/09/2019 to 03/15/2020. Te beneft of the SSP program is
evaluated based on savings in IID.

4.2. IIDComparison. Te average IIDs for each type of event
were calculated and summarized in Table 3. IIDs are av-
eraged over the entire incident data set, before and after the
SSP program is deployed. Note that after the SSP period, it
was only extended to March 15, 2020, to exclude the impact
of COVID-19. In general, the IID occurrence rate of vehicle
crash-related incidents was higher than the IID for debris or
stalled vehicles. In particular, the average IID for one vehicle
crashes was 54.83 veh-h, which is about fve times higher
than the average IID for stalled vehicles, that is, 11.15 veh-h.
Among all types of incidents, the IID occurrence rate for

debris was the lowest at 19.2%, and the average IID was also
the minimum at 2.25 veh-h.

Based on the before and after comparison, the SSP
program signifcantly reduces both the IID occurrence rate
and the average IID. Te number of incidents collected
during the pre-SSP period was 589, of which 103 cases (i.e.,
17%) were with no sufcient real-time speed data. During
the period after SSP, a total of 653 incidents were collected
with the program. Speed data were insufcient for 164 in-
cidents (i.e., 25%). In addition, two secondary crashes were
detected in the data set. Trough the missing-speed data
processing approach, 267 incidents (21% of the total) can be
incorporated for program-saving quantifcation. When
comparing crash-type events before and after the SSP
program, it was found that the average IIDs after the SSP
program had decreased from a minimum of 21.9% (2 vehicle
crashes) to a maximum of 91.1% (earlier crashes) than the
average IIDs before the application of the program. It was
also confrmed that the delay occurrence rates of incidents
had a statistically signifcant diference. Furthermore, al-
though the average decrease in IIDs for the stalled vehicle
type in the program application period was only 14.8%, the
probability of the occurrence of IIDs was at a level of 60%
before the program application period.

4.3. SSP Beneft Evaluation. To estimate the beneft of the
SSP program, incidents are classifed into shoulder blocks
and lane(s) blocks. Among the 653 incidents that occurred
during the “after SSP” period, there are 60 cases of lane(s)
blockage and 593 cases of shoulder blockage. In all types of
vehicles and blockage, delay savings were ensured with the
program’s help, and the greatest delay savings beneft was
obtained for the shoulder block of passenger cars. Te delay
savings calculated for the period after the introduction of the
program were converted into annual delay savings, and the
delay savings of 20,306 veh h and 5,962 veh-h are for
passenger cars and trucks, respectively (Table 4).

5. Conclusion

Tis paper presents a data-driven approach to estimate
incident-induced delays using probe vehicle data, ac-
counting for missing data. When the speed data are missing
for a period of less than 15minutes, it can be reliably in-
terpolated on the basis of the moving average. In the case of
a long period of missing data, a classifcation model is

Table 4: Te program delay savings.

Types (unit: veh-hour)
Passenger car Truck

Shoulder block Lane(s) block Shoulder block Lane(s) block
Before SSP After SSP Before SSP After SSP Before SSP After SSP Before SSP After SSP

Te number of cases 341 593 248 60 341 593 248 60
Sum of delay 7,519.36 3,534.03 6,751.59 804.20 2,028.00 647.81 1,777.25 274.32
Average delay 22.05 5.96 27.22 13.40 5.95 1.09 7.17 4.57
Average delay savings 16.09 13.82 4.86 2.60
Sum of delay saving 9,541.37 829.20 2,881.98 156.00
Annual delay savings 18,723.66 1,627.19 5,655.50 306.13
Total annual delay saving 20,305.85 5,961.63
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developed to estimate the occurrence of a delay and the
average IID for each type of incident is used when a delay is
expected to occur. Te proposed IID estimation method is
applied to evaluate the benefts of a safety service patrol
program deployed in the Quad Cities area in Iowa. Te
results of the analysis showed that when SSP helped in the
incident clearance process, the average IIDs were lower than
those of the same types of incidents before the introduction
of SSP. Tis shows that the SSP is an efective method for
trafc incident management.

Te signifcance of this study can be summarized as
follows. First, the proposed IID estimation approach takes
advantage of real-time trafc data while mitigating the
impact of missing data. Trough this data-driven approach,
it is possible to measure the performance of the SSP program
with greater accuracy. Second, the IID was calculated based
on speed data collected in segments around an incident
location and in proximity time intervals that are not afected
by the incident, which can reduce the likelihood of missing
speed data when fnding a reference profle. Tird, the
proposed IID estimation approach can be applied to evaluate
the performance of other trafc incident management
programs, in addition to SSP.

However, there are limitations to the present study. First,
this study did not include weather information, which can
have a signifcant impact on the occurrence and impact of
the incident. If weather information is included, the accu-
racy of the IID classifcation model may improve. Second, in
future research, an IID measurement model can be de-
veloped. In this study, the average IID was used according to
incident characteristics after determining the occurrence of
the IID using the classifcation model. However, a more
accurate program beneft analysis would be possible when
developing an estimation model based on a larger data set.
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