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In the postpandemic era, exploring the relationship between the daily new COVID-19 cases and passenger fow in urban rail
transit can help efectively predict the impact of future pandemic situations on rail transit. In this study, based on a gated recurrent
unit (GRU) neural network model, the daily passenger fow in urban rail transit in the postpandemic era was predicted, and the
results were compared with those obtained using the long short-term memory (LSTM) neural network and other conventional
time series analysis models such as SARIMA (seasonal autoregressive integrated moving average). Based on the trained GRU
model, a partial dependence plot (PDP) was adopted to explore the quantitative relationship between the daily passenger fow and
the daily new cases or weather attribute.Te results showed that (1) the prediction accuracy of the GRU neural networkmodel was
95.25%, which was the highest among the prediction models studied, indicating that the GRU could achieve the best performance.
(2) Te GRUmodel did not fuctuate signifcantly in the initial training stage, and its convergence rate was higher than that of the
LSTM. (3) Te number of daily new cases was negatively correlated with the daily passenger fow. For every new case on the
previous day, the daily passenger fow fell by an average of 54,600 person-times. (4) Compared with no rain condition, the daily
passenger fow decreased by 207,600 person-times on an average on rainy days. In summary, the neural network could achieve
accurate prediction, while the PDP could compensate for the “black box” disadvantage of nonparametric models, owing to which
the quantitative relationship between the number of new cases and daily passenger fow could be successfully explored. Our study
can serve as a basis for demand prediction, operational organization, and policy implementation related to urban rail transit.

1. Introduction

Te COVID-19 pandemic (hereinafter referred to as the
pandemic) has had a huge impact on urban rail transit. At
the national level, data from the China Urban Rail Transit
Operation Development Report (2020-2021) showed that
the average passenger intensity of urban rail transit in China
would be 4,500 person-time/(km-day) in 2020, a decrease of
2,700 person-time/(km-day) or 36.9% compared with the
same period last year. In Shanghai, according to the Annual
Report of Shanghai Comprehensive Transportation Devel-
opment in 2021, the average daily passenger fow of rail
transit in Shanghai was 7.75 million passenger trips per day
in 2020, down 27.2% year-on-year.

Since the outbreak of the pandemic in January 2020,
passenger fow in the rail transit of Shanghai can be cate-
gorized into three stages: sharp decline, gradual recovery,
and normal stabilization [1]. On January 24, the Shanghai
Municipal People’s Government activated the Level 1 re-
sponse mechanism for major public health emergencies,
which, combined with the Spring Festival efect, led to
a sudden drop in passenger fow. Since February 9, work and
production resumed, and the total number of passengers on
working days started to recover gradually. On May 9, the
emergency response level for major public health emer-
gencies in Shanghai was raised to Level 3, and the total
passenger fow stabilized to over 9 million person-times,
entering the normal stabilization phase. Tis is followed by
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the postpandemic era.Tis is the period in which COVID-19
cases are expected to be under control but will continue to
have a lasting and signifcant impact on the public’s daily
choice of trip modes [2, 3]. In the postpandemic era, the
number of new COVID-19 cases will tend to stabilize but
minor eruptions are likely.

Passenger fow prediction considering the impact of the
pandemic can help accurately assess urban rail transit de-
mand and provide an important reference for predicting the
operation state of urban rail transit and in the formulation of
organizational management strategies in the postpandemic
era. To predict the passenger fow in rail transit, existing
research methods can be divided into parametric and
nonparametric models. Parametric models are mostly based
on a self-regression time-series model, where historical
passenger fow estimation model parameters are used to
forecast the future passenger fow. For instance, Wang et al.
[4] used the seasonal autoregressive integrated moving
average (SARIMA) model to predict the daily inbound
passenger fow in Beijing. Te SARIMA model can predict
periodic time series more accurately than the conventional
ARIMA model. Similarly, Kumar and Vanajakshi [5] con-
structed a SARIMAmodel for a time series analysis of short-
term trafc fow based on limited input data. Milenković
et al. [6] adopted a SARIMA model to predict the monthly
passenger fows of Serbian railways. Li et al. [7] used the
SARIMA model to predict the hourly passenger fow of the
Guangzhou–Zhuhai intercity railroad.

However, the self-regression model only considers the
variation in the passenger fow over time, ignoring the in-
fuence of external factors such as holidays and weather. To
overcome the above shortcomings, Cheng et al. [8] in-
corporated the holiday efect in SARIMA with the exoge-
nous factors (ARIMAX) method to build a daily passenger
fow prediction model for Hongqiao hub. Xu et al. [9] used
the SARIMAX model to explain the efect of diferent
weather factors on subway passenger fow. Bai et al. [10]
proposed a combined ARIMA andmultiple linear regression
model for a nonconventional short-term passenger fow
prediction of urban rail transit.

Compared with parametric models, nonparametric
models are more fexible and can efectively deal with the
nonlinear relationship between passenger fow and multi-
dimensional infuencing factors, thus producing a better
prediction performance. Te main methods for predicting
the daily passenger fow in rail transit using nonparametric
models include the hybrid deep neural network model [11],
long short-term memory (LSTM) neural network [12],
random forest model [13], support vector machine [14], and
bilayer parallel wavelet neural networks [15].

LSTM neural networks can learn long-term information
by introducing gated units, such as forgetting gates, memory
gates, and output gates, based on recurrent neural networks
for an efective prediction of nonlinear time-series data [16].
Li et al. [12] divided the factors infuencing passenger fow
into external and internal and used the LSTM neural net-
work for a 15-min real-time prediction of the passenger fow
in rail transit. Te prediction accuracy of the LSTM was
higher than that of the multiple linear regression and back

propagation (BP) neural networks. Teng and Li [17] com-
bined the LSTM neural network with the particle swarm
optimization (PSO) algorithm to predict the daily passenger
fow in the Shanghai–Nanjing one-way railroad, considering
date attributes and weather factors. Liu et al. [18] established
an LSTM neural network to forecast hourly metro passenger
fows, and the efects of weather variables on the model’s
performance were analyzed. Yang et al. [19] built a spatio-
temporal LSTM to analyze the time series outbound pas-
senger volume at urban rail stations using historical
passenger volume data, a station origin-destination matrix,
and rail transit operation data.

A variant of the LSTM model has been applied to the
prediction of passenger fow in rail transit. Hou et al. [20]
used a gated recurrent unit (GRU) neural network to predict
the short-term passenger fow in urban rail transit. Te
results showed that the GRU has faster convergence, lower
prediction error, and better stability than the LSTM. Huang
et al. [21] used the gray relation analysis (GRA) to flter the
weather factor with a high correlation with the passenger
fow and the bidirectional LSTM (BiLSTM) to predict the
hourly passenger fow in rail transit on weekdays and
nonweekdays, respectively. Te BiLSTM outperformed the
conventional LSTM in terms of the prediction performance.

In summary, in terms of the infuencing factors, the
weather and holiday attributes are external factors signif-
cantly afecting the passenger fow; there has been no re-
search on the infuence of the pandemic on passenger fow.
Tis study considered incorporating the daily number of
local new COVID-19 cases, weather, temperature, and
holidays in the daily passenger fow prediction process for an
accurate prediction of the passenger fow. In terms of the
model performance, the parametric model is superior at
handling time series with signifcant trends and seasonal
variations, while the nonparametric model is more efective
at handling multidimensional nonlinear inputs. Passenger
fow is signifcantly infuenced by nonperiodic factors such
as holidays and weather. In the pandemic era, the sudden
factor of daily new cases should also be incorporated in the
passenger fow prediction so that the nonparametric model
can achieve a higher prediction accuracy. However, the
“black box” characteristic of the nonparametric model
prevents it from assessing the quantitative relationship
between the input and output variables. Te above studies
that used nonparametric models focused on the passenger
fow prediction performance without explaining the infu-
ence degree of each factor on the passenger fow.

In this study, a partial dependence function was used to
compensate for the poor interpretation of the nonparametric
model. An efective GRU neural network model was con-
structed for passenger fow prediction based on the daily
passenger fow data and the daily number of local new cases
in Shanghai urban rail transit. A partial dependence plot
(PDP) was then employed to explore the external factors
afecting passenger fow and to investigate the quantitative
relationship between the pandemic and daily passenger fow.
Tis study provides a basis for urban rail transit demand
prediction, operation organization, and policy
implementation.
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2. Data Preparation

Since the outbreak of the pandemic, passenger fow in the
rail transit of Shanghai has experienced three stages, as
shown in Figure 1 (where the unit in the y-axis is 10,000
person-time). Te focus of this study is the daily passenger
fow in the rail transit of Shanghai in the postpandemic era,
i.e., the third period in Figure 1. Te postpandemic era is the
period in which COVID-19 cases will be under control but
will have a lasting and signifcant impact on the public’s daily
choice of trip modes until the coronavirus becomes less
harmful. Te reasons for selecting the postpandemic era are
as follows: (1) among the three periods shown in Figure 1,
the postpandemic era is the most long-lasting one and has
the most long-lasting impact on the public’s daily life and (2)
this lasting and sustained impact will make the quantitative
results calculated by partial dependence methods more
practical.

Te analysis period was from June 1, 2020, to December
31, 2021 (a total of 579 days). Te obtained information
included the daily passenger fow in rail transit, the daily
number of local new COVID-19 cases in Shanghai, and the
corresponding weather and holiday attributes of Shanghai
on that day. Te data were collected from Weibo.

Figure 2 illustrates the time-series curves of the daily
passenger fow and the daily number of new cases. As ob-
served, there is a correlation between the daily number of
local new cases and the daily passenger fow. Te passenger
fow corresponding to the number of days where new cases
appeared tends to be the local minimum in the period before
and after. Notably, due to the impact of Severe Typhoon In-
Fa, on July 26th, 2021, Shanghai saw a massive suspension of
classes, home ofces, and some rail transit lines; therefore,
the passenger fow on that day reached the minimum: 1.814
million person-time.

Te relevant data will be used as input and output of the
subsequent prediction model. Table 1 shows the variable
defnitions and descriptive statistics. All the variables are
divided into two categories: external and internal factors. As
observed, local new cases occurred on 24 of the 579 days
analyzed, accounting for 4%. In terms of the weather at-
tribute, there were 249 days with rain, accounting for 43%;
the mean minimum temperature and mean maximum
temperature were 17°C and 23°C, respectively. In terms of
the holiday attribute, the number of holidays is 399 days,
including weekends, Spring Festival, Qingming Festival,
Labor Day, Dragon Boat Festival, Mid-Autumn Festival, and
National Day vacation, accounting for 31%. In 579 days, the
mean daily passenger fow is 9.587 person-time, and SD is
2.287 person-time.

3. Method and Model

3.1. Technology Route. Figure 3 shows the data structure on
the ith day. Herein, the input variable dimension is t × n,
where t represents the time step and n represents the feature
dimension. Considering a cycle of 7 days a week, to predict
the daily passenger fow of rail transit on the ith day, the
features of that day and the previous 7 days (8 days in total)

are used as input, i.e., the time step is set to 8, t � 1, . . . , 8.
Te features for each day include the number of new cases on
that day, weather attribute, minimum temperature, maxi-
mum temperature, holiday attribute, and passenger fow
yesterday, with six feature dimensions, i.e., n � 1, . . . , 6.
Since the frst seven days of data are used as input, the
complete data structure is available from June 8, 2020, with
a total of 572 days of valid data, i.e., i � 1, . . . , 572. In
summary, the input variable on the ith day has a dimension
of 8× 6� 48.Te output variable on the ith day is the number
of passengers on that day, which corresponds to the variable
X0×6

i with a time step of 0 and a feature dimension of 6.
Figure 4 shows the technical route employed in this

study. First, the acquired raw data were divided into training
and testing sets in the ratio of 3 :1: training set for the frst
429 days (June 8, 2020, to August 10, 2021) and testing set for
the second 143 days (August 11, 2021, to December 31,
2021). Te neural network model is then trained using the
training set, and the prediction performance of the trained
model is evaluated on the test set. During the training
process, the model parameters are continuously optimized
based on the loss function until the maximum number of
iterations is reached. During the impact evaluation, the
training and test sets are combined to train the fnal model.
Based on the fnal model to determine the partial de-
pendence function, the PDPs of the input and output var-
iables are plotted, and the quantitative impact of the daily
number of new cases on the daily passenger fow is
evaluated.

3.2. GRUNeural NetworkModel. Owing to the advantage of
the nonparametric model in handling multidimensional
nonlinear input, the GRU neural network is used to predict
the daily passenger fow of rail transit. Te GRU neural
network is a variant of the LSTM neural network, which is
a special type of recursive neural network (RNN). Te RNN
uses temporal-dimensional information to process data with
temporal characteristics. However, it cannot solve the long-
term dependency problem and has the disadvantages of
gradient disappearance and gradient explosion, which led to
the development of the LSTM neural network. Te LSTM
neural network introduces various gated units (e.g., for-
getting gates, memory gates, and output gates), retains in-
formation that requires long-term memory, and forgets
information with decaying value for an accurate prediction
of time-series data [22].

Compared with the LSTM, the GRU neural network is
simpler and more efcient; Figure 5 shows its structure. In
this approach, data input xt and hidden state ht−1 of the
previous time step at time step t are received, and the hidden
state ht of the current time step is outputted. Unlike the
LSTM, the GRU neural network has only two gated units:
the reset gate rt and the update gate zt. Te reset gate rt is
used to discard irrelevant historical information and control
howmuch of the previous time step’s hidden state ht−1 needs
to be retained by the candidate hidden state 􏽥ht. Te can-
didate hidden state 􏽥ht is used to assist in the computation of
the hidden state ht. Te update gate zt is used to control how
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the hidden state ht is updated by the candidate hidden state
􏽥ht [23].

Te expressions for the GRU neural network are as
follows:

rt � σ Wirxt + bir + Whrht−1 + bhr( 􏼁,

zt � σ Wizxt + biz + Whzht−1 + bhz( 􏼁,

􏽥ht � tanh Winxt + bin + rt ∗ Whnht−1 + bhn( 􏼁( 􏼁,

ht � 1 − zt( 􏼁∗ nt + zt ∗ ht−1,

(1)

where xt is the input of the current time step t, ht is the
hidden state of time step t, and ht−1 is the hidden state of the
previous time step. rt and zt are the reset and update gates,
respectively. 􏽥ht is the candidate hidden state. Wir, Wiz, and
Win are the weights of the input xt and reset gate, update
gate, and candidate hidden state, respectively. Whz and Whn
are the weights of the hidden state and update gate, can-
didate hidden state, respectively. bir, biz, bin, bhz, and bhn are

the bias vectors. σ is the Sigmoid activation function, tanh is
the tanh activation function, and ∗ is the Hadamard product.

Te GRU neural network is trained using PyTorch with
the parameter settings shown in Table 2. Te optimizer is
a method to update the parameters in neural networks,
where the goal is to make the parameters approximate or
reach the optimal, thus minimizing the network loss. Te
Adam optimizer used in this study combines themomentum
algorithm with the root mean square propagation
(RMSProp) algorithm, using the momentum cumulative
gradient, for faster convergence and smaller fuctuations
[24]. Te loss function used is the mean square error (MSE)
loss, which is calculated as follows:

EMS �
1
n

􏽘

n

i�1
X

0×6
i − 􏽥X

0×6
i􏼐 􏼑

2
, (2)

where n is the number of predicted samples and X0×6
i and

􏽥X
0×6
i are the predicted and theoretical daily passenger fows

on the ith day, respectively.
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Figure 1: Stages of passenger fow in the rail transit of Shanghai.
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Figure 2: Daily passenger fow time series of Shanghai urban rail transit.
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3.3. Partial Dependence Plot (PDP). Te PDP is essentially
a machine learning visualization method with “black box”
features, which is widely used as a technique to increase the

interpretation of input variables in machine learning or deep
learning models [25, 26]. Te plotting of the PDP relies on
the ftted model to describe the average marginal efect of

Table 1: Descriptive statistics of variables.

Factor types Variable description Variable types Statistics

External factors

New daily confrmed cases Discrete

Value: frequency
0: 555
1: 11
2: 7
3: 5
4: 0
5: 0
6: 1

Weather Categorical
Value: frequency
0 (clear): 57%
1 (rainy): 43%

Minimum air temperature (°C) Continuous Min: −6 Mean: 17
Max: 29 STD∗: 8

Maximum air temperature (°C) Continuous Min: −3 Mean: 23
Max: 38 STD: 9

Holiday Categorical
Value: frequency
0 (workday): 69%
1 (holiday): 31%

Internal factors Daily passenger fow (ten thousand passengers) Continuous Min: 181.4 Mean: 958.7
Max: 1255.4 STD: 228.7

Note. STD∗ denotes the standard deviation.
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Figure 3: Data structure on the ith day.
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Table 2: Parameter settings of the GRU neural network.

Parameters Description Values
epoch Number of iterations 100
time_step Number of timesteps 8
input_size Dimensions of the input feature vector 6
hidden_size Dimensions of the hidden feature vector 64
num_layers Number of hidden layers 1
lr Learning rate 0.02
optimizer Type of optimizer Adam
weight_decay Coefcient of weight decay 0.001
loss_func Type of loss function MSELoss
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a feature variable on the predicted outcome through a var-
iable intervention approach [27]. To plot the PDP for feature
variable x and output variable y, the steps are as follows:

(a) Determine the possible values [x1, x2, . . . , xk] of the
features x and set i � 1

(b) Force the value of x of the dataset to be xi

(c) Based on the ftted model, calculate the mean yi of
the output of the dataset

(d) Plot the points (xi, yi) in the PDP
(e) Make i � i + 1, repeat steps (b), (c), and (d), until

i � k, and the points (xk, yk) are plotted
(f) Obtain the fnal PDP

Substituting into the current daily passenger fow pre-
diction problem, if it is necessary to plot the PDP of the
number of new cases X1×1

i on the ith day and the daily
passenger fow X0×6

i on that day, when X1×1
i is equal to z, the

PDP function can be expressed as follows:

f X
1×1
i � z􏼐 􏼑

1
n

􏽘

n

i�1
NGRU

X
1×1
i � z · · · X

1×5
i X

1×6
i−1

· · · · · · · · · · · ·

X
8×1
i−7 · · · X

8×5
i−7 X

8×6
i−8

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(3)

where z is the possible value of the number of new cases
X8×1

i , based on the statistical results listed in Table 1,
z � 0, 1, . . . , 6. n is the number of samples, and according to
the technical route shown in Figure 4, the full dataset is used
to draw the PDP; therefore, n= 572. NGRU is the GRU neural
network trained with the full sample.

Te PDP refects how the predictedmean daily passenger
fow changes when a certain input variable changes. Te
PDP analyzes the quantitative change in the output variable
with the input variable and intuitively analyzes the causal
relationship between them, increasing the explanatory
power of the machine learning model [28]. However, the
independence assumption is the main problem with the
PDP. According to its principle, the premise of PDP is that
there is no correlation between the model input and output,
while in the real world, there are almost no two variables that
are completely independent of each other. In this study,
variables with a poor correlation with the daily passenger
fow are considered to be used in the PDP calculation.
Considering the strong correlation between the minimum
and maximum temperatures, as well as the time series of the
temperature itself, the analysis of the minimum and max-
imum temperatures is not included in the subsequent
analysis.

It should be noted that besides PDP, there are also other
methods that can be utilized for model interpretation, such
as attention mechanism and saliency map. Te attention
mechanism enables the model to selectively focus on
a certain part of the input by adding an attention layer to the
network. Te attention layer assigns a global alignment
weight to the hidden layer of the encoder network,

indicating which input component should be allocated with
more attention. However, though the attention mechanism
is able to indicate which input component is more im-
portant, it is not able to interpret the quantitative re-
lationship between input and output with realistic meanings
as PDP does. Te saliency map is a virtualization technique
that can highlights the most important regions or features of
an input that contribute most to the output prediction,
which is widely used in image captioning and object de-
tection. Te method used by saliency maps for identifying
the important features is based on gradient calculation, the
mechanism of which is similar to PDP, that is, to add
a disturbance to the input and then examine the changes
brought to model prediction results. Tus, PDP is fnally
chosen as the model interpretation method due to its re-
alistic signifcance.

4. Results and Discussion

4.1.Model Training and Prediction. Based on the training set
(2020), the GRU neural network was used for iterative
training, and the training results of the LSTM network were
used for comparison. Figure 6 shows the change in the MSE
with the iteration number during the iteration. Notably,
since the standardized variables are used in the network
training process, the value range of the MSE is [0, 1]. As
shown in Figure 6, both the GRU and LSTM achieve good
convergence after 100 iterations. However, the LSTM
fuctuates more at the beginning, and the MSE decreases to
the same level as that in the case of the GRU after 80 it-
erations. In contrast, the GRU corresponds to a smoother
curve that converges quickly at the beginning of training and
stabilizes after 40 iterations. Terefore, the GRU neural
network benefts from its simplicity and efectiveness and
outperforms the LSTM in terms of the convergence speed
and stability in the proposed daily passenger fow prediction
problem.

Using the trained GRU neural network model, the
prediction of the testing set was conducted. Based on the
same testing set, the prediction result of the GRU was
compared with the results outputted by LSTM, SARIMA,
and SARIMAX (SARIMA with the exogenous factors).
SARIMA is a conventional autoregressive model for time-
series prediction, while exogenous variables are added to the
SARIMAXmodel on the basis of SARIMA [5].Te SARIMA
model can be expressed as (p, d, q) × (P, D, Q)s, where p, d,
q, P, D, Q, and s are the orders of the model. Akaike’s
Information Criteria (AIC) are used to determine the op-
timal order set for SARIMA: (0, 1, 6) × (0, 1, 1).

Figure 7 shows the actual passenger fows and the results
predicted using the aforementioned four models. As ob-
served, both the GRU and LSTM can represent the periodic
variation in the daily passenger fow on a weekly basis and
efectively refect the sudden changes in the passenger fow
generated by holidays or new cases. In comparison, the
SARIMA and SARIMAX show a relatively poor perfor-
mance in the case of such sudden changes. Tis suggests that
nonparametric models, such as the GRU and LSTM, show
better adaptation to external emergency events such as
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COVID-19 new cases. In addition, the passenger fows
predicted by the GRU are closer to the true value, with
a mean square error (MSE) of 40.76 million person-time2
and a prediction accuracy of 95.25% (calculated by
(1/n)􏽐

n
i�0(|Yi − 􏽢Yi|/Yi), where n is the sample size, Yi is the

actual value of Sample i, and 􏽢Yi is the predicted value of
Sample i. In contrast, the LSTM has a slightly greater de-
viation in the prediction of local peaks, with an MSE of 49.21
million person-time2 and a prediction accuracy of 94.40%,
while the MSE values of SARIMA and SARIMAX are much
greater, respectively, reaching 194.64 million person-time2
and 187.24 million person-time2.Te results suggest that the
GRU has the best prediction performance.

To explore the efects of new cases on the prediction
performance, a new GRU model was trained and tested on
the same dataset after removing “new cases” from the in-
dependent variables. Te MSE of the new model (without
new cases as the independent variable) was 41.39 million
person-time2, which was higher than that obtained by the
original model (40.76 million person-time)2 (with new cases
as the independent variable). Tis indicates that the pre-
diction performance of the original model is improved when
taking new cases as the independent variable.

4.2. Partial Dependence Plot (PDP). Te partial dependence
diagrams of the external factors are obtained, and the
training and test sets are combined to train the GRU model
and plot the partial dependence of the daily passenger trafc
on each input variable through PDP.Te premise of the PDP
calculation is that the two variables are independent of each
other, while two completely independent variables are
practically unavailable. In this study, it is considered that the
variables that are not strongly correlated with the other input
variable can be used in the calculation of the PDP. A lack of
strong correlation is defned when the absolute value of
Pearson’s correlation coefcient is less than 0.5 [29]. After

the analysis, both the number of new cases and the weather
attribute of each time step satisfy this precondition. Te
minimum temperature, maximum temperature, and holiday
attribute have strong correlations in their own time series,
and the minimum and maximum temperatures of the same
time step are highly correlated with each other; therefore,
these three variables were excluded from the subsequent
analysis.

Tables 3 and 4 show the correlations of the daily number
of new cases X1×1

i and the weather attribute X1×2
i with the

other input variables on the ith day, respectively. As shown in
Table 3, the table headers represent the time step and feature
dimension corresponding to the variable for which the
correlation coefcient is calculated with X1×1

i . Te table
contents represent the absolute value of Pearson’s correla-
tion coefcient between X1×1

i and that variable. If t� 2 and
n� 2, the corresponding value is 0.04, which means that the
correlation coefcient between X1×1

i and variable X2×2
i−1

(weather attribute of time step 2, i.e., weather attribute on
the (i− 1)th day) is 0.04. From Tables 3 and 4, the correlation
coefcients of the variables X1×1

i and X1×2
i with the other

input variables are less than 0.5, except for the correlation
coefcient of 1 with itself, which is low.

Te PDP in Figure 8 shows the relationship between the
daily passenger fow and the number of new cases at each
time step, where t represents the time step. Based on the data
structure shown in Figure 3, for the variable “daily number
of new cases,” t� 1 corresponds to the number of new cases
on that day, t� 2 corresponds to the previous day, and t� 8
corresponds to a week ago.

As shown in Figure 8, there is a negative correlation
between the daily passenger fow and the number of new
cases, regardless of the time step. Te number of new cases
on the current day (t� 1) and the previous day (t� 2) has the
greatest efect on daily passenger fow. As the number of new
cases increases, the daily passenger fow decreases signif-
cantly, suggesting that rail transit trips will decrease if there
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Figure 6: Training set iteration process.
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Figure 7: Prediction result of the test set. (a) GRU. (b) LSTM. (c) SARIMA. (d) SARIMAX.

Table 3: Correlation coefcients of new cases and other input variables.

Timestep New daily cases
n = 1

Weather
n = 2

Minimum
temperature

n = 3 

Maximum
temperature

n = 4 

Holiday
n = 5

Daily
passengers

n = 6 

1.00 0.07 0.11 0.11 0.04 0.00

0.39 0.04 0.10 0.11 0.05 0.01

0.29 0.01 0.11 0.11 0.05 0.06

0.21 0.01 0.10 0.11 0.05 0.09

0.17 0.02 0.11 0.12 0.02 0.04

0.13 0.02 0.13 0.13 0.07 0.01

0.07 0.05 0.12 0.14 0.02 0.03

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

t = 7

t = 8 0.07 0.07 0.11 0.13 0.04 0.02
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are local new cases. Quantitatively, for each additional
number of new cases on the previous day, the daily passenger
fow decreases by 54,600 person-times on average, while for
each additional daily number of new cases, the daily pas-
senger fow decreases by 46,800 person-times on average.
Hence, the number of new cases yesterday has a greater
impact on passenger fow today, while the passenger fow
today is slightly less sensitive to the pandemic on that day,
suggesting that rail transit on that day will be adjusted to
a greater extent based on the pandemic situation yesterday.

As time passes, the number of new cases from the previous
day (t � 3, 4, . . . , 8) will have an increasingly small impact
on today’s passenger fow.

Likewise, Figure 9 shows the PDP of the daily passenger
fow with respect to the weather attribute at each time step.
As shown, the weather attribute of the current day (t� 1) has
the greatest efect on the daily passenger fow. With in-
creasing time steps, the efect of the weather attribute on the
daily passenger fow decreases. Compared with the case of
no rain (weather attribute� 0), the average daily passenger

Table 4: Correlation coefcients of weather attributes and other input variables.

Timestep New daily cases
n = 1

Weather
n = 2

Minimum
temperature

n = 3 

Maximum
temperature

n = 4 

Holiday
n = 5

Daily
passengers

n = 6 

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

t = 7

t = 8

0.07 1.00 0.20 0.29 0.05 0.01

0.08 0.46 0.25 0.33 0.01 0.01

0.07 0.26 0.25 0.30 0.04 0.03

0.04 0.20 0.26 0.28 0.02 0.02

0.03 0.13 0.27 0.28 0.01 0.01

0.01 0.11 0.26 0.27 0.00 0.01

0.04 0.12 0.26 0.25 0.04 0.03

0.04 0.07 0.26 0.25 0.04 0.01

t = 5

t = 1

t = 6

t = 2

t = 7

t = 3

t = 8

t = 4
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Figure 8: Partial dependence plots between daily passenger fow and new cases.
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fow decreases by 207,600 person-times when there is rain
(weather attribute� 1), suggesting that rainy days signif-
cantly reduce the number of rail transit trips.

5. Conclusions

Based on a GRU neural network model, the daily number of
new cases, weather attribute, temperature, holiday attribute,
and historical passenger fow were used as input parameters
to predict the daily passenger fow in urban railways in the
postpandemic era. Te results showed that the GRU neural
network can produce an accurate prediction of the daily
passenger fow and exhibit faster convergence and lower
MSE than the LSTM neural network, consistent with pre-
vious studies (Hou et al. [20]), further demonstrating that
the GRU, as a variant of the LSTM, retains the ability of the
LSTM in dealing with long-term dependence problems,
while converging and stabilizing faster owing to its sim-
plifed structure.

Based on the trained GRU neural network model,
a partial dependency graph of the daily passenger fow,
daily number of new cases, and weather attribute was
drawn.Te results showed that (1) daily passenger fow was
negatively correlated with the number of new cases. In all
the eight time steps, the number of new cases yesterday had
the greatest impact on the daily passenger fow. For each
additional case, the daily passenger fow decreased by
54600 person-time on average. (2) Te weather attribute of
the day also signifcantly infuenced the daily passenger
fow. Te daily passenger fow on rainy days decreased by
207600 person-time on average compared with that on
nonrainy days.

In the postpandemic era, the previously established daily
passenger fow prediction model is no longer applicable; the
number of new cases should be incorporated as an infu-
encing factor to efectively predict and prevent the impact of
future pandemic situations on urban rail transit. To the best
of our knowledge, this is the frst study to use the daily
number of local new COVID-19 cases for daily passenger
fow prediction. Te quantitative relationship between the
number of new cases and daily passenger fow was in-
vestigated using PDP while using a nonparametric model for
an accurate prediction. Both the research method and the
results provide important references for subsequent studies.

Te shortcomings of the paper and suggestions for future
work are explained as follows: (1) as time passes, the public
will become more tolerant to health-related emergencies,
and the coping mechanisms of society will improve.
Whether the number of new cases will have a lesser impact
on daily passenger fow and whether the proposed model
will be applicable to passenger fow prediction in the long
term remain to be verifed. Future studies can consider
adopting the methodology of this paper to model and an-
alyze the daily passenger fow in diferent periods and
mining the variation laws of the pandemic’s impact on the
daily passenger fow. (2) Te PDP is limited by the in-
dependence assumption, and the quantitative relationship
between all the input variables and daily passenger fow
cannot be explored accurately. Te impact of the remaining
input variables on passenger fow prediction performance
can be evaluated in combination with the variable impor-
tance calculation methods like attention mechanism and
gradient calculation, which can also provide a further insight
into the model’s prediction behavior. (3) Te proposed
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Figure 9: PDPs of the daily passenger fow and weather attribute.
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methodology can be further extended to other trans-
portation modes (e.g., intercity rail transit and bus travel) to
analyze the impact of the pandemic on urban transportation
travel structures.
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Z. Avramović, “SARIMA modelling approach for railway pas-
senger fow forecasting,” Transport, vol. 33, no. 5, pp. 1–8, 2016.

[7] J. Li, Y. L. Bi, X. N. Shen et al., “Cerebrospinal fuid
α-synuclein predicts neurodegeneration and clinical pro-
gression in non-demented elders,” Translational Neuro-
degeneration, vol. 9, no. 1, pp. 41–51, 2020.

[8] C. Cheng, Y. C. Du, and X. Liu, “A passenger volume pre-
diction model of transportation hub considering holiday
efects,” Journal of Transportation Systems Engineering and
Information Technology, vol. 15, no. 5, pp. 202–207, 2015.

[9] M. L. Xu, X. Fu, J. Y. Tang, and Z. Liu, “Efects of weather
factors on the spatial and temporal distributions of metro
passenger fows: an empirical study based on smart card data,”
Progress in Geography, vol. 39, no. 1, pp. 45–55, 2020.

[10] L. Bai, L. Yang, D. P. Duan, X. Y. Xu, Z. Li, and Y. M. Liu,
“Urban rail transit normal and abnormal short-term pas-
senger fow forecasting method,” Journal of Transportation
Systems Engineering and Information Technology, vol. 35,
no. 2, pp. 127–130, 2017.

[11] L. Liu and R. C. Chen, “A novel passenger fow prediction
model using deep learning methods,” Transportation Research
Part C: Emerging Technologies, vol. 84, pp. 74–91, 2017.

[12] M. Li, J. Li, and Z. J. Wei, “Short-time passenger fow fore-
casting at subway station based on deep learning LSTM
structure,” Urban Mass Transit, vol. 21, no. 11, pp. 42–46+77,
2018.

[13] C. Ding, S. Q. Ni, and H. X. Lu, “Forecast and analysis of
urban rail transit passenger fow based on gradient boosting,”
Urban Mass Transit, vol. 21, no. 9, pp. 60–63, 2018.

[14] K. Zhu, P. Xun, W. Li, Z. Li, and R. Zhou, “Prediction of
passenger fow in urban rail transit based on big data analysis
and deep learning,” IEEE Access, vol. 7, pp. 142272–142279,
2019.

[15] T. J. Wei, X. Q. Yang, and G. M. Xu, “Medium-term forecast
method for daily passenger fow of high-speed railway based
on DLP-WNN,” China Railway Science, vol. 42, no. 6,
pp. 194–204, 2021.

[16] S. Hochreiter and J. Schmidhuber, “Long short-term mem-
ory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[17] J. Teng and J. Y. Li, “Short-term forecast method for intercity
railway passenger fow considering date attributes and
weather factors,” China Railway Science, vol. 41, no. 5,
pp. 136–144, 2020.

[18] L. Liu, R. C. Chen, and S. Zhu, “Impacts of weather on short-
term metro passenger fow forecasting using a deep LSTM
neural network,” Applied Sciences, vol. 10, no. 8, p. 2962, 2020.

[19] X. Yang, Q. Xue, M. Ding, J. Wu, and Z. Gao, “Short-term
prediction of passenger volume for urban rail systems: a deep
learning approach based on smart-card data,” International
Journal of Production Economics, vol. 231, Article ID 107920,
2021.

[20] X. Y. Hou, L. P. Shao, and J. Li, “Urban rail transit short-time
passenger fow OD forecasting based on deep learning
modeling,”UrbanMass Transit, vol. 23, no. 1, pp. 55–58, 2020.

[21] H. C. Huang, J. Y. Chen, and S. Wang, “Multi-factor rail
transit passenger fow prediction model,” Journal of East
China Jiaotong University, vol. 38, no. 3, pp. 61–66, 2021.

[22] B. Shao, M. Li, Y. Zhao, and G. Bian, “Nickel price forecast
based on the LSTM neural network optimized by the im-
proved PSO algorithm,” Mathematical Problems in Engi-
neering, vol. 2019, Article ID 1934796, 15 pages, 2019.

[23] J. Chung, C. Gulcehre, and K. H. Cho, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,”
2014, https://arxiv.org/abs/1412.3555.

[24] D. P. Kingma and B. A. J. Adam, “A method for stochastic
optimization,” 2014, https://arxiv.org/abs/1412.6980.

[25] P. M. Johnson, W. Barbour, J. V. Camp, and H. Baroud,
“Using machine learning to examine freight network spatial
vulnerabilities to disasters: a new take on partial dependence
plots,” Transportation Research Interdisciplinary Perspectives,
vol. 14, Article ID 100617, 2022.

[26] M. Hassani Niaki, M. Ghorbanzadeh Ahangari, and
M. Pashaian, “Amaterial-independent deep learningmodel to
predict the tensile strength of polymer concrete,” Composites
Communications, vol. 36, Article ID 101400, 2022.

[27] J. H. Friedman, “Greedy function approximation: a gradient
boosting machine,” Annals of Statistics, vol. 29, no. 5,
pp. 1189–1232, 2001.

[28] Q. Zhao and T. Hastie, “Causal interpretations of black-box
models,” Journal of Business & Economic Statistics, vol. 39,
no. 1, pp. 272–281, 2021.

[29] J. Cohen, Statistical Power Analysis for the Behavioral Sciences,
Routledge, London, UK, 2013.

12 Journal of Advanced Transportation

https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.6980



