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Accurate prediction of individual mobility is crucial for developing intelligent transportation systems. However, while previous
models usually focused on predicting individual mobility under ordinary conditions, the models that are applicable to large
crowding events are still lacking. Here, we employ the smart card data of 6.5 million subway passengers of the Shenzhen Metro to
develop a Markov chain-based individual mobility prediction model (i.e., SCMM) applicable to both ordinary and anomalous
passenger fow situations. Te proposed SCMM model improves the Markov chain model by incorporating the station-level
anomalous passenger fow index and the collective mobility patterns of similar passengers. Compared with the benchmark
models, the SCMM model achieves the highest prediction accuracy in both ordinary conditions and large crowding events. Our
results highlight the importance of combining an individual’s own historical mobility data with collective mobility data and
suggest the appropriate weights of individual and collective information considered in individual mobility modeling.

1. Introduction

An in-depth understanding of individual human mobility is
of signifcant importance for urban planning [1], trans-
portation management [2], and the development of in-
telligent transportation systems [3, 4]. With increasingly
abundant big data recording individuals’ temporal and
spatial information, human mobility research has experi-
enced rapid development over the last 15 years [1]. Various
types of big data, from banknote circulation data [5], mobile
phone data [6], to social media data [7], and individual GPS
trajectory data [8], were employed to uncover the hidden
laws of human travel. Moreover, human mobility was dis-
covered to be highly predictable [9, 10], and many pio-
neeringmodels were proposed to reproduce humanmobility
laws or predict individual or collective human movements
[11–14]. In recent years, increasing attention has been paid
to human mobility under anomalous conditions, for in-
stance, during special events [15, 16], natural disasters [17],
extreme weather [18], and epidemic spreading [19, 20]. Yet,

individual mobility prediction models applicable to anom-
alous conditions are still lacking. In this study, we develop
a new individual mobility prediction model applicable to
both ordinary conditions and large crowding events. Te
developed model can provide useful information for crowd
safety management [21, 22] and crowd disaster prevention
[23], which facilitates the development of smart cities.

Te existing individual mobility prediction models
mainly include location-based models and trip-based
models. Location-based models predict the location that
an individual will visit [24, 25], whereas trip-based models
predict an individual’s location in the next time interval
[26, 27], or simultaneously predict the departure time, the
origin, and the destination of his/her next trip [28]. Al-
though many individual mobility prediction models have
been proposed, most of these models are not applicable to
anomalous mobility conditions, for instance, in large
crowding events [29]. Te main challenge is that individual
mobility shows dramatically diferent patterns in large
crowding events, and such patterns were not captured by
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historical data [23, 30]. Nevertheless, this inspires us to
combine real-time anomalous passenger fow information
from large crowding events with individuals’ historical
mobility habits. Terefore, in what follows, we frst review
previous works on individual mobility prediction, clustering
of travelers, and prediction of anomalous mobility patterns.

In the recent decade, hidden Markov model (HMM)
[25], principal component analysis (PCA) [31], Bayesian
network [32], and deep learning methods [33] were
employed to model and predict individual mobility. For
examples, Al-Molegi et al. [34] proposed a recurrent neural
network (RNN) model to predict individuals’ next location;
Li et al. [33] used the long short-term memory (LSTM)
model to capture the daily and weekly travel regularities of
individuals. Given the importance of the temporal property
of human mobility, some researchers investigated methods
for predicting both the location and the time of the next trip.
For examples, Hsieh et al. [35] extracted a location time
distribution (LTD) for each location and a transition time
distribution (TTD) for each pair of locations, and in-
dividuals’ next location is predicted based on how well the
location sequence matches the LTD and TTD; Zhao et al.
[28] employed large-scale smart card data of subway pas-
sengers to simultaneously predict three attributes of a pas-
senger trip (i.e., the departure time, the origin, and the
destination of the trip); and Mo et al. [36] proposed an
input-output hidden Markov model (IOHMM) to predict
the time and the location of individuals’ next trip. In the area
of individual mobility prediction, a number of advanced
methods and techniques have been applied or developed;
however, individual mobility under anomalous conditions
has not been sufciently investigated, probably due to the
complex dynamics of human mobility during rare events.

It is difcult to predict an individual’s location if the
location has never been visited by the individual. To solve
this, some researchers clustered individuals into groups
based on their temporal-spatial mobility similarities and
proposed hybrid models that integrated individual mobility
data and collective mobility data of similar individuals to
improve the prediction accuracy [37]. Based on similar
ideas, a number of individual mobility prediction models
have been proposed. Asahara et al. [38] split individuals into
diferent groups using an expectation-maximization (EM)
algorithm and proposed the mixed Markov model (MMM)
to predict the mobility patterns of each group of individuals.
Mathew et al. [25] clustered historical individual locations
based on the time period that each location was recorded
and trained a hiddenMarkov model (HMM) for each cluster
of individuals. Alhasoun et al. [27] identifed the “similar
strangers” of each individual and predicted individual
mobility by integrating the individual’s historical mobility
information and his/her similar strangers’ collective mo-
bility information in a dynamic Bayesian network model.
Yang et al. [39] grouped subway passengers based on their
trip frequency in each time slot and their visited locations,
and the future movements of passengers in each group were
predicted using the Markov chain model and the hidden
Markov model. Taken together, we fnd the increasing use of
individual clustering techniques in mobility prediction;

however, existing models are mostly applicable to ordinary
mobility conditions. We are still lacking individual mobility
prediction models applicable to large crowding events
[40, 41].

Given their signifcant importance in scientifc crowd
management and crowd disaster prevention, researchers
have investigated methods for predicting collective human
mobility patterns at large events. For examples, Pereira et al.
[42] considered the time of the next event and event type to
develop an artifcial neural network (ANN) for predicting
passenger fows at bus stops or subway stations during large
events; Rodrigues et al. [43] used the time of the event, event
topics, and venues to generate a Bayesian additive model for
predicting the volume of subway trips heading to the event
area; Ni et al. [44] discovered that the passenger fow at
a subway station is positively correlated with the social
media post rate, and the discovered correlation was used for
predicting the station passenger fow during sports events.
Anomalous mobility conditions may also emerge when no
event information is released on the Internet [45]. To
identify and predict anomalous collective mobility, Huang
et al. [23] developed the anomalous mobility network ap-
proach to capture anomalous passenger fows and anticipate
large crowding events. Zheng et al. [46] proposed a hybrid
model to predict anomalous passenger fow in an urban
metro, where the complex network index kin was used to
determine the time for implementing online learning. In
addition, Cheng et al. [47] analyzed the causal relationship
between returning fow and incoming demand, which im-
proves the prediction accuracy of passenger fows during
special events. Reviewing recent works in this area, we fnd
that a few collective mobility prediction approaches appli-
cable to large crowding events have been proposed; however,
individual mobility prediction approaches are still lacking.

In this study, we develop an improved Markov chain-
based individual mobility prediction model (i.e., SCMM)
applicable to both ordinary and anomalous passenger fow
situations (i.e., at large crowding events). Specifcally, we
propose an anomalous mobility index derived from his-
torical and real-time station-level passenger fow, which can
capture the anomalous passenger mobility patterns during
large crowding events. In addition, we incorporate the
collective mobility patterns of similar passengers into the
SCMMmodel, where the K-means algorithm is employed to
classify the individuals based on their temporal mobility
patterns, and the collective mobility probability of each
group of passengers is calculated using the improved
Markov chain model. Moreover, a weight index is used to
balance the weights of individual and collective mobility
information considered in the SCMMmodel. Te developed
SCMM model is validated using the smart card data of
subway passengers in the Shenzhen Metro. Compared with
the benchmarkmodels, the proposed SCMMmodel achieves
the highest prediction accuracy in both ordinary conditions
and large crowding event scenarios, which could be
employed to prevent crowd disasters and develop smart
cities.

Te remainder of this paper is organized as follows:
Section 2 introduces the data used in this study; in Section 3,
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the developed SCMM model for predicting individual
passenger mobility under ordinary and anomalous pas-
senger fow situations is presented; in Section 4, the pro-
posed SCMM model is validated using the large-scale smart
card data of subway passengers; and Section 5 concludes the
fndings of this work. Te limitations of the research and
future research directions are also discussed.

2. Data

Te data used in the present study were provided by the
Shenzhen Transportation Authority. Te geographic in-
formation system (GIS) data for the Shenzhen Metro were
collected in 2014. During the data collection period, there
were 5 lines and 118 stations in the studied subway network
(Figure 1(a)). Te smart card data were also collected in 2014
(from November 1 to December 31). Each time a subway
passenger entered or exited a subway station, the unique ID
of the anonymous subway passenger, the station ID, and the
time when the passenger swiped the card were recorded.
During the data collection period, 163,238,950 smart card
records were generated by 6,500,941 passengers. Te tem-
poral pattern of the smart card records is shown in
Figure 1(b). Tere were data missing on November 20,
December 1–8 and December 18–20, 2014 (colored in grey
in Figure 1(b)). Only the passenger trips collected in the
remaining 49 days were used.

During the two-month data collection period, nine
large crowding events occurred near fve subway stations
(Table 1). Here, the fve subway stations are denoted as the
crowding stations. Te out-passenger fow fout of a subway
station is calculated by aggregating the trips with desti-
nations at the subway station. As shown in Figure 2, the
out-passenger fow fout at the Sea World station (a
crowding station) increased prominently during the
crowding events.

Given that sufcient historical mobility records are
needed for predicting individual mobility, only the pas-
sengers with at least 41 trips recorded (at least 1 trip per day
averagely) in the training data (439,560 passengers in total)
are selected for training and validating the individual mo-
bility prediction model. Te developed individual mobility
prediction model is trained using the smart card records
collected from November 1 to December 23, 2014 (84.6% of
all 30,832,570 trips) and tested using the smart card records
collected from December 24 to December 31, 2014 (15.4% of
all trips).

3. Model

3.1. Te Modeling Framework. In this study, we developed
the SCMM model to predict individual passenger mobility
under ordinary and anomalous passenger fow situations.
Te proposed SCMM model is based on the Markov chain
model and incorporates the station-level passenger fow
information and the collective mobility patterns of similar
passengers to further improve prediction accuracy. Te
SCMMmodel mainly consists of four modules, as illustrated
in Figure 3.

3.1.1. Inferring Individual Location Sequences. Although the
smart card data recorded the location information of subway
passengers, for each passenger, there were no smart card
records in the majority of time slots. Here, we use con-
secutive trip records of each passenger to infer the pas-
senger’s location in time slots when there were no smart card
records. Te inferred individual location sequences are used
to train and validate the SCMM model.

3.1.2. Analyzing Station-Level Anomalous Passenger Flow.
Anomalous passenger mobility may cause a prominent
fuctuation (increase) in out-passenger fow fout at subway
stations. Here, we propose an anomalous mobility index to
measure the fuctuation of out-passenger fow at a subway
station, which is used to evaluate the attractiveness of the
subway station to passengers.

3.1.3. Clustering Subway Passengers. Passengers who have
had similar mobility patterns in history are likely to have
similar mobility patterns in the future. We split passengers
into diferent groups according to their temporal mobility
patterns. Te collective mobility patterns of similar pas-
sengers are integrated into the SCMM model.

3.1.4. Predicting Passenger Locations. Combining station-
level passenger fow information and collective mobility
patterns of similar passengers, we train the SCMM model
using the training data and validate the efectiveness of the
model using the test data.

3.2. Inferring Individual Location Sequences. We use indi-
vidual location sequences to capture the mobility patterns of
each subway passenger. Here, a day is divided into 24 one-
hour time slots. An individual location sequence
L � l11, l12, . . . , ldt , . . . , lD24􏽮 􏽯 contains n � D · 24 locations,
where D is the number of days in the observation period
(D � 49 for this study), and ldt is the location of the passenger
in time slot t of day d. Te number of time slots, n, is equal to
the number of days studied times the number of time slots
(i.e., n � 1,176). Most subway passengers only had smart
card records in a few time slots. Hence, we need to infer
a passenger’s location in time slots when there are no smart
card data recorded [48].

Specifcally, let trip i represent the ith trip of the pas-
senger, ti represents the departure time of trip i, oi represents
the origin of trip i, and di represents the destination of trip i.
A passenger’s location sequence is inferred as follows:

Step 1: for time slots in which a passenger has trips, the
origin of the frst trip in the time slot is inferred as the
location of the passenger in this time slot.
Step 2: for each day, if trip i is the frst trip of the day, oi

is inferred as the location of the passenger in the time
slots before ti and if trip i is the last trip of the day, di is
inferred as the location of the passenger in the time
slots after ti.
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Step 3: if trip i is neither the frst trip nor the last trip of
the day, and there are time slots between trip i − 1 and
trip i, we need to infer the passenger’s locations during
these time slots. Specifcally, if di−1 and oi are the same,
oi is inferred as the locations of the passenger in the

time slots between trip i − 1 and trip i. Otherwise, the
passenger’s locations during these time slots are
marked as unknown.
Step 4: if there are no trips in a day, the location of the
passenger in each time slot on this day is marked as
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Figure 1: (a) Illustration of the subway network of Shenzhen (Shenzhen Metro). Te crowding stations are highlighted in orange. (b) Te
number of smart card records Nrecords in each hour during the observation period.

Table 1: Crowding events occurred in Shenzhen during November and December 2014.

ID Date Crowding station Event
1 Nov. 1 Window of World Halloween recreational activity
2 Nov. 1 Oversea Chinese Town Halloween recreational activity
3 Nov. 21 Keyuan Tanksgiving star concert
4 Nov. 29 Keyuan Simple K-pop tour in China
5 Nov. 30 Qiaocheng East Open day of Shenzhen police
6 Dec. 24 Sea World Christmas Eve activity
7 Dec. 31 Sea World New Year’s Eve activity
8 Dec. 31 Window of World New Year’s Eve activity
9 Dec. 31 Qiaocheng East New Year’s Eve activity
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unknown. In addition, if a passenger takes the subway
during a whole time slot, the passenger’s location is also
marked as unknown. For example, if a passenger en-
tered a subway station at 7:50 a.m. and exited a subway
station at 9:05 a.m., the passenger’s location in the time
slot from 8:00 a.m. to 9:00 a.m. is marked as unknown.

Using the method mentioned above, the individual lo-
cation sequence of each passenger is obtained.

3.3. Analyzing Station-Level Anomalous Passenger Flow.
When a crowding event occurs, the out-passenger fow fout
at the crowding station will increase greatly. However,
previous individual mobility models did not make full use of
this essential real-time passenger fow information. To in-
corporate this essential information into the individual
mobility prediction model, we propose an anomalous mo-
bility index δt,s as follows:

δt,s �
ft,s −〈ft,s〉
σ ft,s􏼐 􏼑

, (1)

where ft,s is the out-passenger fow at station s in time slot t,
〈ft,s〉 is the mean of out-passenger fow ft,s in time slot t,
and σ(ft,s) is the standard deviation of out-passenger fow
ft,s in time slot t. We calculate 〈ft,s〉 and σ(ft,s) for
weekdays and weekends using the training data, respectively.
On ordinary days, out-passenger fow ft,s is close to 〈ft,s〉,

and the anomalous mobility index δt,s is close to 0. When
a large crowding event occurs, the out-passenger fow fout at
the crowding station increases dramatically, and accord-
ingly, δt,s increases prominently. Te anomalous mobility
index of a subway station captures the real-time attrac-
tiveness of the subway station to passengers. A station is in
a anomalous passenger fow situation when the anomalous
mobility index of the station δt,s >3 on weekdays or δt,s > 2.6
on weekends [49]. Otherwise, the station is in an ordinary
passenger fow situation.

Anomalous mobility index δt,s is frst calculated for each
time slot covered by the training data. For the time slots
covered by the test data, we inferred the anomalous mobility
index δt,s in time slot t based on the anomalous mobility
index in time slot t − 1, δt−1,s as follows:

δt,s �
δt−1,s, δt−1,s > 1,

1, otherwise.
􏼨 (2)

If δt−1,s > 1, there might be anomalous passenger fow at
station s, and the anomalous mobility index δt,s is set to δt−1,s

to denote the increased trafc demand at station s. Other-
wise, δt,s is set to 1, and the mobility patterns of subway
passengers are the same as the mobility patterns on
ordinary days.

When predicting the individual location sequence of
a passenger, we use lt to indicate the subway station s where
the passenger visits in time slot t. Tus, δt,s is expressed as
δt,lt

in the following text.

3.4. Clustering Subway Passengers. We cluster the subway
passengers with similar mobility patterns into the same
group and calculate the collective mobility probability of
passengers in each group to calibrate the synthetic mobility
probability of a passenger. Here, subway passengers are
clustered based on their temporal mobility patterns [50].Te
detailed method is given below.

For each passenger, a time series H � H1
1, H1

2, . . . ,􏼈

Hd
t , . . . , HD′

24 } is frst generated to extract the passenger’s
temporal mobility pattern (Figure 4), where Hd

t � 1 when
the passenger swiped his/her smart card in time slot t on day
d; otherwise, Hd

t � 0, and D′ � 41 are the number of days
covered by the training data. Te operation hours of the
Shenzhen Metro were from 6:00 a.m. to 12:00 a.m. Tus,
Hd

t � 0 for the time slots of 0:00 a.m. to 6:00 a.m. Next, we
generate the overlapped slots S � S1, S2, . . . , St, . . . , S22􏼈 􏼉. Te
length of each overlapped slot is set to 3 hours. For instance,
overlapped slot S1 denotes 0:00 a.m. to 2:59 a.m.; overlapped
slot S2 denotes 1:00 a.m. to 3:59 a.m.; and there are 22
overlapped slots, i.e., t ∈ [1, 2, . . . , 22]. Note that a subway
trip could have multiple overlapped slots. Finally, time series
H is used to calculate the attributes of each overlapped slot
St, which include the proportion of active days with trips Dt

and the average number of trips Ft, both of which are
calculated using the training data:
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Figure 2: Te out-passenger fow fout at the Sea World station on
ordinary weekdays versus the out-passenger fow fout at the Sea
World station during the large crowding events. Te bold grey line
represents the average out-passenger fow 〈fout〉 at the Sea World
station.
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Dt �
1

D
′ 􏽘

D′

d�1
MAX H

d
t , H

d
t+1, H

d
t+2􏼐 􏼑,

Ft �
1

D
′ 􏽘

D′

d�1
H

d
t + H

d
t+1 + H

d
t+2􏼐 􏼑,

(3)

where the operator MAX returns the maximum value. Te
overlapped slots S are sorted in a descending order of Ft. Te
sorted overlapped slots S′ � S1′, S2′, . . . , Sj

′, . . . , S22′􏽮 􏽯 are used
to denote the temporal mobility pattern of the passenger.
Specifcally, we iteratively select St

′ from S1′ to S22′ to generate
the nonoverlap slots S″ � S1″, S2″, S3″, S4″􏼈 􏼉, which have no
overlapping in time.

Te detailedmethod to generate S″ is as follows: frstly, S1′
is the frst nonoverlap slot in S″ (i.e., S1″). Secondly, S2′ is
compared with S1″. If S1″ and S2′ are not overlapped in time, S2′
is set to the second nonoverlap slot in S″; otherwise, S2′ is not
added to S″. Next, we check if S3′ has overlapped in time with
the existing nonoverlap slots in S″ ( S1′, S2′􏼈 􏼉 or S1′􏼈 􏼉) to de-
termine whether S3′ will be added to S″. Tis process con-
tinues until we fnd the four nonoverlap slots S1″, S2″, S3″, S4″􏼈 􏼉.
Te proportions of active days with trips Dtop1, Dtop2,􏽮

Dtop3, Dtop4} of the identifed four nonoverlap slots
S1″, S2″, S3″, S4″􏼈 􏼉 of each passenger are used as the features for
clustering passengers [50].

Te K-means algorithm is used for clustering the pas-
sengers. Te selected features Dtop1, Dtop2, Dtop3, Dtop4􏽮 􏽯

generate the feature space. Each passenger with the feature
vector is a data sample. We use the silhouette coefcient [51]
to determine the suitable number of passenger groups. For
each passenger p, the silhouette coefcient is calculated as
follows:

s(p) �
b(p) − a(p)

max a(p), b(p)􏼈 􏼉
, (4)

where a(p) is the average Euclidean distance between
passenger p and the other passengers in the same group,
b(p) is the minimum average Euclidean distance between
passenger p and passengers in any other groups.Te average
value of s(p) of all passengers is defned as the silhouette
coefcient of the groups and used to determine the optimal
value of K. Te number of passenger groups is tested from 2
to 17 (i.e., K� 2, 3, . . ., 17), and the value of K that achieves
the highest silhouette coefcient is used. When predicting
the location of a passenger, the synthetic mobility probability
is calibrated using the collective mobility probability of
passengers in the same group.

3.5. Predicting Passenger Locations. TeMarkov chain (MC)
model is a commonly used mobility prediction model which
can achieve high prediction accuracy [52, 53]. In this study,
we develop a Markov chain model-based individual mobility
prediction model which also combines station-level pas-
senger fow information with collective mobility patterns of
similar passengers. In the SCMM model, Pp(lt |lt−1) rep-
resents the synthetic mobility probability that a passenger p

is at location lt in time slot t under the condition that the
passenger is at location lt−1 in time slot t − 1:

Pp lt lt−1
􏼌􏼌􏼌􏼌􏼐 􏼑 � αPi lt lt−1

􏼌􏼌􏼌􏼌􏼐 􏼑 + (1 − α)Pc lt lt−1
􏼌􏼌􏼌􏼌􏼐 􏼑, (5)

where Pi(lt|lt−1) is the individual mobility probability that
passenger p is at location lt in time slot t under the condition
that the passenger is at location lt−1 in time slot t − 1,
Pc(lt |lt−1) is the collective mobility probability that pas-
sengers in the same group are at location lt in time slot t

under the condition that they are at location lt−1 in time slot
t − 1, and α is a weight index balancing the weights of
Pi(lt |lt−1) and Pc(lt |lt−1). Given the location lt−1 in current
time slot, the location lt with the greatest probability
Pp(lt |lt−1) is selected as the predicted location.

Te individual mobility probability Pi(lt|lt−1) combines
individual mobility patterns with station-level passenger
fow information:

Smart card data

Generating 
passenger trips

Inferring individual
location sequence
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the SCMM model

Model testing

Extracting temporal 
mobility pattern

K-means algorithm

Collective mobility patterns 
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passenger flow information
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Figure 3: Te framework of the proposed SCMM model.
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Pi lt lt−1
􏼌􏼌􏼌􏼌􏼐 􏼑 �

c lt−1,lt􏼐 􏼑

􏽐lt′∈Lc lt−1,, lt′􏼐 􏼑
· δt,lt

, (6)

where c(lt−1,lt) is the number of times that the passenger is at
location lt−1 in time slot t − 1 and at location lt in time slot t,
L is the set of locations that a passenger has visited, and δt,lt

is
the anomalous mobility index of location lt in time slot t.

Te collective mobility probability Pc(lt |lt−1) is calcu-
lated as follows:

Pc lt lt−1
􏼌􏼌􏼌􏼌􏼐 􏼑 �

C lt−1,lt􏼐 􏼑

􏽐lt′∈LC lt−1,, lt′􏼐 􏼑
, (7)

where C(lt−1,lt) is the number of times that passengers in the
same group are at lt−1 in time slot t − 1 and at lt in time slot t.

In order to determine the optimal value of weight index
α, training data are further divided into two parts, namely,
the training part and the validation part. Te value of the
weight index α is tested from 0 to 1 with a tolerance of 0.1
(i.e., α � 0, 0.1, 0.2, ..., 1). We select the α that achieves the
highest median of prediction accuracy rates for all pas-
sengers, where the prediction accuracy rate of an individual
passenger is defned as follows:

Accuracy �
Ntrue

Nall
, (8)

where Nall is the total number of time slots in the validation
part and Ntrue is the number of time slots in which the
individual location prediction is correct.

3.6. Comparative Models. In this study, three benchmark
models are introduced to validate the proposed SCMM
model, i.e., a frst-order Markov chain model (MC model),
a Markov chain model incorporating the proposed indices
(SMM model), and a random forest (RF) model.

In the RF model, the input features are composed by the
information of time slot t and the location of the passenger
in time slot t − 1, lt−1. Here, the information of time slot is
treated as categorical variables and is converted to 24 binary
variables.

In the MC model, the mobility probability is calculated
as follows:

Pp
′ lt lt−1

􏼌􏼌􏼌􏼌􏼐 􏼑 �
c lt−1,lt􏼐 􏼑

􏽐lt′∈Lc lt−1,, lt′􏼐 􏼑
, (9)

where c(lt−1,lt) is the number of times that the passenger is at
location lt−1 in time slot t − 1 and at location lt in time slot t.

A Markov chain model established by (6) is denoted as
Markov chain model with station-level information (SMM),
which is another benchmark model used in this study.

4. Results

Te individual mobility prediction models are trained and
validated using the individual location sequences inferred by
the smart card data collected fromNovember 1 to December
23, 2014.

Individuals tend to travel in a way like their “similar
strangers” [27]. In order to take advantage of such collective
mobility patterns, passengers are clustered based on their
temporal mobility patterns using the K-means algorithm.
Te silhouette coefcient is used to determine the optimal
number of clusters. As shown in Figure 5(a), the silhouette
coefcient reaches its peak value when the number of
clusters is set to 2, so passengers are clustered into two
groups. We analyze the temporal mobility patterns (denoted
by Dtop1, Dtop2, Dtop3, Dtop4􏽮 􏽯) of the two groups of passen-
gers. Figure 5(b) shows that passengers in Group 1 travel
during multiple nonoverlap slots, while passengers in Group
2 have two dominant active nonoverlap slots, implying that
passengers in Group 2 might be commuters. Te obtained
temporal mobility patterns are similar to the fndings in the
previous work [50].

In the proposed SCMMmodel, individual and collective
mobility information are balanced using the weight index α.
To obtain the optimal value of α, the training data are further
divided into two parts. Data collected from November 1 to
November 30 are used as the training part and data collected
from December 9 to December 23 are used as the validation
part. As shown in Figure 6, the median of prediction ac-
curacy rates reaches its peak at α� 0.9. Terefore, the weight
index α is set to 0.9, implying that while a passenger’s
mobility is mainly afected by his/her historical mobility
patterns, the collective mobility information also plays
a signifcant role. Interestingly, the prediction accuracy will
decrease if the prediction model only relies on individual
mobility information (i.e., α� 1) or collective mobility in-
formation (i.e., α� 0).Tis fnding highlights the necessity of
combining individual’s own historical mobility data with
collective mobility information, which is the key for im-
proving prediction accuracy.
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Figure 4: Illustration of the temporal pattern extracting procedure.
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Te efectiveness of the SCMM model is validated from
the following three aspects: (1) prediction of individual
mobility, (2) prediction of out-passenger fow fout at the
crowding station, and (3) prediction of the spatial distri-
bution of passenger sources during the large crowding
events. Here, the random forest (RF) model, the Markov
chain (MC) model, and the Markov chain model with
station-level information (SMM) are used for comparison.
Mobility patterns predicted using the RF model are pretty
active among the benchmark models, and passengers are
predicted to make trips in possible time slots. Terefore, the
median of prediction accuracy rates of RF model is the
lowest on ordinary days (Table 2). Te median of prediction
accuracy rates of the MC model is 90.1%, implying that MC
model can predict individual mobility pretty well. Te

median of prediction accuracy rates of the SMM model in
ordinary days is the same as that of the MC model (i.e.,
90.6%), while the median of prediction accuracy rates in
event days increases from 90.1% to 91.5%. Te results imply
that the proposed anomalous mobility index can well dis-
tinguish crowding events from ordinary conditions and
capture the anomalous mobility patterns on event days.
Moreover, by taking the collective mobility patterns of
similar passengers into consideration, the SCMMmodel can
further improve the median of prediction accuracy rate to
93.2% (Table 2). A possible explanation is that a passenger’s
willingness to explore a new place can to some extent be
captured by the collective mobility patterns of his/her similar
passengers.

Te performance of the proposed SCMM model is also
tested on diferent groups of passengers. Group 2 passengers
are featured with the highest prediction accuracy (the me-
dian of prediction accuracy rates is 94.3%). Tis can be
explained by the fact that a majority of passengers in Group 2
are commuters who make routine commuting trips on
weekdays [50]. However, given that passengers in Group 1
are the most active passengers, their mobility is more dif-
fcult to predict. Te median of prediction accuracy rates of
passengers in Group 1 decreases to 91.4%.
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Figure 5: (a) Te silhouette coefcient under diferent number of passenger groups. (b) For each group of passengers, the median
proportion of active days with trips Dtopi

during the top four nonoverlap slots.
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Figure 6: Te median of prediction accuracy rates under diferent
settings of weight index α.

Table 2: Te median of prediction accuracy rates of diferent
models.

Model All days (%) Ordinary days (Dec.
25–Dec. 30) (%)

Event days (Dec.
24 and Dec.
31) (%)

RF 88.9 89.2 91.7
MC 90.1 90.6 90.1
SMM 90.1 90.6 91.5
SCMM 93.2 93.2 93.4
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Te out-passenger fow fout at the crowding station is
an important index for crowd management and safety
control. Using the SCMM model, we can predict the
anomalous mobility index and the out-passenger fow at
the crowding stations. As Figure 7 shows, the out-
passenger fow at crowding stations fout started to in-
crease at 4:00 p.m. and reached its peak value at 7:00 p.m.
in the studied crowding events. We fnd that the mobility
patterns predicted using the RF model are too active to
predict ordinary passenger fows, and the MC model is

unable to predict the anomalous passenger fow in large
crowding events. However, by introducing the anomalous
mobility index, the SMMmodel and the SCMMmodel can
well reproduce the anomalous growth of passenger fow.
Ten, we can close the crowding station or adjust train
operation schemes [54] to prevent crowds from entering
the overly crowded area and protect the safety of event
participants.

Te performances of the four models are further eval-
uated quantitatively using the mean absolute percentage
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Figure 7: Te out-passenger fow fout at the crowding stations. (a) Te out-passenger fow of Sea World station on December 24. (b) Te
out-passenger fow of Sea World station on December 31. (c) Te out-passenger fow of Window of world station on December 31. (d) Te
out-passenger fow of Qiaocheng East station on December 31.
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error (MAPE) and the root mean square percentage error
(RMSPE):

MAPE �
100%

n
􏽘

n

i�1

yi − 􏽢yi

yi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

RMSPE �

�������������

1
n

􏽘

n

i�1

yi − 􏽢yi

yi

􏼠 􏼡

2
􏽶
􏽴

× 100%,

(10)

where n is the number of time slots, yi is the actual out-
passenger fow fout in the i

th time slot, and 􏽢yi is the predicted
out-passenger fow 􏽢fout in the ith time slot. Figure 8 shows
that the MAPE and the RMSPE of the RF model are much
larger than the MAPEs and the RMSPEs of other models,

indicating that the RF model cannot well predict the
anomalous passenger fows at the crowding stations. Te
MAPEs and the RMSPEs of the SMMmodel and the SCMM
model are smaller than the MAPEs and the RMSPEs of the
RF model and the MC model, indicating that the SMM
model and the SCMM model can well capture the anom-
alous passenger fows during the crowding events (Figure 8).

Next, we apply the four models to predict the spatial
distribution of the passenger sources of the crowding sta-
tion(where the passengers started their trips to the crowding
station). Taking crowding event 7 as an example, according
to our analysis of the empirical data, the sources of pas-
sengers were widely distributed in the city at 6:00 p.m. on the
event day, covering most of the stations in the subway
network (Figures 9(a) and 9(b)). Meanwhile, passengers

M
A

PE

Event 6 Event 7 Event 8 Event 9

RF
MC

SMM
SCMM

1.5

1.2

0.9

0.6

0.3

0.0

×102

(a)

Event 6 Event 7 Event 8 Event 9

RM
SP

E

RF
MC

SMM
SCMM

0

0.5

1.0

1.5

2.0
×102

(b)

Figure 8: Performance on predicting the out-passenger fow at the crowding stations. (a) MAPE. (b) RMSPE.
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mainly came from the subway stations near the crowding
station. At 7:00 p.m., the number of passenger sources
considerably decreased. Figures 9(g) and 9(h) show the
distribution of passenger sources and the number of

passengers from each source predicted using the SCMM
model, both of which are highly consistent with the em-
pirical results shown in Figures 9(a) and 9(b). However, we
fnd that the MC model (Figures 9(c) and 9(d)) and the RF
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Figure 9: Te spatial distribution of passenger sources at the crowding station. (a, b) Results obtained from the empirical data; (c, d)
prediction of the MC model; (e, f ) prediction of the RF model; (g, h) prediction of the SCMM model.
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model (Figures 9(e) and 9(f)) fail to capture the distribution
of passenger sources on the event day.

5. Conclusions

Considering the difculty of the MC model in predicting
individual mobility under anomalous mobility situations, we
combine the MC model with station-level passenger fow
information and the collective mobility patterns of similar
passengers to develop the SCMM model. Te proposed
SCMM model has two advantages. First, the anomalous
mobility index captures the attractiveness of a station to
passengers, which helps reproduce the crowd gathering
mobility patterns during large crowding events. Second, the
collective mobility patterns of similar passengers are
employed to predict an individual’s location in the next time
slot, which further improves the prediction accuracy. Our
results highlight the importance of combining an in-
dividual’s own historical mobility information with station-
level anomalous passenger fow information, which could be
the key ingredient for predicting individual mobility in
anomalous passenger fow conditions. Moreover, our
methods suggest the appropriate weights of individual
mobility information and collective mobility information
used in the SCMM model, which could provide useful in-
sights for future individual mobility modeling. Finally, the
out-passenger fow at the crowding station and the passenger
source distribution can be well predicted using the proposed
SCMM model, which further validates the efectiveness of
the model in predicting individual mobility under ordinary
and anomalous passenger fow situations.

Given that the majority of event participants usually
come to the crowding events by taking the subway [30], only
subway passengers are considered in this study. Our future
work will focus on incorporating multiple types of mobility
data into individual mobility analysis and prediction. For
instance, taxi GPS data and bus smart card data are potential
data sources which can be further incorporated into the
present modeling framework. In addition, the proposed
SCMM model provides a general framework for individual
mobility prediction and could be extended to other non-
ordinary situations, such as extreme bad weather and in-
terruptions of public transit systems.
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