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Focusing on a heavily congested urban rail corridor, this study investigates the passenger fow control strategy optimization
problem from a mesoscopic perspective to reduce platform congestion and enhance service quality. Based on a quadratic
functional approximation for passenger arrival rates, an analytical formula for calculating passenger waiting time is derived based
on the classic deterministic queueing theory. We formulate the problem as a continuous nonlinear programming model to
minimize the total passenger waiting time within transportation capacity constraints. A Lagrangian relaxation approach ef-
fectively transforms the original complex problem into an unconstrained minimization program. Te analytical solution relating
to optimal fow control strategy is derived by directly solving the unconstrained program. To further provide an integrated
optimization framework from both the supply and demand sides, we extend the abovementioned passenger fow control op-
timization model into an integrated mixed-integer nonlinear programming model to jointly optimize the passenger-fow control
strategy and train frequency setting. Numerical examples are presented to demonstrate the applicability and efectiveness of the
proposed models. Te computational results show that the produced high-quality passenger fow control strategy signifcantly
reduces total passenger delay.

1. Introduction

Peak-hour trafc congestion in megacities is a very common
but critical problem when travel demand temporally and
spatially exceeds transportation capacity. Urban rail transit
currently faces signifcant pressure due to its higher punc-
tuality, larger capacity, eco-friendliness, and popularity
among travelers, which have led to increased demand and
heightened expectations. Te overloaded passenger fow not
only aggravates potential accident risks at platforms but also
increases the likelihood of train delays. In urban rail transit
operation and management, passenger travel demands
cannot be satisfed, even with the minimum departure
headway during the peak period. Te severe imbalance
between travel demand and transportation resources ur-
gently necessitates accurate passenger management methods
from the demand side.

Recently, passenger fow control has received signifcant
attention in the practical operations and management of rail

transit. Collaborative passenger fow control refers to a co-
ordinated and synchronized passenger management method
within urban rail systems. Instead of following a frst-in-
frst-service principle, it requires passengers with diferent
origins and destinations to board trains in a manner that
enhances operational efciency or improves service levels.
With collaborative passenger fow control strategies, pas-
sengers arriving at origin stations are required to wait in the
station hall and then enter the platform through the entrance
facilities, following the fow control rates. However, current
passenger fow control methods in practical operations, such
as the Beijing subway system, only focus on one or two
stations and fail to consider the competition between pas-
sengers at diferent stations. Terefore, developing an ap-
proach to quickly compute collaborative passenger fow
strategy within transportation capacity is essential.

Tis study explores the optimization of collaborative
passenger fow control from a systemic perspective, aiming
to enhance the operational efciency and safety of an
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oversaturated urban rail corridor. Te optimal infow rates
of each origin-destination (OD) pair are systematically
computed, considering the transportation capacity given the
predetermined train timetable. Accordingly, under over-
saturated conditions, the limited transportation resources
can be efciently reallocated by considering the temporal
and spatial distribution characteristics of passenger fow.We
summarized the following contributions of this work:

(1) By formulating passenger arrival rates using a qua-
dratic functional approximation method, a continu-
ous nonlinear programming model with the
objective of minimizing total passenger waiting time
is developed to optimize passenger fow control
strategy.

(2) A Lagrangian relaxation solution approach is
designed to solve the constructed model. With this
solution procedure, an analytical solution can be
derived to quickly generate the fow control strate-
gies among all OD pairs.

(3) To further design the passenger fow control strategy
and train frequency synchronously, a nonlinear
mixed-integer programming model is proposed to
consider the complicated interactions between
supply and demand sides systematically.

(4) Numerical examples involving a three-node network
and Beijing Metro Line 1 demonstrate that the
formulated model can produce passenger fow
control strategies with less passenger delay com-
pared with the scenario without fow control.

Te paper is organized as follows. We review the relevant
studies in Section 2. In Section 3, the passenger fow control
problem for an oversaturated rail corridor is described. In
Section 4, the collaborative passenger fow control optimi-
zation model is developed, and the analytical solution of the
model is investigated. In Section 5, a comprehensive mixed-
integer programming model is rigorously constructed to
design the optimal passenger fow control and frequency
setting simultaneously. In Section 6, a simple case and large-
scale instance on Beijing Metro Line 1 are conducted to
evaluate the developed models. Finally, in Section 7, the
conclusions and future research directions are presented.

2. Literature Review

With the rapid increase in travel demand in recent decades,
the oversaturation situation in heavily congested rail cor-
ridors has led to massive passenger delays and increased
accident risks, becoming a signifcant concern [1–10]. To
address this issue, researchers have focused on optimizing
operational efciency and service quality in rail transit
systems, with passenger waiting time as a key evaluation
index [9, 11–16]. Along this line, some researchers have
proposed various train operation and management strate-
gies from the supply side, such as frequency design, time-
tabling adjustment, and scheduling optimization. For
instance, LeBlanc [17] built a mode-split assignment model
to determine the frequencies of transit lines in a network and

further described the standard Hooke–Jeeves algorithm.
Based on dynamic trip records collected from automatic fare
collection systems, Niu and Zhou [13] designed a time-
tabling optimization approach for oversaturated railway
lines. A nonlinear binary programming model was de-
veloped and solved using a genetic algorithm (GA). Barrena
et al. [1] formulated two mathematical optimization models
to optimize timetables and developed an adaptive neigh-
borhood search heuristic approach to solve the cases. Yin
et al. [14] focused on the metro train rescheduling problem,
taking into consideration uncertain and time-dependent
travel pattern. Tey developed a stochastic programming
model to reduce passenger waiting time and train operation
costs and adopted an approximated dynamic programming
algorithm to solve this problem.

Although service-oriented train scheduling can signif-
cantly improve operational efciency and reduce passenger
waiting time, the severe passenger congestion on platforms
still cannot be avoided due to the great attraction of rail
transit systems. Several studies have demonstrated that
reasonable demand management measures can efciently
reduce congestion, such as fare pricing schemes [18–21],
reservations [22–25], and passenger fow control [26–29].

Passenger fow control, which considers boarding ac-
tivities, has received considerable attention from re-
searchers. It has been proven to be an efective method for
reducing passenger waiting time [12, 18, 26, 27, 29–31]. For
instance, Xu et al. [29] developed multiobjective mathe-
matical programming formulations to adjust the inbound
and transfer passenger arrival rates among multiple stations,
in which the route choice behavior was considered through
a logit-based stochastic equilibrium assignment model. Shi
et al. [18] considered passenger transfer behaviors in a metro
network and constructed an integer linear programming
model to optimize the passenger fow control strategy.Wang
et al. [32] established a mixed-integer programming model
to realize coordinated and dynamic fow control considering
transfer passengers. Zhou et al. [31] focused on coordinated
passenger fow control from the line, station, and ticket gate
dimensions by establishing a linear programming model.
Meng et al. [26] studied a robust passenger fow control
strategy that takes into account stochastic and dynamic
passenger demand. Tey designed a heuristic algorithm to
solve the formulated integer linear programming model,
which aimed to minimize the total passenger waiting time
over a metro line.

In addition, other researchers combined passenger fow
control problems with train timetable optimization in
a single rail line without considering transfer behaviors. For
example, Shi et al. [27] developed an efective method to
design train timetables and passenger fow control strategies
jointly given dynamic travel demand. Tey presented an
integrated integer linear programming model and imple-
mented a hybrid algorithm that combined local search and
CPLEX to reduce the total waiting time. Liu et al. [33]
formulated an integrated nonlinear programming model to
collaboratively optimize passenger fow control strategy,
train schedules, and connections. A Lagrangian relaxation-
based algorithm was designed to solve this problem. Yuan
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et al. [34] introduced a novel mixed-integer linear pro-
gramming model to jointly optimize train scheduling and
passenger fow control strategies.Tey used ILOGCPLEX to
solve a real-world instance of the Beijing Metro Line 5.

Table 1 presents a comparison of modeling approaches
in related publications, with key features including decision
item, model, algorithm, analytical solution, and study
granularity. It is important to emphasize that the presence of
an analytical solution is considered a critical criterion.Tis is
because an analytical solution can quickly ofer precise and
insightful passenger fow control strategies for certain real-
world scenarios while requiring fewer computational re-
sources. Furthermore, it provides a deeper understanding of
how the passenger fow strategy changes in response to
relevant parameters, as demonstrated in Section 4.3.

In the existing literature, numerous studies have ex-
amined fow control strategies for congested rail corridors
using a microscopic perspective. Tese studies often model
boarding and alighting activities and discretize the time
horizon into fnite intervals to estimate passenger waiting
times. However, the real-time control of large-scale rail lines
requires a more practical and efcient analytical method for
generating solutions. Furthermore, recent research has not
thoroughly investigated the integration of passenger fow
control and train frequency optimization. To address these
gaps, our study explores a collaborative passenger fow
control problem from a mesoscopic perspective in over-
saturated rail lines and introduces an integrated optimiza-
tion framework that jointly designs passenger fow control
strategies and train frequency settings to enhance system-
wide service levels.

3. Problem Statement

Tis study considers a passenger fow control strategy for
a directional urban rail corridor with a set of consecutively
numbered links, as shown in Figure 1. Te links are
numbered as l ∈ 1,2, . . . , L{ }, where all trains depart from the
start terminal station and arrive at the return terminal
station, following an all-stopping pattern during peak pe-
riods. We assume that all trains maintain the same velocity
and dwell time, leading to their space-time trajectories being
parallel to each other. Let K denote the set of OD pairs,
where each OD pair k ∈ K can be connected by one path
along the rail corridor. Furthermore, let δl

k denote the link-
OD incidence parameter, which equals 1 if link l is on the
path of OD pair k and 0 otherwise. To consider the time-
dependent continuous passenger demand over the morning
or evening peak period [0, T], we denote the number of
passengers for the kth OD pair arriving at the origin station
at time t as λk(t). Tese data can be conveniently collected
from an automatic fare collection system typically employed
in an urban rail system.

Many passengers are left behind on platforms if they are
unable to board the arriving train. Tis accumulation of
passengers can potentially cause severe congestion or op-
erational safety risks due to the limited capacity of the
platforms. Furthermore, this noncollaborative boarding
pattern may cause severe delays for passengers and hence

poses a huge challenge to the transport efciency and service
level of the rail transit system. Considering the analyses
mentioned above, collaborative passenger fow control can
signifcantly improve rail transit system performance and
has received considerable attention from many researchers
and practitioners.

In undersaturated conditions, passengers queuing at
platforms can always get on the next incoming train.
Terefore, controlling the infow rate of passengers into
platforms is redundant. Under oversaturated conditions, we
divide the station area into two parts: the waiting area in the
hall and the boarding area at the platforms, as depicted in
Figure 2(a). For simplicity, we will illustrate the passenger
fow control strategy and corresponding queuing evolution
process using a single OD pair; consequently, we can omit
the OD pair subscription k. We will use λ(t) to represent the
passenger arrival rate at time t.

We consider each entrance facility as a trafc bottleneck;
therefore, the passenger queuing evolution process for each OD
pair can be analyzed based on Newell’s deterministic fuid
approximation model [35]. Accordingly, the time-dependent
passenger arrival rate λ(t) is assumed to follow a polynomial
trend and is shown in Figure 2(c).Te cumulative arrival count
by time t is denoted as A(t), A(t) � 

T

0 λ(t), which increases
over time, as shown in Figure 2(b). Passengers who have just
arrived must frst queue in the station hall due to limited
platform capacity. Tey then gradually enter the platform to
board trains, in accordance with the control service rate μ(t),
through entrance facilities. Similarly, the cumulative departure
count is denoted byD(t),D(t) � 

T

0 μ(t).Te time-dependent
number of passengers Q(t) queuing in the waiting area is the
vertical length between A(t) and D(t), and it reaches a max-
imum at time t2 when λ(t) � μ(t). Following Newell’s de-
terministic fuid approximation model [35], Appendix A
presents the derivation process for the time-dependent queue
length and waiting time. For modeling convenience, we ignore
the walking time between the waiting and boarding areas. Tis
implies that passengers can arrive at the platform immediately
after passing through the entrance facilities.

To rigorously formulate the collaborative passenger fow
control optimization model, this study makes the following
assumptions.

Assumption 1. Trains maintain the same speed and dwell
time throughout the study horizon. Overtaking and crossing
events are strictly prohibited, meaning their space-time
trajectories remain identical and parallel.

Assumption 2. Te boarding sequence of waiting passengers
with the same OD pair follows the exact frst-in-frst-out
principle. Otherwise, estimating the total waiting times of
passengers would be extremely complicated due to the
difculty in recognizing the boarding order within the metro
network.

Assumption 3. In-service trains can always satisfy all pas-
senger demands over the considered time horizon, which
implies that no passengers are left behind at the end of the
operation time horizon.
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Assumption 4. To distinguish passengers arriving at stations
according to their OD trip information, the entrance fa-
cilities are preset for each destination, as illustrated by Shi
et al. [18].

Given (1) the urban rail transit line, (2) the timetable of
train services, and (3) time-dependent passenger demand, this
study seeks to develop an analytical collaborative passenger
fow control strategy under oversaturated conditions to reduce
the total passenger delay from a system optimization

perspective. As a result, the core decision variables of the in-
vestigated problem are service rates for all OD pairs at their
origin stations, which are strictly restricted to the train service
capacity. Notably, the proposed model can be applied in both
directions when we consider the passenger travel demand as
input data. However, because passenger congestion always
occurs in one direction during a fxed period (i.e., morning and
evening peaks), we model this problem on a one-way
metro line.

Link 1 Link 2 Link 3
Start terminal End terminal

Link L

Boarding

Alighting

Link L-1

Figure 1: Urban rail transit line.

Waiting area
Q (t)

PlatformEntrance facility
μ (t), D (t)

Station

Passenger arrival
λ (t), A (t)

Tr
ai

n

(a)

Cumulative count

Time

A (t)

D (t)

d0

d0+D

Q (t)

t0 t1 t2 t3

A (t)
D (t)
Q (t)

(b)

t0 t1 t2 t3

Rates

Time

λ (t)

μ (t)

λ (t1)

λ (t)
μ (t)

(c)

Figure 2: Illustration of passenger fow control process. (a) Passenger fow control process at station. (b) Cumulative arrival and departure
counts. (c) Time-dependent arrival and departure rates.
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Tis study disregards the integer nature of time-
dependent passenger arrival counts and treats their arrival
rate as a continuous fuid. Figure 3 presents the cumulative
number of arriving and departure passengers by time t. Te
actual cumulative number of departure passengers D′(t) is
a step function with integer steps at each train departure time,
which is represented by the yellow step line in Figure 3.
Because this study assumes that trains are dispatched at
discrete time intervals with aminimum constant headway, the
service rate μ(t) would be a constant parameter under this
constant headway.Tis equals the ratio of vehicle capacity c to
the headway h. As shown in Figure 3, we can obtain a straight
line D(t) by connecting the peak points of the steps of D′(t).
Te total passenger waiting time W is defned as the area
between the arrival and departure curves. Notably, W cal-
culated using the approximate cumulative departure curve
D(t) is less than that obtained directly using the step de-
parture curve D′(t). However, the optimization direction of
the fow control optimization using the approximation
method is consistent with the original problem owing to the
constant headway. Tis approximate method is convenient
for using an analytical method to determine the optimal
passenger fow control strategy in urban rail corridors.

To clearly characterize the problem of interest, Table 2
lists the notations used in the optimization models.

4. Passenger Flow Control Strategy with
a Queueing Theoretic Performance Model

In this section, we systematically develop a passenger fow
control strategy optimization model to minimize total
passenger delay, subject to train service capacity. Based on
Newell’s deterministic queueing theory [35], an analytical
solution of optimal fow control strategy is derived by in-
troducing a Lagrangian relaxation solution approach.

4.1. Collaborative Passenger Flow Control Strategy Optimi-
zation Model. Te passenger fow control strategy executed
at stations relates to the system-level spatial redistribution of
capacity along an urban rail corridor. To maximize system
efciency, the proposed collaborative passenger fow control
(CPFC) optimization model aims at reducing the total
passenger delay from a system optimization perspective,
subject to the transportation capacity of each link on the rail
corridor. Te objective function, as formally stated in
equation (1), aims to maximize the utility of the passenger
fow control strategy. Tis study uses the total waiting time
as the performance evaluation criterion for the proposed
passenger fow control approach. Terefore, maximizing the
utility of fow control is equivalent to maximizing the
negative sum of the passenger waiting times over all OD
pairs.Te total delay Wk for each OD pair k in equation (1) is
refected in the fow control strategy μk.

max
μk

Z(μ) � − 
K

k�1
Wk μk( , (1)

subject to the following constraints.

4.1.1. Capacity Constraint



K

k�1
μkδ

l
k ≤Capl, ∀l ∈ L. (2)

4.1.2. Positive Variables

μk ≥ 0, ∀k ∈ K. (3)

Tis study introduces a novel analytical formulation of
passenger waiting time based on a quadratic approximation
of the passenger arrival rate at the stations. Equation (A.13)

h1 h2 h3 h4 h5 h6 h7

Cumulative count

Time

A (t) D (t)

D

D' (t)

h
c

A (t)
D (t)
D' (t)

Figure 3: Relationship between approximate continuous method
and original discrete problem.

Table 2: Notations.

Symbols Defnition
L Set of links
K Set of OD pairs
l Index of links, l ∈ L

k Index of OD pairs, k ∈ K

t1,k Time index with maximum arrival rate of kth OD pair
λk(t) Arrival rate of kth OD pair at time t

μk Service rate of kth OD pair

βk

Parameter in waiting time function, which equals to
−1/2λk
″(t1,k)

δl
k

Link-OD incidence,� 1, indicates link l is on the path
of kth OD pair, �0, otherwise

Wk Total delay of kth OD pair
Capl Capacity of lth link
ρ Reciprocal of unit time waiting cost per passenger
Hmax Maximum permitted headway
Hmin Minimum permitted headway
n1 Te number of train carriages of each train
U1 Energy cost of each train
N Total number of available train carriages
T Te length of studied time horizon
Variables Defnition
uk Departure rate of OD pair (r, s) at time t
f Train frequency during the studied time horizon
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presents the functional form of the total delay Wk for each
OD pair during peak hours, with the detailed derivation
process outlined in Appendix A.Te total delay for each OD
pair, Wk,∀k ∈ K, depends on the assigned service rate μk

with the assumption of a quadratic time-dependent arrival
rate λk(t). Consequently, by substituting equation (A.13)
into equation (1), we derive the following system-level total
delay function:

max
μk

Z(μ) � − 
K

k�1

9 λk t1,k  − μk 
2

4βk

. (4)

4.1.3. Boundary Constraints. According to practical expe-
rience, a delay occurs only when a queue exists. Terefore,
equation (5) is proposed to restrict the upper bound for the
service rate. Otherwise, if no queue exists, equation (4)
indicates that there will be no delay, i.e., μk � λk(t1,k).

μk ≤ λk t1,k , ∀k ∈ K. (5)

To ensure that the peak period of each OD pair is fully
included in the entire study horizon [0, T], the following
boundary constraints are required:

μk ≥ λk t0( , ∀k ∈ K, (6)

μk ≥ λk tT( , ∀k ∈ K. (7)

Equation (6) suggests that the congestion period for each
OD pair has not yet started at the start time t0 while equation
(7) indicates that it vanishes at the ending time tT. Te
corresponding time interval [t0, tT] relates to the horizon
[0, T]. Moreover, the capacity constraint presented in
equation (2) should also be incorporated into the
optimization model.

Lemma 5. CPFC model is concave and has a unique solution
that maximizes the passenger fow control utility, as expressed
in equation (1).

Proof. First, we must prove that the objective function in
equation (4) of the CPFCmodel is concave, which is equal to
proving that 

K
k�1(9[λk(t1,k) − μk]2)/(4βk) is convex. For

convenience, we let F � 
K
k�1(9[λk(t1,k) − μk]2)/(4βk). Te

Hessian matrix of F is given as follows:

z
2
F

zμ21

z
2
F

zμ1zμ2
. . .

z
2
F

zμ1zμK

z
2
F

zμ2zμ1

z
2
F

zμ22
. . .

z
2
F

zμ2zμK

⋮ ⋮ ⋱ ⋮

z
2
F

zμKzμ1

z
2
F

zμKzμ2
. . .

z
2
F

zμ2K

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

9
2β1

0 . . . 0
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,

(8)

where βk denotes a positive parameter. Evidently, the
Hessian matrix mentioned above is defnite, implying that
the function F is convex. Tis in turn means that the ob-
jective function of the CPFCmodel is concave. Furthermore,
the linear capacity constraint in equation (2) leads to
a convex feasible region. Terefore, the CPFC model is
convex and has a unique optimal solution, thus proving
Lemma 5. □

4.2. Analytical Solution Analysis. A Lagrangian relaxation
solution approach is designed to derive an analytical solu-
tion for the investigated problem. In this section, only the
objective function in equation (4) and capacity constraint (2)
are considered. Let pl be the Lagrange multiplier associated
with the capacity constraint at link l, and let p denote the
vector of Lagrange multipliers. Subsequently, the Lagrangian
form of equation (4) is expressed as follows:

L(μ, p) � − 

K

k�1

9 λk t1,k  − μk 
2

4βk

− 

L

l�1
pl 

K

k�1
μkδ

l
k − Capl

⎛⎝ ⎞⎠.

(9)

Setting (zL/zμk) � 0 for each OD pair k gives

zL

zμk

�
9 λk t1,k  − μk 

2βk

− 

L

l�1
plδ

l
k

� 0.

(10)

Consequently, we can obtain the following analytical
solution:
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μk � λk t1,k  −
2βk

9


L

l�1
plδ

l
k, ∀k ∈ K. (11)

Furthermore, the KKT conditions require that

pl 

K

k�1
μkδ

l
k − Capl

⎛⎝ ⎞⎠ � 0 and pl ≥ 0, ∀l ∈ L. (12)

If pl � 0, the above formula is insignifcant.
Otherwise, pl > 0, 

K
k�1μkδ

l
k − Capl � 0, and substituting

equation (11) into equation (12) yields



K

k�1
λk t1,k  −

2βk

9


L

l′�1

pl′δ
l′

k
⎛⎝ ⎞⎠δl

k − Capl � 0, ∀l ∈ L. (13)

Ten,



K

k�1

2βk

9
δl

k 

L

l′�1

pl′δ
l′

k � 
K

k�1
λk t1,k δl

k − Capl, ∀l ∈ L. (14)

For simplicity, we use λk as a substitute for λk(t1,k). Let

bl � 
K

k�1
λk t1,k δl

k − Capl. (15)

Ten, equation (14) can be rewritten as follows:



K

k�1

2βk

9
δl

k 

L

l′�1

pl′δ
l′

k � bl, ∀l ∈ L. (16)

Evidently, L formulas with L variables can be obtained
for a given urban rail corridor, and the coefcient of each
variable pl depends on the specifc network structure. Te
unique solutions with respect to the Lagrangianmultiplier pl

can be derived from the L formulas with L variables. By
substituting pl into equation (11), we obtain a unique set of
optimal service rates for each OD pair that minimizes the
total passenger waiting time.

Let ai,j denote the coefcient of the jth Lagrangian
multiplier pj associated with the ith link. Equation (16) can
then be rewritten as follows:

a1,1p1 + a1,2p2 + · · · + a1,LpL � b1,

a2,1p1 + a2,2p2 + · · · + a2,LpL � b2,

· · ·

aL,1p1 + aL,2p2 + · · · + aL,LpL � bL.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

Let A denote the L × L coefcient matrix in equation
(17), and

P �

p1

p2

⋮

pL

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,B �

b1

b2

⋮

bL

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (18)

We can express equation (17) in a matrix form as follows:

AP � B. (19)

Te solution of the Lagrangian multiplier matrix can be
obtained by solving the following equation.

P � A− 1B. (20)

Cramer’s rule is an efcient method that uses de-
terminants to solve systems of equations that have the same
number of equations as the variables [36], as represented by
equation (17). Let D be the determinant of the coefcient
matrix of the equation (17).

D �

a1,1 a1,2 · · · a1,L

a2,1 a2,2 · · · a2,L

⋮ ⋮ ⋮

aL,1 aL,2 · · · aL,L





. (21)

Te solution using Cramer’s Rule is given as follows:

p1 �
D1

D
, p2 �

D2

D
, · · · , pL �

DL

D
, (22)

where Dj denotes the determinant formed by replacing the
jth column values with the answer-column values. Te
condition D≠ 0 is naturally satisfed because it is impossible
for all link fows in the network to be equal to 0. Let Ai,j

represent the cofactor of ai,j

Dj � 
L

i�1
biAi,j

�

a1,1 · · · a1,j−1 b1 a1,j+1 · · · a1,L

a2,1 · · · a2,j−1 b2 a2,j+1 · · · a2,L

⋮ · · · ⋮ ⋮ ⋮ · · · ⋮

aL,1 · · · aL,j−1 bL aL,j+1 · · · aL,L





, ∀j � 1, 2, · · · , L.

(23)

4.3. Tree-Node Network Example. In this section, we use
a hypothetical three-node network to examine the sensitivity
of the proposed model to various decision factors. Tese
factors include the arrival and service rates of each OD pair.
Te network consists of three OD pairs and two links, as
depicted in Figure 4. Specifcally, we have k � 3, l � 2.

Applying Cramer’s rule, we can obtain the following
equations involving two variables, p1 and p2:

2
9

β1 p1 + p2(  + β2p2  � b1  for  l � 1,

2
9

β1 p1 + p2(  + β3p2  � b2  for  l � 2.

(24)

We can conveniently solve the above equations, resulting
in
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p1 �
9 β1 + β2( b1 − β1b2 

2 β1β2 + β1β3 + β2β3( 
, (25)

p2 �
9 β1 + β2( b2 − β1b1 

2 β1β2 + β1β3 + β2β3( 
, (26)

where

b1 � λ1 + λ2(  − Cap1,

b2 � λ1 + λ3(  − Cap2.
(27)

By substituting the above formulas into equation (11), we
can easily obtain an optimized passenger fow control
strategy for each OD

μ1 � λ1 −
2β1
9

p1 + p2( 

� λ1 −
β1β2 2λ1 + λ2 + λ3 − Cap1 − Cap2( 

β1β2 + β1β3 + β2β3
,

(28)

μ2 � λ2 −
2β2
9

p1

� λ2 −
β2 β1 + β2(  λ1 + λ2 − Cap1(  − β1 λ1 + λ3 − Cap2(  

β1β2 + β1β3 + β2β3
,

(29)

μ3 � λ3 −
2β3
9

p2

� λ3 −
β3 β1 + β2(  λ1 + λ3 − Cap2(  − β1 λ1 + λ2 − Cap1(  

β1β2 + β1β3 + β2β3
.

(30)

For simplicity, we assume that the time-dependent ar-
rival rate functions for these three OD pairs are the same,
denoted as λ1 � λ2 � λ3 � λ and the parameters β1 � β2
� β3 � β. In addition, we assume that the capacities of each
link are identical, represented as Cap1 � Cap2 � Cap. With
these assumptions, equations (25) and (26) can be simplifed
to

p1 � p2

�
3(2λ − Cap)

2β
.

(31)

Equations (28)–(30) become

μ1 �
2
3
Cap −

1
3
λ, (32)

μ2 � μ3

�
1
3
Cap +

1
3
λ.

(33)

To ensure a positive service rate μk, we must have
λ≤ 2Cap. When λ exceeds 2Cap, the above mentioned an-
alytical formula becomes insignifcant.

Equations (28)–(30) indicate that the optimal passenger
fow control strategy for this simple three-node network
depends on the maximum arrival fow rate λk(t1,k), which is
simplifed as λ for convenience. However, if the conditions
of λ1 � λ2 � λ3 � λ and β1 � β2 � β3 � β are violated, the
passenger fow control strategy will also be afected by the
quadratic coefcient βk in the estimated arrival rate function.

We assume that the link capacity Cap is 1000, and the
optimal passenger fow control rates for each OD pair with
respect to the maximum arrival fow rate λ can be easily
obtained, as shown in Figure 5.Te service rate curves of OD
pair 1-2 and 2-3 coincide because they share the same
function, as shown in equation (33).

5. Integrated Optimization of Passenger Flow
Control and Frequency Setting

Te preceding section aims at enhancing the service level of
the rail corridor from the demand side. To further expedite
congestion reduction at platforms during the peak period,
we extended the passenger fow control optimization model
into a comprehensive mixed-integer programming model,
considering both supply and demand factors. Te model
jointly designs an optimal fow control strategy and

1 2 3
Link1: 1-2
Link2: 2-3

OD1: 1-3

OD3: 2-3
OD2: 1-2

Figure 4: Simplifed three-node network.
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frequency setting from a macroscopic perspective. A com-
mon assumption in such studies is that the departure times
of vehicles are evenly distributed throughout the study
period.

We present the objective function and constraints ap-
plied in the developed model as follows:

Objective function:

minL(μ, f) � 
K

k�1
Wk μk(  + ρU1f, (34)

subject to the following constraints.
Capacity constraint:



K

k�1
μkδ

l
kT≤Cap × f, ∀l ∈ L. (35)

Boundary constraint:

μk ≤ λk t1,k , ∀k ∈ K. (36)

Headway constraint:
T

Hmax
≤f≤

T

Hmin
. (37)

Train unit constraint:

fn1 ≤N. (38)

Variable domain:

μk ≥ 0, ∀k ∈ K, (39)

f ∈ Z
+
. (40)

In addition to the passenger fow control variable μk, an
integer decision variable f was introduced to represent the
scheduled frequency of the vehicles. Te objective function

(34) is developed to minimize the total passenger delay and
the energy consumption. Te frst term of the objective
function is consistent with that used in equation (4). U1
represents the energy cost of one vehicle and ρ denotes the
weight. Constraint (35) ensures that the total passenger
volume on each link does not exceed its transportation
capacity. Constraint (36) restricts the allocated service rate
for a specifc OD pair to be less than or equal to its maximum
arrival rate, avoiding resource waste. Constraint (37) ensures
that the frequency value satisfes the requirements for
maximum and minimum headways between two sequential
vehicles. Constraint (38) is utilized to formulate the available
feet-size constraints. Notably, we did not consider the
connection problem of train carriages at terminal stations on
the unidirectional rail corridor. Constraints (39) and (40)
defne the feasible regions for the two types of decision
variables.

Next, we will discuss the specifc form of energy cost U1.
We assume that the energy cost of a vehicle mainly depends
on its mass, which is identical to its capacity. In this study,
we adopted the energy-cost function proposed by Chen et al.
[37]:

U1 � cf + cv(Cap)
α
, (41)

where Cap represents the capacity of one train. cf denotes
the fxed energy cost, which is independent of the vehicle
capacity. cv is a positive coefcient and α is a power index
with a value of α≤ 1. Te energy cost function exhibits
concavity over the vehicle capacity and shares the properties
of economies of scale.

By substituting equations (4) and (41) into equation (34),
the objective function can be rewritten as follows:

min L(μ, f) � 
K

k�1

9 λk t1,k  − μk 
2

4βk

+ ρ cf + cv(Cap)
α

 f.

(42)
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Figure 5: Optimized service rates for each OD pair under diferent maximum arrival rates.
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6. Numerical Examples

Tis section presents two sets of numerical experiments,
including a three-node network and Beijing Metro Line 1, to
demonstrate the performance and efectiveness of the
proposed approaches. All models were solved using the
general-purpose, high-level Gurobi version 9.1 on a Win-
dows 10 personal computer with an AMD Ryzen 7 5800H
3.20GHz processor and 16GB memory.

6.1. Simple Case. We examined the simple three-node rail
line, as used in Section 4.3, with a link capacity of 1000
passengers. Te time horizon studied lasted from 0 to 17.
Given the estimated time-dependent arrival rate functions of
each OD pair, the optimal passenger service rate for each OD
pair can be calculated by solving the CPFC model (i.e.,
equations (4)–(7) and (2)) in less than 0.01 seconds. Te
arrival rate functions and the optimal service rates for each
OD pair are listed in Table 3.

Te cumulative arrival (CA) and departure (CD) curves
without passenger fow control were plotted according to the
trafc loading simulation procedure detailed in Appendix
B. It is worth noting that, in the absence of passenger fow
control, the service rate of each OD is calculated diferently.
First, the arrival counts of this OD pair are divided by the
total arrival counts of all OD pairs that start from the same
station. Ten, this ratio is multiplied by the remaining
available capacity of the following link during peak periods.
However, if the following vehicle has sufcient capacity to
accommodate all waiting passengers of this OD pair, the
service rate of an OD pair equals the passenger arrival rate.
Te proposed trafc loading procedure without passenger
fow control is consistent with actual passenger
boarding rules.

Figure 6 displays the resulting CA and CD curves for
each OD pair, both with and without fow control, as well as
the total delay. We observe that under the passenger fow
control scenario, the vehicle capacity is prioritized for
passengers with short-distance OD pairs. Notably, the
waiting time of the OD pair (1, 3) with passenger fow
control is signifcantly greater than that in the scenario
without fow control. Tis is because passengers with long-
distance OD pairs would occupy vehicle capacity for an
extended period. Consequently, more passengers with short-
distance OD pairs would have to wait for the next arrival
train, thereby resulting in an increase in waiting time.
Furthermore, the proposed fow control method enhances
the boarding equity for passengers departing from down-
stream stations during peak periods. Tis fnding aligns with
the conclusions presented by Wu et al. [38] and Shang et al.
[39]. Regarding the evaluation of efciency performance, the
total delay under fow control is 18474, marking a reduction
of 13 percent compared to the scenario without passenger
fow control.

To further evaluate the integrated model of passenger
fow control and train frequency setting, we conduct an
additional numerical experiment. Tis experiment uses the
three-node network and employs the time-dependent arrival

rates listed in Table 2. According to the current operational
information of the Beijing metro system, each train has
a capacity of 3000 passengers (six units with 500 passengers/
unit). We set the minimum and maximum headways to
3min and 6min, respectively. Energy cost-related param-
eters cf, cv, α, and ρwere set to 2.049, 0.37, 0.5, and 9.09min/
$, respectively, which were adapted from the work of Chen
et al. [40]. Te integrated model can be solved in
0.01 seconds, yielding optimal service rates for the three OD
pairs as follows: μ1 � 329 and μ2 � μ3 � 553.35. Conse-
quently, with a limited feet size of 45 available, the resulting
scheduled frequency is fve. Te objective function value is
38925.06, comprising a total waiting time of 37910.86 and
a train energy cost of 1014.2. While this study does not
consider other train operation costs (e.g., staf and main-
tenance costs), it should be noted that such costs usually
account for a small percentage of the total cost when
compared to passenger travel costs.

6.2. Large-Scale Experiments. We further examine the ef-
fectiveness of the proposed passenger fow control strategy
on Beijing Metro Line 1, as depicted in Figure 7. Tis rail
corridor comprises 23 stations, including 12 transfer sta-
tions, which are represented as purple circles. Table 4 lists the
names of the stations along with their corresponding
numbers. Tis study only focuses on the direction from
Pingguoyuan station to Sihuidong station. To cover the
entire congestion process from start to dissipation, we
consider the morning peak hours from 7:00 am to 10:00 am
as our time horizon.

We used dynamic travel demand recorded by an au-
tomatic fare collection system on a weekday in February
2017 as input demand data. For transfer passengers with
subroutes on this line, the frst station of the subroute is
considered the origin, and the last station is regarded as
destination. Transfer passengers are identifed within the
transit network using the shortest path method. We do not
introduce demand data preprocessing in detail because it is
beyond the scope of this study. Te total number of trips is
158925. Te uneven demand profles with a 1min collection
resolution among the OD pairs and stations during the
period of interest are depicted in Figures 8 and 9, re-
spectively. Due to space limitations, only a subset of the OD
pairs and stations are marked on the horizontal axis. No-
tably, passenger volumes are extremely high for some sta-
tions, such as Guomao, Dawanglu, Pingguoyuan, and
Wukesong.

Given the predetermined all-stopping pattern and even
headway of the train, the capacity of the sections between
two consecutive stations is set at 500 passengers/min. Te

Table 3: Arrival rate functions and resulting optimal service rates.

OD Arrival rate (passengers/min) Service rate
(passengers/min)

1–3 λ1(t) � 550 − 5× (t − 6)2 μ1 � 397
1-2 λ2(t) � 650 − 6× (t − 6)2 μ2 � 603
2-3 λ3(t) � 750 − 7× (t − 6)2 μ3 � 603
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CPFC model can be solved in 0.02 seconds. Te optimized
collaborative service rate allocation for each OD pair is il-
lustrated in Figure 10. Notably, a greater proportion of
transportation resources is allocated to the frst and last few
stations, which have higher passenger volumes, to reduce
passenger waiting time. Given that this research only

considers one direction of Line 1, only the upper right corner
of the entire demand matrix presents nonnegative
service rates.

Figures 11 and 12 present a comparison of passenger
waiting time distributions, for each OD pair and station,
respectively, with and without the application of the
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Figure 6: Comparison of cumulative arrival (CA) and departure (CD) curves of each OD pair and total waiting time. (a) CA and CD curves
of OD (1, 3). (b) CA and CD curves of OD (1, 2). (c) CA and CD curves of OD (2, 3). (d) Total waiting time of with and without passenger
fow control.
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Figure 7: Beijing Metro Line 1 network.
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Table 4: Station number and corresponding name.

No. Name No. Name No. Name
1003 Pingguoyuan 1011 Junshibowuguan 1019 Dongdan
1004 Gucheng 1012 Muxidi 1020 Jianguomen
1005 Bajiaoyouleyuan 1013 Nanlishilu 1021 Yonganli
1006 Babaoshan 1014 Fuxingmen 1022 Guomao
1007 Yuquanlu 1015 Xidan 1023 Dawanglu
1008 Wukesong 1016 Tiananmenxi 1024 Sihui
1009 Wanshoulu 1017 Tiananmendong 1025 Sihuidong
10010 Gongzhufen 1018 Wangfujing
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Figure 8: Time-dependent demand of each OD pair on Line 1.
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passenger fow control strategy. For illustration, OD pairs
and stations that did not experience any waiting time under
either scenario have not been included. Without passenger
fow control, passengers originating from Pingguoyuan
station (No. 1003) to Babaoshan station (No. 1006) do not
have to wait at the platforms, as they can successfully board

the frst-arrival train. Consequently, there are no waiting
times depicted for OD pairs in Figure 11(a), and for stations
numbered from 1003 to 1006 in Figure 12. As most of the
transportation capacity is utilized by passengers originating
from upstream stations, those departing from the latter
stations often have signifcant difculty boarding the frst-
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Figure 11: Comparison of waiting times for each OD with and without passenger fow control. (a) Waiting times of OD pairs originating
from between Pingguoyuan station (No. 1003) to 2 Babaoshan station (No. 1006). (b) Waiting times of OD pairs originating from between
Yuquanlu station (No. 1007) and Muxidi 1 station (No. 1020).
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arrival train, leading to increased waiting times. Under
a collaborative passenger fow control strategy, the total
waiting time is 347872 with passenger fow control imple-
mented, which represents a 23.2% reduction compared to
the scenario without fow control.

Figure 13 indicates that severe passenger accumulation
mainly occurrs from Yuquanlu station to Muxidi station
without passenger fow control. Tis is largely due to the
high volume of commuters traveling from suburban areas to

downtown during the morning peak period. With passenger
fow control implemented, trafc congestion is shifted to the
frst several upstream stations, specifcally from the Ping-
guoyuan station to the Yuquanlu station. To further reveal
the benefts of congestion shift, Figures 14 and 15 depict the
cumulative passenger arrival and departure counts for the
OD pair fromWukesong to Dawanglu, as well as Wukesong
station, respectively. In Figure 14, the arrival rate begins to
exceed the service rate at approximately 7:30 am, causing

without control
with control
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Figure 13: Time-dependent queue length at station hall.
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Figure 14: Cumulative arrival and departure curves of OD pair
from Wukesong to Dawanglu.
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station.
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passengers to wait in the station hall thereafter. Without
passenger fow control, the cumulative departure curve rises
slowly from 7:30 am to 8:30 am because train capacities are
primarily occupied by passengers originating from upstream
stations. Under passenger fow control, the cumulative
departure curve rises steadily because more transportation
resources can be assigned to this OD pair. In Figure 15, the
curve trends are similar to those observed in Figure 14.
Tose similarities are due to the near-constant ratio of
passenger volume for this OD pair to the total volume
departing from the same station. We can conclude that the
use of our proposed collaborative passenger fow control
strategy allows for a more efcient and equitable distribution
of limited transportation resources.

Subsequently, we evaluated the performance of the in-
tegrated optimization model for passenger fow control and
train frequency settings. Its computation CPU time is

0.02 seconds. We set the minimum and maximum headways
at 2min and 6min, respectively. Te available feet size
stands at 58, with each train having a capacity of 1428
passengers. In addition, the other parameters remain con-
sistent with those used in the experiments on the three-node
network, as detailed in Section 6.1. Figure 16 plots the
optimal service rates for each OD pair over the study period.
Te optimal number of scheduled vehicles stands at 58, with
the total passenger waiting time amounting to 892322.57
and the total energy cost coming in at 8451.8. Interestingly,
the service rate allocation pattern resembles that in Fig-
ure 10. However, the total waiting time was signifcantly
higher than in experiments where frequency settings were
not taken into consideration. Te key distinction between
these two experiments lies in the setting of link capacity.
When implementing a collaborative passenger fow control
strategy, the total passenger waiting time proves to be more
sensitive to the distribution pattern of the optimized service
rates, with transportation capacity following closely.

7. Conclusions

Focusing on a heavily congested urban rail corridor, a col-
laborative passenger fow control strategy was systematically
investigated from a mesoscopic perspective to enhance
transportation efciency and improve passenger service
levels. By formulating the problem using a continuous
optimization method based on classic deterministic queuing
theory, our proposed approach can not only optimize the
passenger fow control strategy directly in large-scale urban
rail lines experiencing time-dependent congestion but also
avoid complex modeling representations for time-
dependent and microscopic passenger and train activities.
By introducing a Lagrangian relaxation solution approach,
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Figure 16: Optimized service rate considering frequency setting.

Table 5: Passenger loading procedure without passenger fow
control.

For each t ∈ T

r Capl(t) � Capl

For each s ∈ S

For each k ∈ K, k(o) � s, k(d)> s

Step 1: calculate number of passengers that can be served
ak(t) � min bk(t), (bk(t)/k′∈K,k(o)�s,k(d)> sbk′(t))r capl(s,s+1)(t) 

Step 2: calculate number of remaining unserved passengers
rk(t) � bk(t) − ak(t)

Step 3: update total number of passengers to be served next time
bk(t + 1) � rk(t) + λk(t + 1)

Step 4: update remaining available capacity for each link
For each l ∈ L

r capl(t) � r capl(t) − ak(t)δl
k
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an analytical solution was derived to quickly generate
a reasonable passenger fow control strategy for real-world
scenarios. By further developing an integrated passenger
fow control strategy and train frequency setting model, our
proposed approach can fully incorporate the interacting
relationship between passenger demand and limited
transportation resource. Te optimization procedure of the
passenger fow control strategy can assist urban rail oper-
ators in redistributing the transportation capacity more
efciently and equitably.

Te proposed method provides a practical passenger
fow control strategy, which can be efectively and quickly
implemented for congested urban rail transit systems. Under
this collaborative passenger boarding strategy, the system
passenger waiting time is signifcantly reduced compared to
scenarios without passenger fow control. Limited trans-
portation capacity can also be fully utilized. Furthermore,
the proposed joint control strategy can prevent passenger
accumulation on platforms, thereby reducing potential ac-
cident risks and train delays. Te passenger service quality
and train operational efciency are enhanced to a large
extent. Te proposed method is applicable to passenger
demand management in the daily operation of rail systems
and provides a tool for operators to schedule passengers
collaboratively. Tis research sheds new light on un-
derstanding, modeling, and systematically optimizing
passenger-oriented service concept and train schedules.

Our model only considers deterministic passenger de-
mand and train timetable as input. Passenger fow control
models were formulated based on deterministic demand
distribution characteristics and predetermined train time-
tables. Besides, our developed approaches only consider
a single rail line, neglecting complicated passenger route
choice behaviors within a transportation network. Based on
the abovementioned limitations, future research should
concentrate on developing a model based on the following
considerations. (1) In practical operations, unexpected
events often disrupt regular train schedules and passenger
demand is highly elastic owing to bad weather or other
irregular occurrences. Terefore, exploring fexible fow
control strategies applied to elastic demand and timetables is
an essential topic for future research. (2) We will focus on
generating a passenger fow control strategy that considers
complex transfer activity and route choice behavior under
a network-based train schedule in the future.

Appendix

A. Performance evaluation based on point
queue theory

Te passenger waiting time calculation method is in-
spired by Newell’s deterministic fuid approximation
model [35]. In oversaturated urban rail systems, the
travel demand is relatively concentrated during peak

hours; we therefore approximate the time-dependent
passenger arrival rates using a polynomial function.
Accordingly, the passenger waiting time can be derived
conveniently.

Taking a specifc OD pair as an example, Figure 2 shows
how the total delay depends on the service rate μ with given
an approximate deterministic cumulative arrival count A(t).
As shown, the cumulative departure curve D(t) follows A(t)

very closely (essentially zero queue) until time t0 when the
arrival rate λ(t) is equal to the constant service rate μ. A
queue Q(t) starts to form at time t0, reaches a maximum at
time t2, and vanishes at time t3 when the total service count
has caught up with the arrivals, that is, D(t3) − D(t0)

� A(t3) − A(t0) � D. We can conveniently draw graphs of
the actual arrival rate λ(t) and service rate μ, as shown in
Figure 2. λ(t) gradually increases from t0 and reaches
a maximum at t1 and decreases until it is equal to μ again at
time t2.

Practically, the passengers of each OD pair arrive at their
origin station continuously according to a certain time-
dependent pattern. Tus, we assume that the passenger
arrival rate λk(t) of kth OD pair follows a polynomial trend
with respect to the time. We denote t1,k as the time with the
maximum arrival fow rate of kth OD pair, as shown in
Figure 2. According to the Taylor series expansion, the time-
dependent passenger arrival rate λk(t) can be adequately
represented by an nth-order polynomial function at times
t1,k

λk(t) � λk t1,k  + λk
′ t1,k  t − t1,k  +

1
2
λ

k

″ t1,k  t − t1,k 
2

+ . . . +
1
n!
λ

(n)

k
t1,k  t − t1,k 

n
+ Rn(t),

(A.1)

where λ(n)
k (t1,k) denotes the nth-order derivative at t1,k, and

Rn(t) is the remainder term of the Taylor’s formula.
Newell assumed that the passenger arrival rate near time

t1,k can be approximated by a quadratic function [35]. As
a result, equation (A.1) degenerates into

λk(t) � λk t1,k  + λk
′ t1,k  t − t1,k  +

1
2
λ

k

″ t1,k  t − t1,k 
2
.

(A.2)

Evidently, λk
′(t1,k) � 0, and letting βk � −1/2λk

″(t1,k),
equation (A.2) can be rewritten as follows:

λk(t) � λk t1,k  − βk t − t1,k 
2
. (A.3)

For simplicity, we assume that the permitted service rate
of kth OD pair is constant, that is, μk. As shown in Figure 2,
both t0,k (represented as t0) and t2,k (represented as t2)
denote times when μk is equal to λk(t), that is, μk � λk(t0,k)

� λk(t2,k)
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μk � λk t1,k  − βk t0,k − t1,k 
2

� λk t1,k  − βk t2,k − t1,k 
2
.

(A.4)

We can then obtain two real roots of t0,k and t2,k as
follows

t0,k � t1,k −
λk t1,k  − μk

βk

⎡⎣ ⎤⎦

1/2

,

t2,k � t1,k +
λk t1,k  − μk

βk

⎡⎣ ⎤⎦

1/2

.

(A.5)

According to the assumption of a quadratic λk(t), the
function λk(t) − μk has zeros at t � t0,k and t � t2,k, and the
second derivative with respect to t is −2βk. Now, we can
write λk(t) − μk in factored form:

λk(t) − μk � βk t − t0,k  t2,k − t . (A.6)

Te queue length at any time t0,k < t< t3,k can be cal-
culated as follows:

Qk(t) � Ak(t) − Dk(t) � 
t

t0,k

λk(τ) − μk dτ. (A.7)

By substituting equation (A.6) into equation (A.7), we
can obtain the time-dependent queue length as

Qk(t) � βk t − t0,k 
2 t2,k − t0,k 

2
−

t − t0,k 

3
⎡⎣ ⎤⎦. (A.8)

Te queue length has a maximum at time t2,k

Qk t2,k  �
βk

6
t2,k − t0,k 

3
�
4 λk t1,k  − μk 

3/2

3βk
1/2 . (A.9)

Te queue dissipates at time t3,k, that is, Qk(t3,k) � 0, and
t3,k can be derived as follows:

t3,k � t0,k +
3
2

t2,k − t0,k  � t0,k + 3 t1,k − t0,k . (A.10)

Terefore, equation (A.8) can be rewritten as follows:

Qk(t) �
βk

3
t − t0,k 

2
t3,k − t . (A.11)

Te total delay over the peak period is equal to the area
between Ak(t) and Dk(t) in Figure 2, which can be calculated
by integrating equation (A.11) between times t0,k and t3,k

Wk � 
t3,k

t0,k

βk

3
τ − t0,k 

2
t3,k − τ  dτ

�
9 λk t1,k  − μk 

2

4βk

.

(A.12)

Noticeably, the total delay over the rush over is quadratic
with respect to the service rate μk given an estimated time-
dependent passenger arrival rate λk(t).

B. Passenger loading procedure without
passenger flow control

Table 5 provides the passenger loading procedure within
transportation capacity to capture passenger boarding and
alighting activities without passenger fow control. For
convenience, the following notations used in the proposed
algorithm are frst introduced.

ak(t): number of passengers of OD pair k that can be
served at time t
rk(t): number of remaining unserved passengers of OD
pair k at time t

bk(t): total number of passengers of OD pair k waiting
to be served at time t, which equals the sum of the
remaining passengers at time t − 1 and passengers
arriving at time t

r capl(t): remaining available capacity of link l at time t

l(s, s + 1): link l with start station s and end station s + 1
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