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Accurate estimation of the road adhesion coefcient can help drivers and vehicles perceive changes in road state efectively,
reducing the occurrence of trafc crashes accordingly. Terefore, this paper proposes a road adhesion coefcient estimation
method based on vehicle-road coordination and deep learning. Firstly, a vehicle-based data feedback system combined with
a vehicle-road network cloud is introduced, and CarSim simulation is used to expand the data set and train the model efectively.
Ten, the dynamic analysis of the whole vehicle is carried out, and the vehicle operation data related to the adhesion coefcient are
obtained as the input of the estimation model. Ten a combined model of road adhesion coefcient estimation based on self-
attention (SA), convolutional neural network (CNN), and long short-termmemory (LSTM) is established, to reduce the instability
of the prediction, Q-learning is used to optimize the weight of the model. Finally, the model is verifed by the simulation data and
the actual vehicle-based data. Te results show that the vehicle-based data feedback system combined with the vehicle-road
network Ccloud is efective, and compared with other commonly used model, the estimation model proposed in this paper can
efectively predict the road adhesion coefcient.

1. Introduction

With the growth of car ownership and the increase in
people’s travel frequency, the incidence of trafc accidents
also grows. Te reduction of the road friction coefcient
caused by weather and other environmental conditions is an
important factor in inducing these accidents. Especially in
conditions with poor road adhesion and abrupt changes, the
driver’s ability to judge road safety is weakened, which is
very easy to result in the vehicle’s crash and sideslip [1]. In
order to reduce the occurrence of crashes, cooperative ve-
hicle infrastructure system has become an inevitable trend.
Te efective estimation of the road adhesion coefcient is
helpful for the system to change the control strategy in due
course and reduce the occurrence of accidents [2].

Scholars around the world have carried out many re-
search studies in the feld of adhesion coefcient estimation

for decades and achieved a series of results. Generally, the
methods can be divided into cause-based and efect-based.

Te cause-based methods predict the adhesion co-
efcient by collecting road surface information and com-
bining previous experience [3]. Tis method can identify the
road adhesion coefcient in real time under any working
environment, but it needs to add additional sensors and
other facilities, with high cost and high requirements for the
installation position and durability of the sensors. Morii
et al. [4] emit a high-power laser on the road and estimate
the road condition according to the feedback information.
Ko et al. [5] proposed to directly measure road materials and
surface roughness through optical sensors so as to judge
road type and predict adhesion coefcient. Hong et al. [6]
proposed using acoustic sensors to measure the noise of tire
to identify the road adhesion coefcient. However, the noise
is easily afected by the environment, and the noise signal is
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complex, so this method is difcult to estimate accurately.
Paulo and Coelho [7] used a combination of Bayesian
analysis and a neural network to classify the road through
the sound signal of the tire contacting the ground and the
macrotexture information collected by the contour curve
instrument.

Te development and application of connected auto-
matic vehicles and cooperative vehicle infrastructure system
can create an efective channel for data collection between
driving environment and vehicles, and these data can be
used to estimate the road adhesion coefcient. Te efect-
based estimation method is used to estimate the road ad-
hesion coefcient by detecting the motion response of the
vehicle body and wheels caused by the road condition. Many
studies have used vehicle dynamics models or various tire
road models. Such methods generally do not need to add
additional sensors, and do not require serious working
environment; so they have attracted dramatic attention.
Enisz et al. [8] proposed to estimate the maximum and
instantaneous value of the tire road adhesion coefcient
based on magic tire formula and the extended Kalman flter
algorithm. Ma et al. [9] proposed to estimate the sideslip
angle of the tire through the unscented Kalman flter, and
then formulated the identifcation rules of the adhesion
coefcient in combination with the positive torque of
a single wheel. Peng et al. [10] estimated the tire force by
designing a flter observer, and then designed a nonlinear
observer to estimate the adhesion coefcient at the same
time. Ping et al. [11] proposed an adaptive road adhesion
coefcient estimation scheme using weighted attenuation
memory unscented Kalman flter to improve the accuracy.
Hu et al. [12] used the extended Kalman flter to estimate the
lateral speed of the vehicle, and then successively designed
two traceless Kalman flters to estimate the tire force and
adhesion coefcient, respectively, reducing the computa-
tional burden. Shao et al. [13] proposed an innovative
optimization-based framework for road adhesion estima-
tion. Tis framework implements a grid search method for
solving nonconvex optimization problems, which can esti-
mate μ Max and sideslip angle accurately in real time
without making good initial guesses on nonconvex
optimization.

Te traditional tire road model relies on the professional
testing of tires to collect optical, acoustic, or other physical
signals. After changing the tire or vehicle parameters, its
characteristic curve will be changed accordingly. With the
development of artifcial intelligence, deep learning and
reinforcement learning are gradually being applied to the
feld of trafc control and optimization [14]. Terefore,
many scholars have applied the deep learning model to the
estimation of road adhesion coefcients in recent years,
which has gradually become a research hotspot [15]. Sun
et al. [16] proposed an improved algorithm based on the
forgetting Kalman flter by adding a forgetting factor to
estimate the slope of the curve under low slip rates. Li et al.
[17] proposed a road friction coefcient identifcation
method based on support vector machine (SVM), which can
efectively identify the road adhesion coefcient in the
steering process under diferent road conditions. Based on

the analysis of vehicle dynamics, Kim et al. [18] used the slip
ratio, normalized longitudinal force, and longitudinal ac-
celeration as inputs and used SVM and DNN models to
predict the friction coefcient between tire and road. Te
results showed that DNN has higher accuracy. Ribeiro et al.
[19] used the data of vehicle speed, acceleration, yaw angle,
and other data combined with a time delay neural network
(TDNN) to estimate the road adhesion coefcient and
achieved good results. Choi et al. [20] proposed to combine
the longitudinal and transverse tire brush models, and
through the linear recursive least squares method, it has
a good recognition efect on the road. Eldar et al. [21]
proposed using video data to estimate the friction coefcient
and improving vehicle dynamics control through the anti-
brake system.

To sum up, in the feld of road adhesion coefcient
estimation, the cause-based method has high requirements
for equipment. Te empirical model or tire-road model in
the efect-based method lacks portability, and the charac-
teristic curve is easy to change. In the aspect of machine
learning, scholars often use a single deep neural network
(DNN) model as the main deep learning model at present,
and there is still room for improvement in the ability to
process nonlinear data and increase prediction accuracy
only by relying on the fully connected neural network. In
order to fully use the vehicle operation data to serve the
vehicles and trafc in real time, it has gradually become a hot
direction to integrate and calculate the data of vehicle op-
eration and establish an intelligent connected system by
using cutting-edge information and communication tech-
nologies such as cloud computing, 5G, and the Internet of
Tings.

Terefore, this paper proposes a new method to estimate
the road adhesion coefcient based on the vehicle-based data
feedback system combined with the vehicle-road network
cloud. Firstly, the system is introduced, and to expand the
data set and facilitate model training, vehicle operation data
under diferent road conditions are collected through
CarSim simulation in Section 2. Ten, the dynamics of the
whole vehicle is analyzed to determine the input vector of
the model in Section 3. Section 4 introduces a combined
model of deep learning. SA-CNN-LSTM is built to predict
the adhesion coefcient. Aiming at the problem that the
predicted value of the model exceeds the range of common
sense, reinforcement learning is proposed to improve the
combined model of deep learning. Te simulation data and
the collected real vehicle-based data are used to verify the
model in Section 5. Section 6 concludes with the contri-
butions of this research.

2. Data Collection

2.1. Vehicle-Based Data Feedback System Combined with
Vehicle-Road Network Cloud. Tis paper uses the vehicle-
based data feedback system that incorporates the vehicle,
road, network, and cloud in Hebei Province, China. Te
vehicle-based data feedback system establishes a data ex-
change and integrated system with the traditional network
inside the vehicle (CAN, Lin, vehicle-based Ethernet, etc.)
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and the wireless communication network in the wide area
(4G/5G cellular, C-V2X) to connect the vehicle operation
data with the trafc management information. It aims to
establish a new collaboration system between the vehicle
operation system and the road that uses vehicle data as
microscopic input, uses macroscopic data on integrated road
trafc, and provides services for individual vehicles as a way
of trafc management and applications. Te composition of
the vehicle-based data feedback system is shown in Figure 1.
Te overall technical architecture consists of cloud plat-
forms, intelligent infrastructure on the roadside, and in-
telligent vehicle terminals.

In the vehicle-based data feedback system, the intelligent
terminal of the vehicle can sense the vehicle information in
real time, obtain the vehicle operation data, and transmit the
data to the cloud computing platform. Te intelligent in-
frastructure of the road section can monitor the road status
in real time, realize the road digitization, and transmit the
road trafc information to the cloud platform. Te cloud
platform completes the collaborative perception decision of
vehicles and realizes the collaborative control with road
sections through calculation.

Te characteristics and core technologies of the vehicle-
based data feedback system are diferent from traditional
collaboration between vehicle and road in three ways.
Firstly, it provides an integrated technological system with
the networks for vehicles, roads, and third-party data
standards. Secondly, it establishes a communication con-
nection between networks in vehicles and the trafc envi-
ronment of the road, collects vehicles’ operation data,
transports them to the cloud, and calculates the data from
the roadside and cloud. Tirdly, it makes full use of cloud
computing platform technology to construct fundamental
data formation based on vehicle-based feedback. It also does
data mining on the basis of a data warehouse with multiple
sources and purposes. Te vehicle-based data feedback
system is an application system that is driven by a centralized
platform, which is based on a uniform fundamental data
standard. It has a high degree of scalability in terms of the
integration of vehicle, road, network, and cloud.

Te vehicle-based data system can provide real-time
vehicle operation data through intelligent vehicle termi-
nal, as shown in Figure 2. Te collected data includes vehicle
number, longitude, latitude, speed, lateral acceleration,
steering angle, longitudinal acceleration, yaw rate, wheel
angular speed, operating mode of ACC (adaptive cruise
control), status of ABS (antilock braking system), and other
felds. Te data are stored in the cloud platform and the time
interval of data is 100ms.

2.2. Simulation Data. Due to the limitations of sensors and
other factors, the vehicle-based system cannot obtain the
value of the road adhesion coefcient in real time. In the
process of establishing the estimation model of travel road
adhesion coefcient and evaluating the model, it is necessary
to have the vehicle operation data under the condition of
a known road adhesion coefcient. Te process of using the
traditional single-wheel lateral force test vehicle is complex,
and it will afect the normal travel of other people. Te cost
of collecting vehicle operation data through the system is
also high. Terefore, this paper expands the data set through
Carsim simulationand uses the simulation data to train the
deep learning model, which will be introduced in Section 4.

In CarSim simulation, this paper constructs two kinds of
travel roads, straight and circular, with the speed set at
0–120 km/h, accelerating frst and then decelerating. In
order to cover more diferent scenarios, the adhesion co-
efcient of road is divided into two categories: fxed adhesion
coefcient and variable adhesion coefcient. Tere are three
kinds of roads with fxed adhesion coefcient: low adhesion
coefcient roads with adhesion coefcient of 0.2, medium
adhesion coefcient roads with adhesion coefcient of 0.5,
and high adhesion coefcient roads with adhesion coefcient
of 0.8. Tere are two types of roads with variable adhesion
coefcient: roads with increasing adhesion coefcient (road
adhesion coefcient is divided into four sections: 0.1, 0.3, 0.6,
and 0.9), and roads with decreasing adhesion coefcient
(road adhesion coefcient is divided into four sections: 0.9,
0.6, 0.3, and 0.1). Some parameters of the vehicle model
simulated by CarSim are shown in Table 1. Te simulation
data are collected once every 100ms, and the simulation
time of each experiment is 40 seconds.

3. Vehicle Dynamics Analysis

3.1. Force Analysis of the Whole Vehicle. Firstly, the stress of
the whole vehicle and each tire of the vehicle should be
analyzed. Te transverse and longitudinal stresses of the
whole vehicle are as follows:

max � Fx1 + Fx2( 􏼁 cos δ − Fy1 + Fy2􏼐 􏼑 sin δ + Fx3 + Fx4,

may � Fx1 + Fx2( 􏼁 sin δ + Fy1 + Fy2􏼐 􏼑 cos δ + Fy3 + Fy4,

(1)

where m represents the mass of the whole vehicle; ax and ay

represent the lateral and longitudinal acceleration of the
vehicle; δ represents the angle of the front wheel of the
vehicle; Fx1, Fx2, Fx3, and Fx4, respectively represent the
lateral forces of the left front wheel, the right front wheel, the
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Intelligent Vehicle Terminal

Figure 2: Vehicle collecting data.
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Figure 1: Structure of the data feedback system.

Table 1: Vehicle model parameters of CarSim.

Vehicle condition Value
Vehicle quality 2335 kg
Vehicle length∗width∗ height 5035∗1989∗1778mm
Tire diameter 20 inches
Vehicle wheelbase 3008mm
Minimum ground clearance 190mm
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left rear wheel, and the right rear wheel of the vehicle; Fy1
andFy2 represent the lateral force of the left front wheel and
the left rear wheel of the vehicle, respectively.

Te vertical load calculation formula of each tire is

Fz1 �
mglr( 􏼁

2 lf + lr􏼐 􏼑􏼐 􏼑
−

maxh( 􏼁

2 lf + lr􏼐 􏼑􏼐 􏼑
−

maylrh􏼐 􏼑

2 lf + lr􏼐 􏼑dr􏼐 􏼑
−

K1χ
2df

􏼠 􏼡,

Fz2 �
mglr( 􏼁

2 lf + lr􏼐 􏼑􏼐 􏼑
−

maxh( 􏼁

2 lf + lr􏼐 􏼑􏼐 􏼑
+

maylrh􏼐 􏼑

2 lf + lr􏼐 􏼑dr􏼐 􏼑
+

K1χ
2df

􏼠 􏼡,

Fz3 �
mglf􏼐 􏼑

2 lf + lr􏼐 􏼑􏼐 􏼑
+

maxh( 􏼁

2 lf + lr􏼐 􏼑􏼐 􏼑
−

maylfh􏼐 􏼑

2 lf + lr􏼐 􏼑dr􏼐 􏼑
−

K2χ
2dr

􏼠 􏼡,

Fz4 �
mglf􏼐 􏼑

2 lf + lr􏼐 􏼑􏼐 􏼑
+

maxh( 􏼁

2 lf + lr􏼐 􏼑􏼐 􏼑
+

maylfh􏼐 􏼑

2 lf + lr􏼐 􏼑dr􏼐 􏼑
+

K2χ
2dr

􏼠 􏼡,

(2)

where Fz1, Fz2, Fz3, and Fz4 represent the vertical force of the
four tires; g represents the gravitational acceleration; lf and
lr represent the distance from the center of mass to the front
axle and the rear axle, respectively; dr and df represent the
track width of the front wheel and the rear wheel, re-
spectively; K1 and K2 represent the front axle roll stifness
and the rear axle roll stifness, respectively; and χ indicates
the body roll angle.

3.2. Tire Model. Te Dugof tire model [22] requires few
parameters and has simple expression. Terefore, this paper
selects the Dugof model to express tire characteristics. Te
specifc formula is as follows:

Fyi �
Cy tan αi

1 + αi( 􏼁
􏼠 􏼡f λi( 􏼁, (3)

Fxi �
Cxσi

1 + σi( 􏼁
f λi( 􏼁, (4)

f λi( 􏼁 �
1, λi ≤ 1,

2 − λi( 􏼁λi, λi > 1,
􏼨 (5)

σi �
Rwi − vi

max Rwi, vi( 􏼁
, (6)

λi �
μFzi 1 + σi( 􏼁

������������������

Cxσi( 􏼁
2

+ Cy tan αi􏼐 􏼑
2

􏽱 , (7)

where Cy and Cx represent the longitudinal stifness and
lateral stifness of the tire, respectively; σi represents the
longitudinal slip ratio; αi represents the sideslip angle of the
tire; μ represents the adhesion coefcient of road; λi > 1
indicates that the wheel is in the linear state region; λi ≤ 1
indicates that the wheel is in the nonlinear state region; vi

represents the center speed of the tire; R represents the tire
radius; wi represents the wheel angular speed; and

i(i � 1, 2, 3, 4) represents the left front wheel, the right front
wheel, the left rear wheel, and the right rear wheel,
respectively.

Te formula of the tire sideslip angle is

α1 � δ − arctan
vy + lfwr

vx − bf/2􏼐 􏼑wr

⎛⎝ ⎞⎠,

α2 � δ − arctan
vy + lfwr

vx + bf/2􏼐 􏼑wr

⎛⎝ ⎞⎠,

α3 � −arctan
vy − lrwr

vx − br/2( 􏼁wr

􏼠 􏼡,

α4 � −arctan
vy − lrwr

vx + br/2( 􏼁wr

􏼠 􏼡.

(8)

3.3. Input ofNeuralNetwork. By substituting the expressions
of Fx and Fy of the tire model into the force analysis of the
whole vehicle, the following can be obtained:

max �
Cxα1
1 + σ1( 􏼁

􏼠 􏼡 cos δ −
Cy tan α1
1 + σ1( 􏼁

􏼠 􏼡 sin δ􏼠 􏼡 2 − λ1( 􏼁λ1

+
Cxα2
1 + σ2( 􏼁

􏼠 􏼡 cos δ −
Cy tan α2
1 + σ2( 􏼁

􏼠 􏼡 sin δ􏼠 􏼡 2 − λ2( 􏼁λ2

+
Cxα3
1 + σ3( 􏼁

􏼠 􏼡 2 − λ3( 􏼁λ3

+
Cxα4
1 + σ4( 􏼁

􏼠 􏼡 2 − λ4( 􏼁λ4.

may �
Cxα1
1 + σ1( 􏼁

cos δ +
Cy tan α1
1 + σ1( 􏼁

sin δ􏼠 􏼡f λ1( 􏼁

+
Cxα2
1 + σ2( 􏼁

cos δ +
Cy tan α2
1 + σ2( 􏼁

sin δ􏼠 􏼡f λ2( 􏼁

+
Cxα3
1 + σ3( 􏼁

f λ3( 􏼁 +
Cxα4
1 + σ4( 􏼁

f λ4( 􏼁.

(9)

Te expressions of f(λi) and λi are shown in equations
(5) and (7). Terefore, when the wheel is in the nonlinear
state region, max and may can be regarded as a quadratic
function of μ, and it can be concluded that the road adhesion
coefcient is related to the longitudinal slip rate σi, tire
sideslip angle αi, front wheel angle of the vehicle δ, longi-
tudinal acceleration ax, and lateral acceleration ay. When
the wheel is in the linear state region, the road adhesion
coefcient μ is related to the longitudinal slip rate σi and the
tire side slip angle αi, but the longitudinal slip rate and the
tire side slip angle are difcult to measure in the actual
vehicle operation. However, they can be obtained from the
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vehicle speed and the tire angular speed. Terefore, the yaw
rate, longitudinal speed, lateral speed, and angular speed of
each wheel are taken as the inputs of the road adhesion
coefcient prediction model.

4. The Estimation Model of the Road
Adhesion Coefficient

Te road adhesion coefcient estimation model established
in this paper includes two parts: the combined deep learning
prediction model and the reinforcement learning optimi-
zation model, as shown in Figure 3. Each model will be
described in detail later.

Te combined deep learning prediction model is com-
posed of self-attention, CNN, and LSTM. Tere is a spatial
correlation between vehicle speed, yaw angle, and wheel
angular velocity at the same time. In the process of vehicle
operation, there is temporal continuity between adjacent
times. Previous studies have shown that the convolution
operation of CNNhas strong advantages in extracting spatial
features of data [23]. Due to its long-term memory function,
LSTM can efectively extract temporal features [24].
Terefore, the combinationmodel built in this paper is based
on CNN-LSTM [25]. In addition, since the advent of self-
attention, it has been widely used in many felds and can
mine the correlation between original data. Terefore, this
paper adds a self-attention mechanism to the CNN-LSTM to
help the model capture the relationship between vehicle
operation data and road adhesion better. In order to improve
the generalization ability of the model and make it learn
more efective features from the limited data, K-fold cross-
validation is used in the training process. Diferent parts of
the original data are divided into a training set and a vali-
dation set many times.

During the training set prediction of the combined
model, the predicted value of the adhesion coefcient may be
greater than 1 or less than 0. Te paper used the idea of
reinforcement learning to solve this problem. Reinforcement
learning methods emphasize how to act based on the en-
vironment to maximize the expected benefts, that is, how
the agent can produce the behavior that can obtain the
maximum benefts under the reward and punishment
mechanisms given by the environment. In this paper, action
refers to the weight and bias of the model, which are ob-
tained through training, and output refers to the predicted
value of the road adhesion coefcient by the model. Te
reward mechanism is set so the the predicted value of the
adhesion coefcient is between 0 and 1. If the predicted value
of the adhesion coefcient is less than 0 or greater than 1,
a penalty will be given.

4.1. Self-Attention. Attention mechanism has gradually
become the focus of research in recent years, and it is used to
solve various problems [26]. Te use of self-attention makes
the model easier to capture long-distance interdependent
features [27], which will directly connect any two features in
the data.

Q � W
q
X

i
,

K � W
k
X

i
,

V � W
v
X

i
,

Attention(Q, K, V) � softmax
QK

T

��
dk

􏽰􏼠 􏼡V,

(10)

where Xi is the model input sequence matrix; Wq, Wk, and
Wv represent the weight matrix; Q, K, and V represent the
query vector, key vector, and value vector, respectively. dk

represents a dimension of a query vector and a key vector.

4.2. CNN. One-dimensional CNN has good performance in
extracting spatial features of time series data [28]. To en-
hance the feature extraction ability of the model for non-
linear data [29], the CNN constructed in this paper includes
two convolution layers and a pool layer.

Te convolution layer uses the same kernel to traverse
the input according to a fxed step size. At each position
traversed, the convolution kernel and the neurons of the
upper layer perform convolution operation. Te operation
formula is

y
(i,j)

� w∗x
(i,j)

, (11)

where w represents the weight of the convolution kernel,
x(i,j) represents the convolution region with the start (i, j),
and y(i,j) represents the result of convolution.

In order to reduce the number of parameters and avoid
overftting, this paper uses maximum pooling, that is, for
each region of the feature, only the maximum value is
retained.

4.3. LSTM. LSTM is an improved recurrent neural network
(RNN). Its structure includes a group of interconnected
recurrent networks [30]. Each network contains three units:
input gate, output gate, and forgetting gate, which re-
spectively correspond to the input sequence and the previous
state. Te model process is as follows:

ft � σ Wf ht−1, xt􏼂 􏼃 + bft􏼐 􏼑,

it � σ Wi ht−1, xt􏼂 􏼃 + bi( 􏼁,

􏽥Ct � tan h WC ht−1, xt􏼂 􏼃 + bC( 􏼁,

Ct � ftCt−1 + it
􏽥Ct,

ot � σ Wo ht−1, xt􏼂 􏼃 + bo( 􏼁,

ht � ot ∗ tan h Ct( 􏼁,

(12)

where ft, it, and ot represent the vector calculation function
of forgetting gate, input gate, and output gate; 􏽥Ct represents
the candidate state information; σ represents the sigmoid
function, Wf, Wi, Wc, and Wo represent the weight matrix;
bft, bi, bc, and bo represent the ofset term; xt represents the
operation data of the vehicle at the time t; Ct−1 represents the
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memory of the previous time; ht represents the LSTM output
vector; and tanh represents the tanh function.

4.4. Q-Learning. In the feld of reinforcement learning, Q-
learning is one of the most widely used algorithms [31]. Its
idea is to directly optimize an iteratively computed Q
function, which represents the expectation of the return
obtained by executing an action in a certain state and then
executing it according to the optimal action sequence. Te
algorithm is widely used in trafc control and optimization.
Trough the Q-learning algorithm, the weight and bias
terms of the combined deep learning model can be adjusted.
By continuously giving punishment feedback, the road
adhesion coefcient can be stabilized within the normal
range, and the situation where the adhesion coefcient is less
than 0 or greater than 1 is alleviated. According to Bellman’s
equations, the update formula of Q function is as follows
[32]:

Q st, at( 􏼁←Q st, at( 􏼁 + β rt+1 − Q st, at( 􏼁 + cmaxQ st+1, at+1( 􏼁􏼂 􏼃,

(13)

where β represents the learning rate, c represents the dis-
count factor, and rt+1 represents the real-time reward ob-
tained by taking action at in the state st. Select the largest
Q(st+1, at+1) from the next state st+1. Q(st+1, at+1) value
multiplied by decay c. In addition, the true return value is
the most realistic, and Q(st, at) in the past Q table is used as
the estimate.

5. Case Analysis

5.1. Simulation Data. Te simulation data are divided into
training set and test set by 4 :1. DNN [18], CNN, and
ConvLSTM are compared. Te root mean square error
(RMSE) and mean absolute error (MAE) are used to
measure the prediction error. Te formula is as follows:

RMSE �

������������

1
n

􏽘

n

i�1
pi − yi( 􏼁

2

􏽶
􏽴

,

MAE �
1
n

􏽘

n

i�1
pi − yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

(14)

where pi represents the predicted value of the model, yi is
the real value of the adhesion coefcient, and n represents
the amount of data.

In each case, two experiments were conducted. Te frst
experiment was used for model training, and the second
experiment was used for model verifcation. When the road
adhesion coefcient is stable, the real value of the simulation
data of the second experiment is randomly selected and
compared with the predicted value of each model. When the
road adhesion coefcient changes, the real value near the
sudden change point of the road adhesion coefcient in the
second experiment is selected to compare with the predicted
value of various models. Te prediction results are shown in
the following fgure and table. Te abscissa in the fgure
represents the sequence of selecting the display points, and
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Figure 3: Structure of the adhesion coefcient estimation model.
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the ordinate represents the predicted value of the road
surface adhesion coefcient.

Under the condition of low adhesion coefcient, the
efect of each model is shown in Figure 4 and Table 2.

Under the condition of low adhesion coefcient road,
compared with common models, the combined model
proposed in this paper reduces RMSE by 29.41% and MAE
by 33.3%. Te improved combination model can further
reduce 25% and 20% in the two indexes.

Under the condition of medium adhesion coefcient, the
efect of each model is shown in Figure 5 and Table 3.

Under the condition of medium adhesion coefcient
road, compared with common models, the combined model
proposed in this paper reduces RMSE by 25.57% and MAE
by 25%. Te improved combination model can further re-
duce 20% and 22.2% in the two indexes.

Under the condition of high adhesion coefcient, the
efect of each model is shown in Figure 6 and Table 4.

Under the condition of high adhesion coefcient road,
compared with common models, the combined model
proposed in this paper reduces RMSE by 27.78% and MAE
by 25%. Te improved combination model can further re-
duce 23.1% and 10% in the two indexes.

Under the condition of increasing adhesion coefcient,
the efect of each model is shown in Figure 7 and Table 5.

Under the condition of increasing adhesion coefcient,
compared with common models, the combined model
proposed in this paper reduces RMSE by 19.23% and MAE
by 22.2%. Te improved combination model can further
reduce 23.8% and 21.4% in the two indexes.

When the adhesion coefcient decreases, the efect of
each model is shown in Figure 8 and Table 6.

Under the condition of increasing adhesion coefcient,
compared with common models, the combined model
proposed in this paper reduces RMSE by 8% and MAE by
21.1%.Te improved combination model can further reduce
21.7% and 13.3% in the two indexes.

5.2. Real Vehicle-Based Data. In order to carry out the real
vehicle test, the test vehicle and the cloud platform of the
vehicle-based data feedback system are built. Te test vehicle
is equipped with an intelligent vehicle terminal. Te built
cloud platform can obtain the data of vehicle operation in
real time, calculate the estimated adhesion coefcient, and
record the results. A single-wheel transverse force coefcient
test vehicle is selected for the comparative test. Te vehicle
has two test wheels, left and right, which can output the test
data of the transverse force coefcient of the road under the
wheel in wet conditions.

Te real vehicle test is carried out on the forward and
reverse roads of the 10 km expressway. Te weather con-
dition on the test day was fne. Because the friction co-
efcient estimation algorithm requires the vehicle to have
accelerations, the test vehicle drives by accelerating frst and
then decelerating until the test section is completed.

Table 2: Comparison of prediction results under low adhesion
coefcient.

Model RMSE MAE
DNN 0.034 0.029
CNN 0.017 0.015
ConvLSTM 0.025 0.021
SA-CNN-LSTM 0.012 0.010
Improved SA-CNN-LSTM 0.009 0.008
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Figure 5: Comparison of prediction results under medium ad-
hesion coefcient.
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Figure 4: Comparison of prediction results under low adhesion
coefcient.
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In the experiment, the adhesion coefcient of the dry
road is estimated by the method proposed in this paper,
while the transverse force coefcient of the wet road is
obtained by the single-wheel transverse force test vehicle.
Although the operating conditions are diferent, the two
results are interrelated. First of all, the total tire adhesion is
a vector, and the utilization efect is equivalent in the lon-
gitudinal or transverse direction. Secondly, there is a pro-
portional relationship between the friction coefcient of the
same road under dry and wet conditions. Average the results
of the two methods in each test group and calculate the ratio
of the mean values of the two methods to obtain Table 7.
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Figure 6: Comparison of prediction results under high adhesion
coefcient.

Table 4: Comparison of prediction results under high adhesion
coefcient.

Model RMSE MAE
DNN 0.037 0.031
CNN 0.018 0.016
ConvLSTM 0.026 0.012
SA-CNN-LSTM 0.013 0.010
Improved SA-CNN-LSTM 0.010 0.009
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Figure 8: Comparison of prediction under the condition of de-
creasing adhesion coefcient.

Table 3: Comparison of prediction results under medium adhesion
coefcient.

Model RMSE MAE
DNN 0.029 0.025
CNN 0.014 0.012
ConvLSTM 0.018 0.016
SA-CNN-LSTM 0.010 0.009
Improved SA-CNN-LSTM 0.008 0.007
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Figure 7: Comparison of prediction under the condition of in-
creasing adhesion coefcient.

Table 5: Comparison of prediction under the condition of in-
creasing adhesion coefcient.

Model RMSE MAE
DNN 0.048 0.035
CNN 0.026 0.018
ConvLSTM 0.029 0.023
SA-CNN-LSTM 0.021 0.014
Improved SA-CNN-LSTM 0.017 0.011
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It can be seen that the test results of the two methods are
statistically stable under the same conditions. According to
the Burckhardt tire-road model [33], the friction coefcient
ratio of wet asphalt road and dry asphalt road is about 68%.
Te average friction coefcient of wet road obtained in this
test is about 70% of that of dry road, which is basically
consistent with the results of existing theories, indicating
that the estimated value of this method is accurate.

6. Conclusion

Based on the CarSim simulation data and vehicle-based data
of vehicle network cloud integration, this paper analyzes the
vehicle operation data related to the road adhesion co-
efcient, constructs the SA-CNN-LSTM adhesion coefcient
estimation model, and optimizes it with the reinforcement
learning Q-learning algorithm, which has higher accuracy
than DNN, CNN, and ConvLSTM. Te specifc conclusions
are as follows:

(1) Te road adhesion coefcient will afect the vehicle
speed, acceleration, wheel angular velocity, and other
parameters. Te road adhesion coefcient can be
estimated from these vehicle operation data.

(2) In terms of example verifcation using simulation
data, under the fve conditions of low adhesion
coefcient, medium adhesion coefcient, high ad-
hesion coefcient, increasing adhesion coefcient,
and decreasing adhesion coefcient, compared with
other models, SA-CNN-LSTM decreased by 29.41%,
25.57%, 27.78%, 19.23%, and 8% in RMSE and
33.3%, 25%, 25%, 22.2%, and 21.01% in Mae, re-
spectively. Improved SA-CNN-LSTM can be further
reduced by 25%, 20%, 23%, 23.8%, and 21.7% on
RMSE, and 20%, 22.2%, 10%, 21.4%, and 13.3%
on MAE.

(3) In terms of example verifcation using vehicle-based
data, the ratio of the estimated results of road ad-
hesion coefcient to the results of the standard

method is basically consistent with the results of
existing theories, which shows the accuracy of this
method.

However, the work of this paper also has some short-
comings. In the future work, we will collect more data to
verify the efectiveness of the model in a variety of diferent
scenarios.
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