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Trafc congestion has been a hot topic of research in the feld of intelligent transportation, which can be alleviated by efcient route
navigation. Most of the existing route planning methods are non-negotiated algorithms, which do not take into account the route
conficts and collaborative relationships between multiple vehicles. Also, most negotiated algorithms have not been comprehensively
considered dynamic route collaboration between vehicles, large-scale efcient computation, environmental pollution, etc. Terefore,
an ecological multivehicle real-time route selectionmodel (EMR2SM) for urban road networks is frstly proposed in this paper, which
combines real-time trafc conditions of the road network with travel time, distance, and exhaust emissions as optimization in-
dicators. In order to solve the large-scale computation problem of traditional negotiated algorithms, an adaptive multiswarm bee
colony (AMSBC) algorithm is designed, which efciently solves the multivehicle dynamic route selection problem. AMSBC searches
the optimal route for each vehicle in parallel through multiple population division and self-adaption mechanism, to make mul-
tivehicle route selection reach Nash equilibrium. Compared with three non-negotiated optimization algorithms based on swarm
technology, EMR2SM is verifed by experiments that it improves the efciency and accuracy of the optimal route selection for
multiple vehicles and reduces vehicle emissions, which can efectively reduce trafc congestion and environmental pollution.

1. Introduction

In recent years, with the rapid and continuous growth of the
number of vehicles, trafc congestion has become one of the
serious problems to be solved in urban sustainable develop-
ment. First, it seriously leads to air pollution and vehicle noise,
afects people’s driving comfort and travel efciency, and ag-
gravates trafc accidents. Second, it also causes vehicles to drive
at a low speed, resulting in a great waste of energy and more
exhaust emissions and leading to increasingly serious envi-
ronmental pollution problems [1, 2]. Tird, trafc congestion
also afects the physical and mental health of traveling in-
dividuals, reduces the quality of life and happiness index, and
increases life stress and anxiety [3–5]. With the limitation of
existing urban space capacity expansion, how to make full use
of the existing road trafc resources to ease urban congestion
has become a hot issue in the development of modern cities.

Most existing route selection methods are divided into
non-negotiated algorithms and negotiated algorithms.

(1) Non-negotiated algorithms mainly include route
selection methods based on overall trafc fow and
non-negotiated route selection methods based on
intervehicle. Te former contributes to solving the
imbalance of road network resources, and the latter
fnds the optimal route for vehicles from the per-
spective of their individual interests. However, the
limitation of non-negotiated algorithms are that they
do not take into account the confict and collabo-
ration relationship in the process of intervehicle
route selection, which may lead to many vehicles
following the same route recommendation, causing
congestion on the route and increasing the vehicle
travel time in the case of large vehicle scale.

(2) Negotiated algorithms consider vehicle collaboration
relationships, mainly including route optimization
methods based on master-slave game between
overall trafc fow optimization and vehicle indi-
vidual optimization and route selection methods
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based on multivehicle game. Te former optimizes
and balances the overall trafc fow and individual
vehicles from a macroperspective, while the latter
avoids congestion caused by the same route of large-
scale vehicles. However, the existing negotiated al-
gorithms consider the total cost of the road network
or the individual vehicle travel time cost; they con-
sider the single index and do not comprehensively
consider the dynamic nature of trafc conditions,
efciency, and accuracy of large-scale calculations.

In order to overcome the problems mentioned above,
this paper aimed to supply a negotiated, efcient, and ac-
curate route selection for multiple vehicles in a dynamic
road network, to satisfy vehicles demand, balance road
network resources, and improve environmental pollution.
Te main contributions of this paper are summarized as
follows:

(1) An ecological multivehicle real-time route selection
model (EMR2SM) is proposed, which efectively
avoids the route confict between vehicles and
provides more accurate routes for vehicles on the
road network.

(2) A formula is given to calculate the utility of vehicle
alternative routes. Considering the optimization of
vehicle exhaust pollution, as CO and NOx are the
highest components in the exhaust emissions, the
utility value index includes the CO and NOx
emissions. Te purpose of reducing and mitigating
pollution is achieved by optimizing it.

(3) Aiming at the large-scale computation and optimi-
zation problems faced by traditional game methods,
this paper improves the classical artifcial bee colony
(ABC) algorithm, proposes an adaptive multiswarm
bee colony (AMSBC) algorithm, and combines it
with game theory to improve the efciency and
accuracy of route optimization through multi-
population division and adaptive mechanism, ef-
ciently makes multivehicle route selection to reach
Nash equilibrium, and alleviates urban congestion.

Te remainder of this paper is organized as follows.
Section 2 presents related research work about route se-
lection methods in urban road networks. Section 3 in-
troduces the EMR2SM model framework in detail including
the road network model and noncooperative game model
and proposes the calculation method of route utility func-
tion. Section 4 introduces the adaptive multiswarm bee
colony (AMSBC) algorithm and combines with the non-
cooperative game model. Section 5 verifes the performance
of the EMR2SM model in urban trafc network scenario.
Section 6 summarizes and prospects the future work.

2. Literature Review

In the process of route selection between multiple vehicles,
the confict and cooperation between vehicles plays a very
important role in road network resource allocation, road
congestion mitigation, and multivehicle demand

optimization. Terefore, according to whether to consider
the confict and cooperation relationship in route selection
between vehicles, the route selection methods are divided
into non-negotiated methods and negotiated methods.

2.1. Non-negotiated Methods. Non-negotiated methods
mainly include route selection algorithms from the per-
spective of macro trafc fow evacuation and microvehicle
demand.

In order to efectively guide each vehicle by using real-
time trafc information and avoid road congestion, Chen
et al. [6] proposed a global algorithm for route guidance
strategy for advanced traveler information systems, pro-
viding real-time optimal route guidance information for
travelers at each intersection, efectively combating the
trafc congestion problem. Illhoe and Young [7] developed
a dynamic routing algorithm based on reinforcement
learning (RL), which utilizes real-time information to ef-
fectively guide each vehicle and avoid congestion. Zhao and
Zhang [8] established a parallel global route search method
to search for multiple relatively static shortest paths, to
obtain the global optimal shortest path of the current trafc
fow. Charalambos et al. [9] proposed a multiarea network
joint route guidance and demand management strategy with
macro trafc dynamics, to maximize the travel completion
rate of all areas. Mariam et al. [10] proposed a new advanced
vehicle guidance system based on hierarchical interval type 2
fuzzy logic model; it is optimized by particle swarm opti-
mization method, which can intelligently, quickly, and
dynamically adjust the road trafc network. Te above-
mentioned methods mainly conducted vehicle route guid-
ance from the perspective of overall trafc fow. It had
a signifcant efect on the overall vehicle distribution and
congestion mitigation of the road. However, it ignored the
personalized needs of microvehicles, and the route confict
between vehicles was not considered, which was easy to
cause a large number of vehicles to rush into the same lane.

In order to maximize the individual values of vehicle
routing, Chen et al. [11] proposed a personalized path de-
cision algorithm based on user habits, which makes path
decisions from the perspective of user personalization
through adaptive ant colony algorithm. Tang et al. [12] used
an improved Floyd (pairs shortest routes) algorithm to select
the fastest route using travel time values instead of distance
values to improve vehicle travel efciency. Niu et al. [13]
proposed a new route coding and decoding method, which
can efectively deal with the “path failure” caused by un-
certain driver’s personalized needs. Chow et al. [14] pro-
posed an adaptive trafc control algorithm to help the
drivers respond to the current trafc state and control
settings and fnd the fastest route to the destination.
Lamouik et al. [15] proposed a dynamic route system based
on deep convolutional neural networks, which provides fast
routes between source and target points, efectively im-
proving vehicle travel efciency and reducing red light
waiting. Chen et al. [16] proposed a daily dynamic learning
and adjustment model with bounded rationality, where
travelers can dynamically update their departure time and
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travel route using real-time trafc status information pro-
vided by navigation systems and past historical experience.
Te abovementioned method makes vehicle route selection
from the perspective of microscopic multivehicle demand,
which meets the demand of individual vehicles. However, it
does not consider the overall demand optimization among
multivehicles, and the resulting confict cooperation re-
lationship is not considered.

Non-negotiatedmethods havemade contributions to the
evacuation of trafc fow, the allocation of road resources,
and the personalized needs of vehicles. But the confict and
cooperation between vehicles is not considered, when the
scale of vehicles on the road network continues to grow,
many vehicles would fow into the same road section,
causing new trafc congestion.

2.2. Negotiated Methods. Negotiated methods mainly in-
clude the route selection algorithms from the perspective of
macrotrafc fow and vehicle individual equilibrium or
micromultivehicle demand equilibrium.

Wie et al. [17] established a dynamic trafc allocation
model with scheduling delay under the principles of system
optimization and vehicle equilibrium and compared the
total travel time and planned delay under diferent trafc
congestion levels. Zhang et al. [18] studied a trafc con-
gestion analysis model based on game theory by using the
concepts of user equilibrium with incomplete information
(UEII) and system optimization with incomplete in-
formation (SOII). Lujak et al. [19] proposed an optimization
model to bridge the gap between user-optimal and system-
optimal, and a new mathematical planning formulation
based on Nash welfare optimization to achieve good aver-
ages for all origin-destination (OD) pairs. Yang and Liu [20]
studied user-optimal routing and system-optimal routing
with the objective of minimizing their individual expected
travel cost and system travel time. Te abovementioned
methods mainly proposed the route selection algorithm
from the perspective of macrotrafc fow equilibrium and
vehicle individual equilibrium. It played a balanced role in
the overall distribution of trafc fow and reduces road
congestion. However, it only aimed at the demand opti-
mization under a single vehicle and did not consider the
demand balance and optimization between multiple vehicles
on the road network.

Bell [21] proposed an evaluation method of road net-
work reliability based on game theory to predict the travel
path of users and evaluate the cost. Jiang et al. [22] proposed
a route choice analytic method that embeds cumulative
prospect theory in evolutionary game theory to analyze how
the drivers adjust their route choice behaviors under the
infuence of the trafc information. Belhaiza [23] proposed
a new framework using mixed variable neighborhood tabu
search heuristic algorithm, to select Pareto nondominated
solutions from the search space of solutions satisfying Nash
equilibrium conditions and solve diferent types of vehicle
routing problems. Lu et al. [24] proposed a distributed
cooperative routing (DCR) algorithm-based on evolutionary
game theory to coordinate vehicles, so as to avoid all vehicles

focking to the same road and causing trafc congestion on
that route. Han et al. [25] used the route selection prefer-
ences of drivers as route model parameters and established
a game-theoretic-based route induction system for deriving
game strategies, and the optimal route was determined by
the maximum gain of the game in Nash equilibrium. Te
abovementioned method mainly established the route se-
lection algorithm from the perspective of microscopic
multivehicle demand balance, which solved the demand
balance and optimization problem among multivehicles.
However, the index considered was too single, and the
calculation delay of the utility of large-scale vehicles is
also faced.

To sum up, the previous route selection methods lack
vehicle dynamic negotiation and environmental protection
concept and have some problems such as single index and
large-scale calculation delay.

3. Proposed EMR2SM Model for Vehicle
Route Selection

In this section, the system architecture of the EMR2SM
model is described frst in Section 3.1, and then non-
cooperative gamemodel is defned in Section 3.2. Finally, the
specifc calculation formula of utility function is introduced
in Section 3.3.

3.1. System Architecture. In view that the indicators con-
sidered were relatively single, mainly including the total cost
of road network, travel time and travel distance cost of
vehicles, lacking environmental protection concept, and
lacking real-time dynamic cooperation and large-scale cal-
culation delay.Terefore, the EMR2SMmodel is proposed in
this paper, and the system architecture of which is shown in
Figure 1.

Te exhaust emission is regarded as one of the indicators
into the optimization goal. By optimizing the vehicle route,
the exhaust gas emission during driving can be reduced to
achieve the purpose of alleviating environmental pollution.
Te infuence of the change of real-time trafc information
on the dynamic route selection of vehicles is considered, and
the real-time and dynamic route adjustment of multiple
vehicles by combining the game strategy is realized. In
addition, in order to improve the efciency and accuracy of
fnding the best individual route, an adaptive multiswarm
bee colony (AMSBC) algorithm is designed, which is
combined with noncooperative game to search the best route
in parallel through population division to reach Nash
equilibrium. Moreover, each vehicle is equipped with
a driver assistance system (DAS) in a road network, and
every road network server (RNS) and game router (GR) has
its own control areas, which are placed beside the in-
tersection. In their respective control areas, RNS is re-
sponsible for collecting dynamic trafc information and
publishing the current trafc status to the DAS, GR is re-
sponsible for the mutual game between vehicles. Vehicles
decide whether to replay the route game when crossing an
intersection based on the current trafc status information
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collected by the DAS from the RNS. When the critical point
for triggering the vehicle to plan a new route is reached, the
RNS sends a request to the GR to trigger the vehicle
route game.

3.2. Noncooperative Game. During driving, the vehicle DAS
system intelligently senses the real-time trafc information
and triggers the route selection, optimizes their dynamic
route selection strategy through the game mechanism, and
improves the speed and accuracy of utility calculation in the
game through the AMSBC algorithm, so as to quickly reach

the Nash equilibrium and get their optimal route. In order to
describe the game model, this paper defnes the number of
vehicles in the road network as N � 1, 2 · · · n{ }, and R �

r1, r2, · · · rm  describes the number of optional routes, re-
spectively.Te directed graph G � (V, E) describes an urban
road network consisting of multiple intersections and edges.
V � 1, 2, · · · , v−1{ } denotes the set of intersection nodes, and
E � e( _v, _v + 1) | _v ∈ V{ } denotes the set of edges between
adjacent nodes. To facilitate this study, the vehicle starting
and ending points are also considered as corresponding
nodes, where node _v � 0 denotes the vehicle starting point,
node _v � v denotes the vehicle ending point. In the process

Road Network Server (RNS)

• Collecting dynamic traffic informations
• Releasing the current traffic status

RNS GR

GR RNS

Game Router (GR)

• Conducting vehicles routing game

• Obtaining dynamic traffic information
• Sharing routes and coordinating vehicles
• Updating routes

Driver Assistance System (DAS)

Edge (E)

Itersection (V)

• Road Congestion Degree
• Travel Time

Real-time Traffic Information

Trigger decision

Non Cooperative Game

Vehicles

Route Strategy
Set

Optimal
route of
vehicle

• Travel Time
• Travel Distance
• Gas Emissions

Utility Function

• Population Division Mechanism
• Parallel Search Mechanism

Adaptive Multi Swarm Bee Colony algorithm

search the optimal route
Optimal Route

Set

Figure 1: System architecture of EMR2SM model.
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of playing games, we describe the pure route strategy set for
each decision vehicle k by Rk � rk

1, rk
2, · · · , rk

m , and xk is the
corresponding mixed strategies, which represent the vehicle
k chooses a pure strategy rk

i (1≤ i≤m, 1≤ k≤ n) with
probability xk

i . So, the mixed space of the game can be
denoted as x � (x1, · · · , xk, · · · xn), i.e., the mixed strategy
combination formed by vehicles after selecting a mixed
strategy. Te utility of vehicle k under the hybrid situation x

is shown in the following equation:
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Nash equilibrium is achieved when each vehicle is the best
route relative to the route selection strategies of the other
vehicles, as shown in equation (2). x∗ denotes a Nash equi-
librium solution of the noncooperative game for vehicles,
Uk(x∗‖xk) denotes the utility of vehicle k when the mixed
strategy x∗ is replaced by xk, and the mixed strategies of other
vehicles remain unchanged. In particular, x∗ satisfes a suf-
cient and necessary condition for the Nash equilibrium so-
lution as shown in equation (3), that is, for the pure strategy
rk

j(1≤ j≤m) of vehicle k, there is Uk(x∗)≤ Uk(x∗‖rk
j).
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In the process of multivehicle driving, the road network
environment changes in real time. Terefore, even if the
vehicles have selected the route, the congestion degree of
roads and travel cost on the route afect the route selection in
real time. When DAS recognizes that the travel time of the
vehicle’s current route and the congestion coefcient of the
upcoming roads exceed the vehicle’s afordable threshold,
GR is triggered to restart the route selection process. As-
suming that the vehicle k is going to travel to the intersection
node v, the conditions that trigger its reroute selection are
shown as follows:

T
k l ≥T

kltv ,

κl
e(v,v+1) ≥ κ

l tv
e( _v, _v+1),

s.t. v> _v, v, _v ∈ V,

(4)

where Tk l represents the travel time and Tk l tv, κl tv
e( _v, _v+1)

represents the maximum tolerable threshold of travel time and
congestion degree of the road section e( _v, _v + 1), _v ∈ V, re-
spectively, when the vehicle k(k ∈ N) selects the route l(l ∈ R).

3.3. Utility Formulation. For the future route selection
standard, the vehicle not only considers the distance and
driving time of the route but also considers the impact of
exhaust emissions on the environment. Terefore, in order
to satisfy the demand of vehicles and environmental opti-
mization, this paper takes travel time, travel distance, and
exhaust emission as optimization indicators. Terefore, as
shown in equation (5), the efect value Uk l is defned as the
comprehensive utility value of vehicle k when it selects route
l(l ∈ R). Tus, the optimization objective of EMR2SM is
essentially a multiobjective combinatorial optimization
problem, as shown in equation (6).
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where GASk l represents the exhaust emission when vehicle
k selects route l(l ∈ R) and ω1,ω2,ω3 represent the weight
proportion, respectively. In this paper, the travel route of
each vehicle contains multiple road sections, and the travel
time (TT) is related to the trafc fow of the selected road
section. When vehicle k selects route l(l ∈ R), the travel time
can be calculated as shown in the following equation:

T
k l

� 
i�v

i�0
T
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Q
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β

⎛⎜⎝ ⎞⎟⎠, (7)

where Qe( _v, _v+1), _v ∈ V represents the actual number of ve-
hicles on road section e, Q

cap
e( _v, _v+1) represents the vehicle

threshold of free fow, Tk l
e( _v, _v+1) free represents the average

travel time of vehicles on road section e in free fow, and α, β
represent constant coefcients.

Each road section is composed of multiple adjacent
nodes. Terefore, if vehicle k selects route l(l ∈ R), its travel
distance (TD) is the sum of the distances between all ad-
jacent nodes on the route, as shown in equation (8), where
Dk l

e( _v, _v+1)(e( _v, _v+1)∈ E) represents the distance between
adjacent nodes on route l(l ∈ R).

D
k l

� 
i�v

i�0
D

k l
e( _], _]+1), i ∈ V. (8)

In this paper, CO and NOx emission are used as an
optimization index to reduce the environmental pollution
caused by vehicles. It is directly determined by the vehicle
fuel consumption (FC), CO emission rate (CER), NOx
emission rate (NER), and TD, as shown in equation (9).
When the fuel type is known, CER andNER are a fxed value,
such as the CER of diesel does not exceed 2.2 g/km, and the
NER does not exceed 1.13 g/km. FC is diferent under
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diferent conditions such as constant speed driving, accel-
eration driving, deceleration driving, and idle parking. In
order to simplify the analysis, this paper gives the vehicle
with va as average speed and travel distance D for the fuel
consumption as shown in the following equation:

GASk l
� D

k l
· (CER + NER) · FC

k l
, (9)

FC �
Pe · b · D

1.02 · va · ρ · g
, (10)

wherePe refers to engine power and the unit is kw, b refers to
efective fuel consumption rate, equal to fuel consumption
per unit efective work and the unit is g/kw · h, ρ refers to
fuel density and the unit is g/ml, and g refers to gravity
acceleration.

4. AMSBC Algorithm for Multivehicle
Route Selection

In this section, the advantage of AMSBC algorithm is described
in Section 4.1. Subsequently, the AMSBC subalgorithm de-
scription is given in Section 4.2. Finally, AMSBC algorithm in
route selection is comprehensively introduced in Section 4.3.

4.1. Advantage of AMSBC Algorithm. Te essence of multi-
vehicle dynamic real-time route selection is large-scale dy-
namic route optimization, which requires real-time, high
efciency, and accuracy of calculation. In order to improve the
speed and accuracy of calculating the utility whenmultivehicles
make route decision and solve the calculation problems faced
by traditional game methods, an adaptive multiswarm bee
colony (AMSBC) algorithm is frstly proposed, which is im-
proved from artifcial bee colony (ABC) algorithm and com-
bined with the noncooperative game. AMSBC algorithm
regards the vehicle feasible routes as the honey sources. Each
feasible route of the vehicle represents a mixed situation in the
game.Te bees aims to search for the optimal route in the space
of mixed strategy combination, and the route representing
Nash equilibrium has the optimal ftness value.

ABC algorithm has the characteristics of few parameters,
convenient calculation, and easy implementation. However,
for large-scale dynamic optimization problems, its optimi-
zation speed and accuracy will decrease with the increase of
scale, and it is easy to fall into the trap of local extremum. In
order to solve the problem of real-time dynamic route se-
lection of large-scale vehicles, the AMSBC algorithm is
proposed as shown in Figure 2. Compared with ABC algo-
rithm, AMSBC has made several improvements as follows:

(1) Multiple population division. Te feasible routes of
each vehicle is considered as a route population, it is
divided into multiple subroute populations, which
are scattered on diferent spaces, and it is benefcial
to jump out the limitation of local optimal solutions
and improve the search process.

(2) Adaptive mechanism. Adaptively updating the
number of subroute populations according to the
intensity of external environmental changes, it is

helpful for bees to search and track the optimal route
and improve the search process.

(3) Parallel mechanism. Search the space of subroute
populations in diferent spaces by the parallel way, to
increase the search efciency and improve the
search speed.

4.2. Optimal Route Selection in the Subpopulation Based on
ABC Algorithm. Te optimal route selection in the sub-
population is searched iteratively through the cycle stage of
ABC algorithm. We defne this process as AMSBC sub-
algorithm, and the pseudo code is shown in Algorithm 1. It
mainly goes through three stages: employed bees, onlooker
bees, and scout bees step. Te fowchart of AMSBC sub-
algorithm is described as follows:

Step 1: Employed bees step. Each employed bee is
assigned a feasible route and performs a neighborhood
search around the current route to fnd a new route. By
modifying the ith solution of the route solutions x,
a new neighborhood solution xi,j′ is generated. Te new
route selection process is completed by using the greedy
mechanism, if the ftness quality of xi,j′ is higher than
xi,j, xi,j′ will replace xi,j, otherwise xi,j will be retained,
as shown in equation (11), where b is a random route
generated by random means, ϕi,j is a random number
in the range of [−1, 1].

xi,j′ � xi,j + ϕi,j xi,j − xb,j ,

s.t. i, b ∈ 1, 2, · · · , SN{ },

j ∈ 1, 2, · · · , D{ },

ϕi,j ∈ [−1, 1].

(11)

Step 2: Onlooker bees step. Te Onlooker bees frst
select a route by roulette mechanism, and the formula is
given in equation (12). For the selected route, the
Onlooker bees perform the employed bees step.

pi �
fiti


SN
i�1 fiti

,∀i ∈ 1, 2, · · · , SN{ }. (12)

Step 3: Scout bees step. After a limited number of it-
erations, the route is discarded when the ftness value is
not improved and the employed bees corresponding to
the route are transformed into the scout bees, which use
equation (13) to generate a new route to replace the
discarded route.

xi,j � x
min
i,j + _ω x

max
i,j − x

min
i,j ,

s.t. _ω � Rand[0, 1],

i ∈ 1, 2, · · · SN{ }, j ∈ 1, 2, · · · D{ }.

(13)

Step 4: Detect termination condition. When the
maximum number of search iterations is reached, the
search process will be stopped and the best route will be
returned; otherwise, the loop will continue to iterate.
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4.3. AMSBC Algorithm Flow. Te optimal route of all ve-
hicles is based on the iterative search process of the ABC
algorithm. In the iteration of the algorithm, according to the
observed game results, the bees will continue to learn, and
the vehicle will adjust its own strategy. Terefore, the target
route is constantly updated and replaced in the space of the
mixed strategy combination of the game and fnally tends to
the game equilibrium, so as to reduce the driving cost of
vehicles and reduce exhaust emissions.

Te pseudo code is shown in Algorithm 2. In the
initialization stage, set the parameter values, generate the
initialization feasible solution, and calculate the ftness of
the feasible route based on Nash equilibrium to evaluate
the quality of the feasible route. Ten, the feasible routes
are divided into subroute populations, and the route is

iteratively searched and updated in each subroute pop-
ulation, based on ABC algorithm; if it is detected that the
ftness value of the subroute population has changed, then
calculate and detect the change strength to update the
number of subroute populations; if the specifed stop
condition is reached, the AMSBC algorithm terminates
and returns to the optimal route. Te AMSBC algorithm
fow is as follows:

Step 1: Initialization.

(1) Set parameter values. Initialize the main parame-
ters, including the maximum number of iterations
Max It, the population size SN, the parameter di-
mension of the individual solution D, the number
of subroute groups q, the number of colony Bees,
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Figure 2: Relationship between AMSBC and ABC algorithm.

Input: Road network G � (V, E), vehicles N, optional routes R, subroute populations;
Output: Vehicle equilibrium routes Line∗ of subpopulations;

(1) SetIter � 1;
(2) Repeat
(3) Employed Bees Step
(4) Distribute a path to each Employed Bee randomly;
(5) Carry out neighborhood search for xi

′,∀i ∈ 1, 2, · · · , SN{ };
(6) Apply greedy mechanism between xi

′ and xi
′,∀i ∈ 1, 2, · · · , SN{ };

(7) iffit ′xi > fitxi then
(8) Executexi

′ replaces xi;
(9) Onlooker Bees Step
(10) Apply the roulette mechanism to select the path xi, which based on the ft value;
(11) Execute the Employed Bees Step;
(12) Iter � Iter + 1;
(13) if route abandoned then
(14) Execute Scout Bees Step
(15) Turn employed bees into scout bees;
(16) Generate and mark new paths;
(17) UntilIter � Max It
(18) Return optimal routes of subpopulation

ALGORITHM 1: AMSBC subalgorithm.
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and the limit parameter Limit. When the number
of iterations reaches the Max It, the algorithm is
stopped. Since the optional routes of each vehicle are
R � r1, r2, · · · rm , the scale of routes SN is equal to
m, which represents the number of feasible routes of
the vehicle. D is the dimension of route solution xi,
whichmeans that xi is a D-dimensional vector, whose
value is the number of vehicles N � 1, 2, · · · n{ }, and
D is equal to N. Set the number of subroute pop-
ulations to q, and the scale of subroute populations to
SN/q. Bees is 2q times that of SN, the number of bees
in each subroute population is twice that of SN, the
number of employed and onlooker bees account for
half, respectively. In order to diversely search, the
Limit parameter limit is set to SN/q · D.

(2) Initialize the feasible solutions. Initialize the pop-
ulation routes x randomly, which consists of SN ×

D dimensional real-valued parameter vectors, as
shown in equation (13) in Section 4.2, and each row
vector is considered as a route, and all of them form
a candidate solution.

(3) Calculate the route adaptation value and evaluate
its quality. Te corresponding ftness function
converges to zero infnitely when and only when
the mixed strategy situation is a Nash equilibrium
x∗, as shown in the following equation:

fit(x) � 
n

k�1
max

1≤ j≤m
U

k
x‖r

k
j  − U

k
(x) ,

s.t. fit x
∗

(  � 0,

fit(x)≥ 0.

(14)

Step 2: Dividing subpopulations. Each vehicle feasible
routes R � r1, r2, · · · rm  is divided into q subroute
populations (size SN/q), and a number of bees with size
Bees/q are assigned to explore the search space. Each
alternative route solution is randomly assigned to a sub-
population. When it is detected that the ftness value has
changed, these subroute populations interact by merging
or redividing, and the populations increase or decrease
according to the intensity of the change of ftness value.
Step 3: Execute the AMSBC subalgorithm for each
subroute population. Find the optimal route in the
search space where the subroute population is currently
located, until it is detected that the route ftness value
changes, then the iteration process stops.
Step 4: Detect change strength (CS). Update the
number q of subroute population according to CS, the
formula of CS is shown in equation (15). If CS is greater
than the threshold value, merge it into other pop-
ulations and q � q − 1; otherwise q � q + 1, so as to
increase the exploration ability of the search space.

CS � fitbestsub y(after) − fitbestsuby
(before),

s.t.y ∈ 1, 2, · · · , q ,
(15)

Step 5: Detect termination condition. If the maximum
number of search iterations is reached, the search process
will stop and return the best route for each subroute
population. Otherwise, all subroute populations are
merged to form a single population that is redivided into
new subroute populations and the algorithm continues
from Step 2 using the new generation process.

Input: Road network G � (V, E), vehicles N, optional routes set R;
Output: Vehicle equilibrium routes sets Line∗;

(1) Initialization:
(2) Set parameter value Max It, SN, D, Bees, Limit, q;
(3) Generate the initial route sets xi � xi,1, xi,2, · · · xi,D , i � 1, 2, · · · SN randomly;
(4) Calculate the ftness of initial routes fiti,∀i ∈ 1, 2, · · · SN{ };
(5) SetIteration � 1;
(6) Repeat
(7) Divide the solutions xi into q subsolutions;
(8) For each q
(9) while No change in route detected do
(10) Execute AMSBC subalgorithm;
(11) end while
(12) Detecting change strength CS;
(13) ifCS<CT then
(14) q � q + 1;
(15) q � q − 1;
(16) Iteration � Iterantion + 1;
(17) UntilIteration � Max It;
(18) Output optimal route of subroute populations;
(19) Compare the optimal route fiti of the subroutes;
(20) Output equilibrium routes of vehicles with optimal fiti;

ALGORITHM 2: AMSBC algorithm.
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Step 6: Compare the subpopulation optimal route ft-
ness values and output the algorithm optimal route.
Te optimal ftness value fitbesty , y ∈ 1, 2, · · · , q  of
the subroute population is the global route optimal.

5. Computational Experiments and
Results Analysis

In order to verify the efectiveness of EMR2SM, the SUMO
simulation platform is used to simulate the driving process
of vehicles. Some scenes of Sioux-Falls-network road net-
work in bstabler data set are imported into SUMO to
simulate and track the dynamic driving route of vehicles,
and the performance of EMR2SM is analyzed through Py-
thon.We compared the performance of EMR2SMwith some
excellent route selection algorithms, including reverse
Stackelberg games (RSGs) [26] algorithm and virus genetic
algorithm (VGA) [27], hybrid artifcial bee colony (HABC)
algorithm [28], and multiobjective particle swarm optimi-
zation (MPSO) algorithm [29]. Among them, RSG is a ne-
gotiated algorithm, and the remaining three algorithms are
non-negotiated algorithm. Te latter three algorithms are
based on swarm technology, which have in common with
EMR2SM.

Section 5.1 sets the random starting point and desti-
nation for the Sioux-Falls-network and sets the vehicle in-
fow speed. Section 5.2 compares the EMR2SM model with
a negotiated algorithm and three non-negotiated algorithms
to verify its efectiveness.

5.1. Experiment Setup. As shown in Figure 3, some roads of
Sioux-Falls-network road network in bstabler dataset are
used to track the dynamic decision-making of vehicles,
which contain 26 road links and 19 intersections. O1 to O12
and D1 to D12 are randomly used as the starting point and
destination of vehicles, respectively. Te simulation is used
to simulate the vehicles in the road to obtain the real-time
speed of vehicles, the trafc fow density, and the length of
the road section. In the experiment, in order to represent the
trafc situation, it is assumed that the length of each vehicle
is 4meters, the minimum gap between two vehicles is
1meter, and 50 km/h is the maximum speed. Each vehicle is
randomly assigned a starting point and destination, and the
infow speed of vehicles varies from 10 vehs/min to 60 vehs/
min, which directly afects the road saturation of the whole
road network.

In the experiments, the parameter settings of utility
function and AMSBC algorithm in the experiment are
shown in Tables 1 and 2, respectively.

5.2. Comparison Experiments. Tis experiment verifes the
efectiveness of EMR2SM from four aspects. In diferent
algorithms, diferent limit parameters are set to analyze
the convergence degree and stability of vehicle route
solution in the frst part. Te second part simulates

diferent trafc fows of the road network by setting
diferent vehicle infow speeds and analyzes the execution
time under diferent algorithms. In the third part, the
efect of diferent algorithms on the efectiveness of de-
cision utility function is analyzed.Te fourth part analyzes
the trafc fow distribution of each road section in the
simulation time.

(1) In order to verify the quality and stability of the route
solutions solved by EMR2SM, a simulation scenario
with a road network trafc utilization rate of 0.6 is set
to verify the convergence of fit values. Generally, fit is
defned in optimization algorithms based on swarm
technology. Terefore, EMR2SM is only compared
with VGA, HABC, and MPSO algorithms here. As
shown in Figure 4, EMR2SM outperforms the other
heuristic optimization search algorithms in terms of
convergence and solution quality under diferent it-
eration values. Tey are all prone to fall into local
optimal solutions, but the AMSBC algorithm helps to
jump out of local optimal solutions due to population
partitioning and adaptively updating the number of
subpopulations according to the intensity of changes.

(2) In order to analyze the execution time, experimental
verifcation was carried out under diferent trafc
fow densities. As shown in Table 3 and Figure 5, the
execution time of EMR2SM is better than VGA,
HABC, MPSO, and RSG, irrespective of large trafc
infow or small trafc infow. EMR2SM has ideal
computing performance. Especially with the con-
tinuous increase of trafc fow, the execution time of
RSG has signifcantly increased, but the growth range
of EMR2SM’s running speed tends to be stable, and
its advantages are more obvious.

(3) In order to evaluate the efect of EMR2SM on re-
ducing the average travel time, average travel dis-
tance, and average exhaust emissions of the whole
road network, comparison experiments were carried
out under diferent weights. We change the weights
of the three types of parameters in the utility formula
and conduct diferent experimental analyses for
three cases: case 1, with the average shortest route of
vehicle as the goal (ω2 � ω3 � 0); case 2, with the least
average travel time as the goal (ω1 � ω3 � 0); case 3,
with the least average gas emissions as the goal
(ω1 � ω2 � 0). As shown in Figures 6(a)–6(c),
EMR2SM satisfes the requirement of minimizing the
utility value in diferent cases, especially with the
increase of trafc utilization of road network (ratio of
number of vehicles to road capacity), its utility ad-
vantage is more obvious, proving that the negotia-
tion and computational parallelism of EMR2SM are
more benefcial to the vehicle route fnding, efec-
tively reducing the vehicle travel time and distance,
exhaust emissions, and satisfying the needs of ecocity
development.
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(4) In order to evaluate that EMR2SM can efectively
alleviate trafc congestion, this paper simulates
the points (O1 − O12) at a constant infow speed of
40 veh/min. Measure the trafc utilization of each
road section during the sampling time period.
From Table 4 and Figures 7(a)–7(e), it can be seen
that in the whole, the negotiation ability of
EMR2SM and RSG can more efectively equalize
the road vehicle density, efectively disperses
trafc congestion on key sections. Compared to
the other methods, the variance value of EMR2SM

is efectively reduced, making the distribution of
trafc fow on each section more balanced, thus
making the city’s road resources more fully
utilized.
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Figure 3: Sioux-Falls-network.

Table 1: Parameter settings of utility function.

Parameters Settings
α 0.15
β 4
CER 1.85 g/km
NER 1.01 g/km
Pe [120, 160] kw
b [170, 220] (g/kw·h)
ρ [0.83, 0.855] (g/ml)

Table 2: Parameter settings of AMSBC algorithm.

Parameters Settings
Max It 200

SN
SN � m, equal to the number
of feasible routes for vehicles

D
D � N, equal to the number

of vehicles
q 5
Number of employed bees SN · q

Number of onlooker bees SN · q

Limit 50
TV 0.05

VGA
HABC

MPSO
EMR2SM
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Figure 4: Convergence of the fit value.

Table 3: Execution time of algorithms.

Vehicle infow
(veh/min)

Execution(s)
VGA HABC MPSO RSG EMR2SM

50 10.08 10.86 11.15 13.37 6.91
40 5.38 5.20 5.51 6.82 3.63
30 2.56 2.43 2.97 3.34 2.08
20 1.57 1.29 1.41 1.74 1.23
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Figure 5: Execution time.
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Figure 6: Diferent trafc utilization of road network. (a) Average distance. (b) Average travel time. (c) Average exhaust emissions.

Table 4: Trafc utilization of road section.

Roads
Trafc utilization of road section

VGA HABC MPSO RSG EMR2SM
1-2 0.56 0.59 0.62 0.59 0.66
1–3 0.8 0.69 0.75 0.74 0.77
2–6 0.75 0.76 0.78 0.79 0.81
3-4 0.68 0.72 0.65 0.69 0.73
3–10 0.84 0.72 0.78 0.86 0.79
4-5 0.79 0.75 0.65 0.77 0.77
4–11 0.85 0.83 0.82 0.85 0.87
5-6 0.89 0.94 0.95 0.79 0.75
5–7 1.22 1.21 1.2 1.17 1.12
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Table 4: Continued.

Roads
Trafc utilization of road section

VGA HABC MPSO RSG EMR2SM
6–8 0.79 0.76 0.8 0.84 0.81
7-8 0.75 0.77 0.86 0.81 0.83
7–12 1.2 1.18 1.16 1.14 1.13
8-9 0.41 0.47 0.5 0.57 0.59
8–13 0.8 0.8 0.76 0.87 0.86
9–14 0.5 0.49 0.5 0.56 0.54
10-11 1.12 1.16 0.98 1.03 0.96
11-12 1.18 1.19 1.16 1.05 1.09
11–16 0.86 0.87 0.85 0.94 0.92
12-13 1.06 1.04 1.11 0.93 0.95
12–15 0.49 0.57 0.58 0.51 0.59
12–17 1.17 1.16 1.18 1.07 1.09
13-14 1.09 1.13 1.16 1.09 1.04
13–15 0.81 0.79 0.81 0.87 0.84
15–18 0.55 0.59 0.63 0.62 0.66
16-17 0.44 0.4 0.36 0.42 0.39
17-18 0.36 0.38 0.37 0.39 0.40
Average 0.806 0.806 0.807 0.806 0.806
Variance 0.068 0.065 0.063 0.047 0.042
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Figure 7: Continued.
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6. Conclusion

In order to improve the urban environment and alleviate
urban trafc congestion, this paper proposes an ecological
multivehicle real-time route selection model (EMR2SM)
for urban road networks, which takes into account the
environmental indicators, the route change problem of
multiple vehicles under the dynamic change of trafc
status, and the confict and collaboration relationship
between vehicles in route selection. Ten, an adaptive
multiswarm bee colony algorithm (AMSBC) is designed,
which is integrated into the game theory. Te optimal route
of each vehicle is searched in parallel through multiple
swarm methods and adaptive mechanisms to reach Nash
equilibrium. Trough the comparison experiments, the
EMR2SM model has been verifed to have more advantages
in terms of convergence and solution quality than non-
negotiated optimization algorithms. With the increase of
the number of vehicles, the advantage of is more obvious.
Whether the trafc density is large or small, the EMR2SM
has more advantages in execution time. It has efectively
reduced the average vehicle travel time, average travel
distance, and exhaust emissions under diferent road
network saturation scenarios, especially making the re-
duction more obvious when the utilization of road network
is above 0.5. Finally, by analyzing the trafc fow of each
road section, the negotiation ability of EMR2SM is more
efective in balancing the road vehicle density, efectively
dispersing the trafc fow and alleviating the road trafc
congestion.

In spite of the progress in this paper, there is still some
work required to be further studied. First, considering
predicted routes for driving vehicles to plan routes should be
helpful. Second, the efect of waiting for trafc signals at
intersections on vehicle route selection should also be
considered to make the route selection more precise.
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